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Abstract—Peer review is a common process for evaluating
paper submissions and selecting high-quality papers at academic
conferences. A significant task is assigning submissions to ap-
propriate reviewers. Considering the constraints of reviewers,
papers, and conflicts of interest, retrieval-based methods and
assignment-based methods were proposed in previous works.
However, an author could also be a reviewer in the conference.
The loops between authors and reviewers may cause cooperative
cheating. In this paper, two algorithms are proposed for a
k-loop free assignment, which ensures the loop length is no
less than k. Inspired by the existing works, the first algorithm
assigns reviewers to maximize the summation of suitability scores,
temporarily ignoring the k-loop free constraint. Afterward, the
loops are detected and adjusted based on mergers. The second
algorithm generates k-loop free assignments within the nodes
that are both reviewers and authors. The other assignments
are generated using linear programming. Extensive experiments
show the effectiveness of the proposed methods.

Index Terms—Loop-free, paper-reviewer assignment, loop de-
tection, merger.

I. INTRODUCTION

As the most common practice in evaluating papers, peer
review systems attache a great significance to selecting high-
quality papers in a conference [1]. Conference organizers
are faced with the challenge of managing the peer-review
process. The organizers receive submissions from authors
and identify competent reviewers to evaluate the manuscript’s
quality. Paper-reviewer assignment (PRA) is an important
task that assigns the submitted papers to suitable reviewers
[2]. However, the quantity of submitted papers and program
committees are quite large in some conferences. Manual PRA
is really time consuming. Cheating is one of the drawbacks
of manual PRA. For example, a submitted paper is assigned
by chairs to reviewers who have close relationships with the
authors. What’s more, in some systems (e.g., EasyChair [3]),
reviewers are asked to bid on the preferred papers in order to
improve the assignment quality. The reviewers may not have
the time or patience to go through all the papers’ titles and
abstracts, which results in a bias of the bids. This cheating
drawback also exists for a bid-based system.

Automatic PRA systems are proposed and implemented to
avoid the above drawback, e.g. Infocom [1] and the NIPS
conference review system [4]. Considering reviewers’ maxi-
mum workloads and the quantity of reviewers that each paper
requires, the PRAs try to find an optimized assignment subject

Fig. 1. A motivating example.

to the constraints [1]. Apart from the above two constraints,
the papers are not allowed to be assigned to the reviewers
with close relationships as a Conflict of Interest (COI) forms.
This includes co-author relationships, colleague relationships,
advisor-advisee relationships [5].

The objective in most systems is to pursue the optimal
assignment, such as the suitability scores for maximization
between papers and assigned reviewers. However, many peo-
ple have two roles in a conference. They are authors who
submitted papers to the conference and are also severed as
reviewers to qualify the assigned papers. As a result, the
authors and reviewers, who are working in similar academic
areas, are more likely to have academic links not limited to
the above COIs. In the worst case, authors of two different
papers are reviewers and are assigned each other’s paper. They
may cooperate and give higher scores than they should. Such
reviewer-paper loops increase the cheating risk and should be
avoided in the automatic assignment.

Take Fig. 1 as an example. In Fig. 1(a), the solid lines repre-
sent review relationship. For instance, paper p1 is reviewed by
n2 and n4. The dotted lines represent the author’s relationship.
The author of p1 is n1. n1 and n2 serve as both authors and
reviewers. n3 is an author only, while n4 is a reviewer only.
The relationship between those four nodes can be modeled via
Fig 1(b). There is a loop between n1 and n2.

To address the above problem, we add the loop constraint
into the COI and propose a k-loop free assignment method.
With the growth of the length of the loop, the hardness of
cooperative cheating increases. Large loops are allowed, but
their lengths must be greater than a pre-defined threshold, k.
The larger k is, the smaller the risk of cooperative cheating is.
This paper systematically models the PRA problem to avoid



k-loops between reviewers and authors. Our objective is to
maximize the summation of suitability scores subject to a set
of constraints, including the workload capacity of reviewers,
the required reviewer quantity of each paper, and the COIs.
In the first algorithm, the papers are assigned using linear
programming, temporarily ignoring the loop-free constraint. A
directed graph is generated based on the assignment results.
The loops are detected and adjusted based on mergers to meet
the k-loop free constraint. The small loops are merged to
generate a loop with length more than k. The second algorithm
generates a k-loop free assignment for nodes which may have
loops. The remaining papers and reviewers are assigned using
linear programming afterwards. Our main contributions are
summarized as follows.

• A loop detection algorithm is designed. Two k-loop
free assignment algorithms are proposed subjected to the
constraints.

• Extensive experiments on two real world datasets show
the effectiveness of our method.

The remainder of the paper is organized as follows. Section
II describes the related work. Section III presents the paper-
reviewer assignment model and formulates the problem. The
details of the proposed algorithms are given to generate the
k-loop free assignment in Sections IV and V. Experiments on
two real-world datasets are conducted to evaluate the proposed
methods in Section VI. Finally, we draw our conclusion in
Section VII.

II. RELATED WORK

In the paper-reviewer assignment, two categories are divided
including retrieval-based methods and assignment-based meth-
ods. Retrieval-based methods focus on solving this problem
using information retrieval and machine learning technologies.
As a widely used system in both the machine learning and
computer vision communities, the Toronto recommender sys-
tem [4] provided an overview of the system and a summary
of the learning models. Reviewers’ bids, which represent their
interest degree to a specific set of papers, are taken into
consideration. Assessed expertise scores are utilized to predict
missing scores. The term frequency-inverse document frequen-
cy algorithm was utilized in [6] to calculate the similarity
score between papers and reviewers. [7] used a topic model to
exploit reviewers’ expertises. [8] considered various domain-
specific constraints and proposed some specific matching algo-
rithms to optimize the assignment procedure. [9] utilized the
logistic model for expert recommendation and determination.
[10] recommended a group of experts to submissions based
on the topic distributions to maximize the weighted coverage.

The assignment-based methods take several constraints into
consideration, such as the maximal workload of reviewers,
required quantity for each submission, and conflicts of interest-
s. The INFOCOM Review Assignment System [1] computed
the suitability score between a submission and a reviewer
using Latent Semantic Indexing. The total suitability score
is maximized with the constraints using linear programming.
The quality of each assignment pair is individually considered,

however, it may turn out that an interdisciplinary paper is
reviewed by a group of reviewers with too narrow of an exper-
tise. [8] constructed a convex cost network and transformed
the assignment problem to an equivalent minimum cost flow
problem with various constraints. [11] automatically identified
reviewers using a relative-rank particle-swarm propagation
algorithm in a co-authorship network. The goal of [12] is
suitability, the reviewer’s bid preference, and expertise degree.
[2] took the suitable score, interest trend, and authority of a
reviewer into consideration. The three objectives are balanced
with different weights and optimized using integer linear pro-
gramming. [5] maximized the total number of distinct covered
topics of the papers. A greedy algorithm is utilized which
gives a 1/3-factor approximation. Considering the weights
of topics, [10] maximized the topic coverage scores using
a stage-deepening greedy algorithm. The Branch-and-Bound
algorithm contributes to decreasing the search space. However,
the above methods may cause loops in the assignment, which
increases the cooperation cheat risks. In this paper, the k-loop
free assignment algorithm is proposed with the constraints.

III. MODEL AND PROBLEM FORMULATION

The assignments between authors and reviewers can be
modeled as a directed graph, G. G = (V,E), where V
represents the node set and E represents the edge set in the
graph. g represents a subgraph in G, g ∈ G. The directed
edge from node i to j is represented as {i, j}. Considering
the reviewers who also submitted a paper in the conference,
nodes can be classified into three categories: A, B, and C. A
represents the reviewer-only nodes whose in-degree equals 0
and B represents the nodes who serve as both the author and
reviewer. C represents the author-only nodes whose out-degree
is 0. The numbers of each kind of nodes are Na, Nb, and Nc

respectively. |V | = Na+Nb+Nc. E represents the assignments
from the reviewer nodes to the author nodes. {i, j} represents
that the paper, written by j, is reviewed by i. l(g) represents
the loop length of subgraph g.

Definition 1: Loop. A loop is a set of directed edges which
form a circle. The loop length is the minimal number of edges
to form the loop in a graph.

Definition 2: k-loop free assignment. The minimal loop
length in G is larger than k.

The objective of the problem is to maximize the summa-
tion of suitability scores between papers and reviewers. The
problem is formulated as follows.

max
α(r,p)

∑
r

∑
p

s(r, p)α(r, p)

s.t.
∑
p

α(r, p) ≤ w, ∀r ∈ A ∪B∑
r

α(r, p) = q, ∀p ∈ B ∪ C

α(r, p) ∈ {0, 1}, ∀r ∈ A ∪B, ∀p ∈ B ∪ C

l(g) ≥ k,∀g ∈ G

(1)



where s(r, p) represents the suitable score between a reviewer,
r, and a paper, p. α(r, p) is a binary variable of the assignment.
α(r, p) = 0 if a reviewer, r, has a COI with submission p. w
represents the maximal workload capacity for each reviewer.
q represents the number of required reviewers for each paper.
The length of loops in G is larger than k.

The problem is subject to the following three constraints: (1)
Paper Demand Constraint: any paper must be reviewed by a
given number of reviewers, (2) Reviewer Workload Constraint:
each reviewer can review up to a certain number of papers,
and (3) COI Constraint: there are no COI, including k-loop
free constraint, between any pair of authors and their assigned
reviewers.

IV. MERGER BASED ASSIGNMENT ALGORITHM

In this section, we propose an algorithm to generate a k-loop
free assignment. First, the papers are assigned to maximize
the total suitability scores [1] using linear programming,
temporarily ignoring the loop free constraint. However, such
assignments may conflict with the k-loop free constraint.
Afterwards, the loops are detected based on topological sorting
and the Depth-First Search (DFS) algorithm. The loops with
l(g) < k are merged with other loops to generate a k-loop free
assignment.

A. Loop detection

Based on the assignment results, the directed graph is
constructed. First, we check whether loops exist in the graph
using topological sorting. The goal of the topological sorting
algorithm is to find a linear ordering of vertices such that
for any edge (i,j) in E, i precedes j in the ordering. For a
graph which is not a directed acyclic graph, there will not
be a topological sorting. Topological sorting is efficient for
distinguishing whether there is a loop in the assignment [13].

At the beginning, the in-degree of each node is calculated.
The first vertex is always a vertex whose in-degree is 0. The
edges from this vertex are deleted in each iteration and the
in-degree of the nodes are updated. If there are no vertices
remaining, it shows there are no loops in the graph. As
shown in Fig. 2(a), the subgraph with n1 and n2 is a directed
acyclic graph with no loops. n1 and n2 are removed using two
iterations. For the entire graph, n1, n2, and n7 are removed.
The other 9 nodes remain. As a result, loops exist in the graph.

For the remaining graph with loops, calculating the loop
length and detecting the vertexes in each loop are solved
using DFS. DFS-based algorithms are utilized to generate a
tree and detect the back edge in the loop. The route from
the root node to the leaf with the back edge forms a loop.
For the connected graph, only one tree is generated to detect
the back edge. For the unconnected graph, different parts are
detected individually and generated to different trees. Stacks
in the recursive procedure can be utilized to implement the
algorithm. As it is acceptable if the length of the loop is more
than k, the hight of the trees are limited to k. When the (k+1)-
th level nodes are added to the tree, the top level father nodes
can be deleted to decrease the storage space.
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Fig. 2. An example for loop detection.
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Fig. 3. An example for the merger-based algorithm.
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Fig. 4. An example for the clustering result.

As shown in Fig. 2(b), the red dotted directed edges
represent the back edges. One back edge reflects one loop.
If k is set as 5, three loops are conflicted to the loop
constraint, including: n3 → n4 → n5 → n6 → n3 as loop1,
n4 → n5 → n4 as loop2, and n10 → n11 → n12 → n9 → n10

as loop3. If k is set as 3, only n4 → n5 → n4 needs
adjustment.

B. Merger based adjustment

To adjust the assignment, the loops are merged into large
loops to meet the constraint. Assuming {ni, nj} ∈ g1,
{np, nq} ∈ g2, {ni, nj} is a part of the loop whose length
equals l(g1) and {np, nq} is a part of the loop whose length
equals l(g2). We merge these two loops through breaking the
edges {ni, nj}, {np, nq} and creating new edges as {ni, nq},
{np, nj}. A larger loop is generated with length l(g1)+ l(g2).
Such operations make no difference to w(ni), w(np) and
q(nj), q(nq), so the other assignments will not be in conflict.
If l(g1) + l(g2) ≥ k, the merger based adjustment is finished.
A subgraph with no loop can regarded as a special loop with
an infinite length. However, the created edges may lead to new
loops. To avoid such cases, the connected graph with the new
edges are detected to check if new loop conflicts are generated.

As shown in Fig. 3(a), as {n4, n5} is a common edge for
two loops, if {n4, n5} exchanges endpoints with {n1, n2},
two loops will disappear. In Fig. 3(b), if {n4, n5} exchanges
endpoints with {n12, n9}, the three loops will merge into two
loops with lengths of 6 and 8, respectively.

To maximize the summation of suitable scores, it is im-
portant to choose proper edge pairs to break and create new
edges. The merger of the loops will make a reduction to the
total suitable scores, which is defined as merger cost c. If we
merge these two loops through breaking the edges {ni, nj},
{np, nq} and creating new edges as {ni, nq}, {np, nj},



c = s(ni, nj) + s(np, nq)− s(ni, nq)− s(np, nj) (2)

However, all edges in the graph can be the candidate
edge that operates with each edge in the target loop. The
enumeration-based algorithms spend a large amount of search
space and computation costs. To simply the search, we utilize
the cluster-based algorithm to filter similar reviewer pairs and
similar paper pairs, which reduces the searching space. If the
pairs ni, np and nj , nq are similar, s(ni, nj) − s(ni, nq) and
s(np, nq)− s(np, nj) will be reduced. As a result, the merger
cost will be low. The suitability scores between reviewers and
submissions represent the similarity between nodes, whose
reciprocals can be regarded as the distance between two nodes.

As a classical partitioning technique of clustering, a simple
and fast algorithm for the K-means clustering algorithm [14] is
utilized to cluster users into several clusters. Based on the node
types, the nodes are divided into reviewer-related clusters and
author-related clusters. In each cluster, the distance between
nodes are short, which means that they are similar to each
other. The cluster contributes to the search space reduction.
For {ni, nj} in a loop, the {np, nq} is selected as a candidate
when ni, np and nj , nq are in the same cluster, respectively. If
there are no new loops with length larger than k when {ni, nq}
and {np, nj} are created, {ni, nj} and {np, nq} are regarded
as an exchange pair to merge the loops. In the worst case, there
are no such edge pairs that satisfy the cluster-based selection
requirement. The edge {np, nq} is selected as a candidate
when ni, np or nj , nq are in the same cluster. The merger
cost is calculated for each exchange pair. For loops in the
graph, several exchange pairs are selected. We greedily select
the pair with the minimal merger cost in each iteration until
all the loops satisfy the k-loop free constraint.

For example, as shown in Fig. 4, the reviewer-related
nodes and author-related nodes are divided into 3 clusters,
respectively. For {n3, n4}, n5 and n6 are in the same reviewer
cluster with n3, and n3 and n6 are in the same author cluster
with n6. No edges are selected as candidates for the merger.
For {n4, n5}, n4 and n12 are in the same reviewer cluster, and
n5 and n9 are in the same author cluster. No extra loops are
created when {n4, n9} and {n12, n5} are connected. {n4, n5}
and {n12, n9} is an exchange pair that merge the loops. As a
result, Fig. 3(b) is a good option for the merger.

V. SHORTEST PATH BASED ALGORITHM

A. k-loop free assignment

In the k-loop free assignment, the key point is to guarantee
that B nodes, which servers as authors and reviewers, can
conform to the loop constraint. Given the suitable score matrix
between nodes in B, the reviewers are assigned based on
suitable scores using a greedy algorithm. Initially, the directed
edge with the maximal score is selected. In an iteration, if
{ni, nj} is selected, the other nodes’ shortest path to ni and
nj are detected. For example, if the path length from ni to nk

is no greater than k, s(ni, nk) are updated to 0. The workloads
and reviewer numbers of ni, nj are calculated. If they reach
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Fig. 5. The optimization process using network flow algorithm.

the threshold, the scores related to ni, nj are updated to 0.
The process will stop when no extra edge can be added.

The assignment only takes nodes in B into consideration.
However, not all the B nodes are assigned enough quantity
reviewers. In addition, the nodes in P and R are not matched.
The objective for this step is to maximize the summation
of similarities for the rest of the assignment. The remaining
workload and required quantity of reviewers are updated based
on the existing assignment. The suitable scores between B
nodes are set as 0, so no assignment will generate between
the B nodes. This optimal assignment problem can be solved
using linear programming.

B. optimal result using network flow algorithm

In above subsection, the k-loop free assignment is generated.
However, the result is not an optimal solution considering
the summation of suitable scores. Section V has shown that
exchanging the end points of edge pairs is a good way to
adjust the assignment. The edges are divided into two parts:
the edges with start and end points all within B as part I and
other edges as part II. The exchange pair consists of two edges
from each part. Such an operation will not generate new loops
or effect the workloads of the reviewers. The exchange cost
for each exchange pair is calculated afterwards.

However, the exchange pairs many have common edges.
One edge can only be adjusted once. A network flow model
is utilized to optimize the assignment result. The problem
can convex to a minimal cost maximum flow problem. As
shown in Fig. 5, S and T the represent virtual source and
terminal. Edges in {e1, e2, ..., eN} belong to Part I and edges
in {e1, e2, ..., eM} belong to Part II. The two parameters above
each edge represents the capability and cost. The capability of
all edges is limited to 1.

VI. EXPERIMENT EVALUATIONS

A. Datasets

The first dataset is the SIGIR dataset, provided by
Karimzadehgan and Zhai [15]. 73 papers and 189 reviewers
from SIGIR 2007 are selected. 25 major subtopics are utilized
to model the papers’ and reviewers’ academic areas. The
experts assign relevant subtopic aspects to all the papers
and reviewers through reading the abstracts and the expertise
profiles. According to the subtopic information, we calculated
the suitable score matrix between papers and reviewers.

The second dataset is the NIPS dataset, collected by Mimno
and McCallum [7]. The information from 148 papers and 364
reviewers from the NISP 2006 conference are collected. In the
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Fig. 6. The relationship between the objective and w, q.

dataset, the reviewers are asked to provide a suitable ground
truth between papers and reviewers. Four level-suitable scores
are provided in the dataset from 0 to 3, where 0 is the least
suitable and 3 represents the most suitable. In the dataset,
650 ground truth scores are provided. Based on the provided
scores, the scores in the paper-reviewer matrix are calculated
using matrix factorization [16], which is commonly used and
infers the unknown scores in a recommendation system.

B. The loop detection results

Based on the suitable score matrix, the papers are assigned
to reviewers regardless of the loop-free constraints using
the linear programming algorithm. As shown in Fig. 6, the
summation of suitable scores of the assignments are related to
the w and q. In some cases, the workload and quantity of the
reviewers are not large enough to meet the requirement. There
is not a feasible solution, such as a case with w=2 and q=6.
So, these points are absent in the figure. With the growth of
q, more assignments are required, and the objective is almost
increased linearly with the same w. If a larger w is allowed,
the objective is optimized with the same q.

Afterwards, the loops are detected in the assignment graph.
In the real world, the cooperation cheat risks decrease with
the growth of the loop length. We calculated the number of
loops with lengths from 2 to 8.

As shown in Fig. 7, the workload is set as 4, and required
reviewers for each paper are different, which is set as 1 to 6.
With the increase of the loop length, more loops are detected
on the average. As a result, more loops need adjustment based
on merger with the increase of k. What’s more, with the
increase of q, more assignment edges are generated, which
also leads to a loop quantity increase on average.

As shown in Fig. 8, the required reviewers for each paper
are set to 2, and the workload for each reviewer is different,
set as 1 to 6. With increase of loop length k, more loops are
detected in average.

Nb are nodes who sever as reviewers and authors. The
assignments between Nb may lead to loops. The larger Nb

is, the more loops are detected on average as shown in Fig. 9.

C. k-loop free assignment result

We first conduct a detailed simulation on the merger-
based algorithm. With the detected loops, the merger-based
algorithm is utilized to generate the k-loop free assignment.
We conduct our experiments to evaluate the performance of the
proposed assignment algorithm considering different variables,
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Fig. 7. The relationship between Nl and q.
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Fig. 8. The relationship between Nl and w.
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Fig. 9. The relationship between Nl and Nb.
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Fig. 10. The relationship between the objective and q.

including k,w, q, and Nb. As shown in Fig. 10, if k is
larger, more loops are detected and merged. The objective is
decreased because of the merger cost. If no more loops need
to be merged, the objective remains the same as shown in the
lowest graph in Fig. 10(a).

As shown in Fig. 11, the required reviewers for each paper
are set to 2, and the workload for each reviewer is different,
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Fig. 11. The relationship between the objective and w.
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Fig. 12. The relationship between the objective and Nb.
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Fig. 13. The comparison results between the two algorithms.
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Fig. 14. The comparison results between the two algorithms.

set as 1 to 6. With increase of loop length k, the objective is
decreased. Nb are nodes that serve as reviewers and authors,
and the assignments between Nb may lead to loops. As shown
in Fig. 12, the larger Nb is, the quicker the objectives decrease.

What’s more, the comparison results between the two algo-
rithms are shown in Fig. 13-15. In the simulation, k is set at 4.
To keep consistent with the detailed simulation on Algorithm
1, w is set at 4 in Fig. 13. The summation of similarity scores
increase with the growth of q. In Fig. 13, q is set at 2. In
Fig. 15, w and q are set at 4 and 3. In general, Algorithm
1 shows a better performance than Algorithm 2, especially in
the cases with a small number of loops.

VII. CONCLUSION

In this paper, we propose a generalized framework for k-
loop free assignment. The condition of the loop-free assign-

 Algorithm 1
 Algorithm 2

50 100 150 200

106

108

110

112

114

Nb

 

 

Su
m

m
at

io
n 

of
 su

ita
bi

lit
y 

sc
or

es

(a) SIGIR dataset

 Algorithm 1
 Algorithm 2

100 200 300 400
580

585

590

595

600

Nb

 

 

Su
m

m
at

io
n 

of
 su

ita
bi

lit
y 

sc
or

es

(b) NIPS dataset
Fig. 15. The comparison results between the two algorithms.

ment is discussed, which is useful for conference organizers
who determine the number of reviewers and the threshold
k. Two k-loop free assignment algorithms are proposed and
are subject to the constraints. Extensive experiments on two
datasets show the effectiveness of our proposed algorithms.
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