Energy-aware Scheduling for Frame-based Tasks on
Heterogeneous Multiprocessor Platforms

Dawei Li and Jie Wu
Department of Computer and Information Sciences
Temple University
Philadelphia, USA
{dawei.li, jiewu} @temple.edu

Abstract—Modern computational systems have adopted het-
erogeneous multiprocessors to increase their computation capa-
bility. As the performance increases, the energy consumption
in these systems also increases significantly. Dynamic Voltage
and Frequency Scaling (DVFS), which allows processors to
dynamically adjust their supply voltages and execution frequen-
cies to work on different power/energy levels, is considered
an efficient scheme to achieve the goal of saving energy. In
this paper, we consider scheduling frame-based tasks on DVFS-
enabled heterogeneous multiprocessor platforms with the goal of
achieving minimal overall energy consumption. We consider three
types of heterogeneous platforms, namely, dependent platforms
without runtime adjusting, dependent platforms with runtime
adjusting, and independent platforms. For all of these three
platforms, we first introduce a Relaxation-based Naive Rounding
Algorithm (RNRA), which can produce good solutions for some
cases, but may be unstable under other situations. Then, we pro-
pose a Relaxation-based Iterative Rounding Algorithm (RIRA).
Experiments and comparisons show that our RIRA produces a
better performance than RNRA and other existing methods, and
achieves near-optimal scheduling under most cases.

Index Terms—Heterogeneous multiprocessor platforms, dy-
namic voltage and frequency scaling (DVFS), task partitioning,
energy-aware scheduling

I. INTRODUCTION
A. Background

To meet the increasing requirements of computation, mod-
ern computational systems are adopting multiprocessor plat-
forms. As the computational performance increases, energy
consumption in these systems also increases significantly.
Dynamic Voltage and Frequency Scaling (DVFES) [1], which
allows processors to dynamically adjust the supply voltage
or the clock frequency to operate on different power/energy
levels, is considered an effective way to achieve the goal of
saving energy.

Task scheduling approaches on multiprocessor platforms
can be classified into two categories, namely, partition-based
scheduling and global scheduling. In partition-based schedul-
ing, each task is assigned statically to one processor. Partition-
based scheduling allows schedulability to be verified by mature
uniprocessor analysis techniques. In global scheduling, there
is a single job queue from which jobs are dispatched to any
available processor according to a global priority scheme.

In this paper, we consider partition-based energy-aware
scheduling for frame-based tasks on heterogeneous DVFS

multiprocessor platforms. For the same problem, widely used
methods derive an “energy-efficient” partition that tries to
achieve balanced workloads among all processors. It is be-
lieved that a balanced partition also has a good performance in
terms of overall energy consumption. For example, in [2], the
min-min heuristic is considered an energy-aware method for
mapping tasks on heterogeneous platforms; in [3], it is pointed
out that, in some situations, the max-min heuristic can achieve
better load balancing than the min-min heuristic. However,
we show that workload-balanced partitioning methods are not
optimal in terms of overall energy consumption. We describe
the two heuristics here, since we will compare our proposed
RIRA approach with them throughout the paper.

Min-min: in [2], the min-min heuristic is applied to map
frame-based tasks to heterogeneous multiprocessors with the
goal of saving energy. It begins with the set of all unassigned
tasks, which is initialized as the original task set. The heuristics
consists of two phases. In the first phase, the set of tasks’
minimum expected completion times is calculated (for all
unassigned tasks). In the second phase, the task with the over-
all minimum expected completion time among all unassigned
tasks is chosen and assigned to the corresponding processor.
Then, this task is removed from the unassigned task set, and
the procedure is repeated until all tasks are assigned [4], [3],
[S].

Max-min: this heuristic is very similar to the min-min
heuristic. It also begins with the set of all unassigned tasks.
The only difference is that, in the second phase, the task
with the overall maximum expected completion time among
all of the unassigned tasks is chosen and assigned to the
corresponding processor.

B. Motivational Example

In the following, we will show that workload-balanced parti-
tioning methods do not work well on heterogeneous platforms
in terms of overall energy consumption. Due to differences
between tasks’ characteristics and between processors, dif-
ferent processors may have different execution efficiencies
for different tasks. Denote, when executing at a same fixed
frequency f, the execution time of task 7; on the jth processor
M; by t; ;. Consider a simple example consisting of four
tasks and two processors, where t;; = 30, {12 = 50,
tog = 12, too = 35, t31 = 15, t32 = 24, t41 = 12,



M, @ | 6 74(4)

M, |74(2)

(a) Partitioned by the min-min heuristic

M, (1) 73(3)

M, 7(2) 74(4)

(b) Partitioned by the max-min heuristic

My 74(1) 72(2)

M, 73(3) 74(4)

(c) Partitioned by our RIRA approach

Fig. 1. Task partition using different methods

and t4o = 10. Assume that the tasks’ shared deadline is
100. The min-min heuristic and max-min heuristic produce
partitions as shown in Fig. 1 (a) and Fig. 1 (b), respectively.
Our proposed Relaxation-based Iterative Rounding Algorithm
(RIRA) always places overall energy consumption at the
highest priority and achieves the partition in Fig. 1 (c). In
each figure in Fig. 1, the number behind a task is the order in
which this task is assigned; for example, 71 (4) in Fig. 1 (a)
means that 77 is the fourth task that is assigned.

After partitioning, under a given assumption about the
platform, processor frequencies are adjusted correspondingly,
to achieve the goal of saving energy. Assume that the power
consumption of each processor running at frequency f is
p = f3; thus, the energy consumption of the processor during a
time interval ¢, is e = f3¢. For the partition in Fig. 1 (a), which
is on a dependent platform without runtime adjusting, both
of the two processors should operate at 0.57fs. The overall
energy consumption on the two processors is 21.7683f3. By
similar calculations, the overall energy consumption for the
three different partitions on the three types of platforms can be
achieved and are listed in Table I, in which “Type I’ represents
dependent platforms without runtime adjusting, “Type II”
represents dependent platforms with runtime adjusting, and
“Type III” represents independent platforms. Readers might
want to refer to Section II-B for clear definitions of these
platform types. As can be seen, our approach achieves the best
performance in terms of overall energy consumption on these
three types of platforms. Note that, for this special example,
our approach produces the same partition for both dependent
and independent platforms; generally speaking, however our
RIRA will produce different optimal partitions (in terms of
overall energy consumption) for dependent platforms and
independent platforms, respectively.

Overall energy consumption
Platform type min-min max—mirgly Our Plzoposed RIRA
Type I 21.7683f3 | 18.225f3 13.4064 f3
Type II 21.17f3 18.225f3 13.139f3
Type 111 18.6193f3 | 18.225f3 11.3392f3
TABLE I

THE OVERALL ENERGY CONSUMPTION OF DIFFERENT PARTITIONS ON
DIFFERENT PLATFORMS

C. Main Contributions

In this paper, we propose a Relaxation-based Iterative
Rounding Algorithm (RIRA) for energy-aware task partition-
ing on heterogeneous multiprocessor platforms. Our main
contributions are as follows.

« Firstly, we assume that different processors have different
execution efficiencies for different tasks. On the one
hand, due to the heterogeneity of the platform, different
processors may have different hardware implementations,
different instruction set architectures, etc. On the other
hand, different tasks/applications may have various dif-
ferent characteristics. Thus, this general assumption is
practical on real platforms.

o Secondly, most previous work derives partitions accord-
ing to existing work that tries to achieve a workload-
balanced partition. However, we show that a “workload-
balanced” partition is not optimal in terms of overall
energy consumption. Since the execution efficiencies vary
from processor to processor, it may be better to assign
a heavier workload to a more efficient processor and a
lighter workload to a less efficient processor. Thus, in our
consideration, we always place the energy consumption
at the highest priority.

« Finally, we propose a Relaxation-based Iterative Round-
ing Algorithm (RIRA) for partitioning task sets on het-
erogeneous multiprocessor platforms. The main idea of
our approach is to relax the original binary integer
programming problem; then, assign the most “influential”
task to a processor according to the relaxed optimal
solution in the sense that the assignment is closest to
the optimal solution. After having assigned some task(s),
we update the relaxed optimization problem, and assign
the next most “influential” task, based on the solution
for the updated optimization problem. Experiments and
comparisons verify that our RIRA produces a better
performance than existing methods, and achieves near-
optimal scheduling under most cases. Besides, we believe
this “iterative rounding” technique also has its merits
when we come to various similar integer, especially
binary integer, programming problems.

D. Paper Organization

The organization of this paper is as follows. Section II
gives the system model and problem definition; some existing
methods for the same problem are also presented; besides,
the main idea of our approach for the problem is briefly
introduced. In Section III, our proposed approach is applied
to scheduling frame-based tasks on dependent platforms; so-



Iutions for dependent platforms without and with runtime
adjusting are provided in subsections A and B, respectively.
Section IV applies our approach to independent platforms.
Experiments and comparisons are provided in Section V. A
brief conclusion is made in Section VI.

II. SYSTEM MODEL AND PROBLEM DEFINITION

In this section, we describe the system model and the
problem we are considering.

A. Task Model

In this paper, we consider scheduling a set of independent
frame-based tasks 7 = {71, 72, ,7,} that are released at
the same time 0 and share a common deadline D. This task
model is a typical one which reflects various practical appli-
cations. Here, tasks 7;’s are assumed to have no precedence
constraints. Each task 7;’s execution requirement is quantified
by its Worst Case Execution Cycles (WCECs), denoted by C.
The Worst Case Execution Time (WCET) of task 7;, when it
is executed at frequency f on a unit-efficiency processor, can
be calculated as C;/f. Correspondingly, the WCET of task
T;, When it is executed at frequency f on a processor with
execution efficiency A, can be calculated as C;/(\f).

B. Platform Model

The platform under consideration consists of m heteroge-
neous processors. All processors are DVFS-enabled processors
that can adjust their supply voltages and execution frequencies.
We define ); ; as the execution efficiency of processor M
when it is executing task 7;. This platform appears in vari-
ous practical situations, ranging from multiprocessor mobile
phones, multiprocessor workstations, or even distributed sys-
tems. The WCET of task 7;, when it is executed at frequency f
on processor M, can be calculated as C;/(\; ; f). We assume
ideal processors whose frequency ranges are continuous on
[0, +00). The power consumption model that we consider in
this paper is widely adopted by existing work and is said to be
a good approximation for some practical platforms. Processors
can operate in two modes: one is run mode, where the power
consumption only consists of dynamic power p = f2; the other
one is idle mode, where the processor consumes zero power.
Additionally, we assume that when a processor has no task to
execute, it transitions into idle mode immediately without any
overhead.

Under these assumptions, we further consider three types of
platforms. If all of the processors must operate at a common
frequency, and the shared execution frequency cannot be
adjusted during runtime after setting the initial frequency,
the platform is called a dependent platform without runtime
adjusting. If all the processors must operate at a common
frequency, and the shared frequency can be adjusted during
runtime after setting the initial frequency, the platform is called
a dependent platform with runtime adjusting. If processors
can operate at different frequencies at any time and can
adjust their execution frequencies independently, the platform
is considered an independent platform.

C. Problem Definition

Given a set of frame-based tasks {71, 72, -, 7}, our goal
is to schedule all of the tasks on m heterogeneous processors,
My, My, --- | M,,, such that the overall energy consumption is
minimized. Scheduling consists of two steps. The first and the
main step is to produce a partition with the goal of achieving
minimal energy consumption.

Since power consumption is proportional to the cube of
execution frequency, while execution time is just inversely
proportional to execution frequency, after a partition, the
execution frequency of each processor is slowed down as
much as possible under the constraints of our three different
assumptions about platforms. Namely, for dependent platforms
without runtime adjusting, the common frequency should be
chosen such that the processor with the greatest workload
completes all of the tasks assigned to it exactly at the deadline
D; for dependent platforms with runtime adjusting, we can
further determine the optimal frequencies in different time
intervals; for independent platforms, all processors are slowed
down independently such that each processor completes all of
the tasks assigned to it exactly at deadline D.

D. Related Work

Much work has been done regarding energy-aware schedul-
ing on both homogeneous platforms and heterogeneous plat-
forms [6], [7].

For homogeneous platforms, several typical works are de-
scribed as follows. [8] addresses scheduling on dependent
platforms. The Largest Task First (LTF) strategy is applied
to conduct task partitioning. After this, the optimal frequency
scheduling for different time intervals is also derived. [9]
considers scheduling on independent platforms with the con-
sideration of task migration. [10] studies scheduling with the
consideration of application-specific power consumption on
independent platforms. [11] handles scheduling on partitioned
multi-core platforms, where cores within the same partition are
dependent and cores from different partitions are independent.

Also, quite a few work has been done for energy-aware
scheduling on heterogeneous multiprocessor platforms. In
[2], the authors address the problem of mapping a set of
frame-based tasks to heterogeneous multiprocessors. Several
heuristics are described and analyzed in detail. One typical
heuristic is the min-min heuristic. [12] considers energy-aware
scheduling on a heterogeneous platform with one non-DVFS
Processing Unit (PU) and one DVFS processor. [13] studies
platforms with a fixed number of heterogeneous processors.
[14] investigates platforms with a fixed number of hetero-
geneous processor types, while one processor type may still
have multiple processors. A Minimum Average Energy First
(MAEF) strategy is adopted to tackle the task assignment
and processor allocation problem. [15] considers scheduling
precedence constrained tasks/applications.

Our work in this paper contributes to energy-aware schedul-
ing on heterogeneous multiprocessor platforms. The main
difference between these above-mentioned work and ours is,
that our proposed method has a strong theoretical foundation



to produce energy-efficient scheduling, as we will show later.
Various experiments and comparisons verify the strength of
our approach.

E. Our Approach

By the motivational example, we have noticed that a
“workload-balanced” partition is not optimal in terms of over-
all energy consumption, especially on heterogeneous multipro-
cessor platforms. Thus, in our consideration, we always place
the energy consumption at the highest priority and propose
a relaxation-based rounding algorithm for this problem. Our
intuition is that an assignment that is closest to the optimal
solution for the relaxed problem will achieve a better partition
in terms of overall energy consumption.

We first describe a Relaxation-based Naive Rounding Algo-
rithm (RNRA), which solves the relaxed optimization problem
once, and produces a partition according to the solution.
However, this approach may lead to an accumulated error
between the final assignment and the relaxed optimal solution.

Then, we propose a Relaxation-based Iterative Rounding
Algorithm (RIRA). The main idea of our RIRA is as follows.

Firstly, we define the average execution cycle of task 7;
as AEC; = L Z;”:l C;/(Xi,;) and sort the tasks in the order
Tivs Tins" " s Tips such that AEC,’l > AECZQ > 2> AECin.
This is also the order that we will assign tasks in. The intuition
here is that the task with the greatest average execution
requirement can be considered as the most “influential” task
in terms of both schedulability and energy consumption, and
thus, it should be considered first.

Secondly, we formulate the problem under consideration as
a binary integer programming problem, and then we relax it
as a convex optimization problem and solve it; based on the
optimal solution for the relaxed problem, we assign the most
“influential” task to the corresponding processor. After that,
we update the optimization problem (since we have already
assigned one task, both the objective function and constraints
have changed) and relax it again to achieve the solution which
will guide the assignment of the next most “influential” task.
The above process is repeated until we finish assigning (n—1)
tasks. For the last task 7,,, we just select the assignment that
achieves the minimal overall energy consumption among all
possible assignments of the last task.

III. ENERGY-AWARE SCHEDULING ON HETEROGENEOUS
DEPENDENT MULTIPROCESSOR PLATFORMS

In this section, we address the problem of scheduling frame-
based tasks on dependent platforms with the goal of achieving
minimal energy consumption while meeting all of the timing
constraints. Dependent platforms without and with runtime
adjusting are considered in subsections A and B, respectively.

A. Dependent Platforms without Runtime Adjusting

We first consider the optimal frequency setting if we have
already had a task partition. Let binary variables x; ; be 1 if
task 7; is assigned to processor M, and O otherwise. A given
partition can be represented by a binary matrix T, xm,. We

denote the shared frequency among all of the processors during
the whole time by f. Then, the time when processor M; will
complete its workload can be calculated as + ;" Lj\’c’ . The
shared frequency should guarantee that each processor finishes
the tasks on it before the deadline. Thus, to reach minimal
energy consumption, the shared frequency can be slowed down
as much as possible, as long as all processors’ completion

times are less than or equal to the deadline D:

1 - 1:”-07; .
— — < DVYi=1.2.--- X
f; )\Z —_ 7.] = 7m

J

The energy consumption on the jth processor M; is:
5= PG5 =Py B

i=1 "

Thus, to achieve a partition with the objective of saving
energy, the problem can be formulated as:

Eiotal = f2 Z?L(ZL %?)
st Y, 5% - fD<0Yj=12,m.
Zig=0o0r LVi=1,2,--- n;j=1,2,--- ,m.
ity = LVi=1,2,-n.
f>0.

i=1 "%

min

where the optimization variables are the shared frequency f
and the binary matrix z,x,,. Relax the binary variables x; ;’s
to be any fraction in [0, 1]. The above optimization problem
can be reformulated as:

Eiotar = [* 27;1(27:1 IAZJC)

st Y, % fD<0Vj=1.2 m.

0<uz; < 1’.,W: L2, mig=1,2,-,m.
Y =1L¥i=12n.

f=>o.

mn

Denote this relaxed optimization problem by P;, which
is a convex optimization problem that can be solved by
the well-known interior point method in polynomial time
(in terms of the input problem size under a given precision
requirement) [16]. The optimization variables of P; are the
shared frequency f and the relaxed assignment matrix , x .
Here, x;; represents the percentage of task 7; that should
be assigned to processor M, to achieve the minimal overall
energy consumption.

Our intuition is that if we assign tasks in a way that is
“closest” to the optimal solution (for the relaxed problem),
we will achieve a better partition in terms of overall energy
consumption. One possible way is a naive rounding method
to partition the task set. It solves the relaxed problem once,
and then assigns the tasks according to this single solution.
Basically, it assigns task 7; to processor M-, such that
Z; 4« is the maximum among z; 1,%; 2, ,Tim. Algorithm
1 describes this Relaxation-based Naive Rounding Algorithm
(RNRA).



Algorithm 1 RNRA

Algorithm 2 RIRA

Input:
The task set 7 = {71, T2, -+ , T, } and associated WCECs,
C1,Cs,--- ,C,; processor efficiency matrix, Ay, xm;
Output:
Binary matrix Assign., . indicating the final assignmen-
t;
1: Initialize the the assignment matrix: Assign; ; = 0 (Vi =
1,2, ,n:5=1,2,--- ,m);
2: Solve the relaxed optimization problem P;. Thus, get the
relaxed assignment matriX &, xqm;
for i :=1 ton do
L, = max(xiyl, Ti2,° "
Assign; j- = 1;
end for
return Assign;

axi,m,)s

AN A

However, this approach may lead to an accumulated error
between the final assignment and the optimal solution because
the condition for optimal energy consumption changes after we
assign some tasks. Thus, assigning follow-up tasks according
to the original solution may not be optimal in terms of overall
energy consumption. Taking this aspect into consideration, we
propose the Relaxation-based Iterative Rounding Algorithm
(RIRA). We will describe our RIRA in detail.

In the first step, we sort tasks such that their average
execution cycles AEC;’s are in descending order. Without loss
of generality and for notional brevity, from now on, we will
assume that all of the tasks are already sorted in our desired
order, i.e., AECy > AECy > --- > AEC,,.

Then, relax the original optimization problem as problem
P;. Since tasks are already in our desired order, the solu-
tions x11,%12, -, %1, indicate the optimal assignment of
the most influential task 7y. Then, we find the maximum
among 1,1, %12, - ,%1,n, denoted by x j«, and assign 71 to
processor M -. Denote the final assignment matrix for the task
set by Assignpxm. Then, we have Assign; ; = 0,Vj # j*
and Assign j« = 1.

Before assigning the next most influential task 72, we need
to update the optimization problem first. In this process, we
should always keep in mind that we have already assigned task
71 to processor M-, which means that z; ; = 0,Vj # j* and
21,5+ = 1. The expressions for the completion time and the
energy consumption on each processor are almost the same as
those for problem P, . Thus, the updated optimization problem
can be formulated as:

Eiotal = f2 Z?il(Z?zl %JC‘)
st S, S D <0,¥j=1,2, ,m.
0<m; <1Vi=2--- mVj=1,2,---,m.
Z;'n:1$i7j =1,Vi=2,---,n
[=0.

min

Denote this optimization problem by Ps, since it will
provide the solution for assigning task 75. Notice that, even

Input:
The sorted task set T = {7y, 72, -
ed WCECS, Cl, CQ, e
Anxms

Output:
Binary matrix Assign.,x., indicating the final assignmen-
t

1: Initialize the the assignment matrix: Assign, ; = 0,Vi =

,Tn} and associat-
-, Cp; processor efficiency matrix,

1,2, ,n;j=1,2,---,m;

2:. fori:=1ton—1do

3:  Solve Optimization problem P;;

4 e = max(Ti1, Ti2, 0 Tim)

5. for j:=1tom do

6: T3 = 0;

7. end for

8 Assign; - =1;

9: T = 1;

10:  Update the optimization problem to be P;41;
11: end for

12: Assign the last task 7, such that the final assignmen-

t achieves the minimal energy consumption among all
possible assignments for the last task. Denote this by
Assz’gnn,j/ =1;

13: return Assign;

though the appearance of this updated optimization prob-
lem is very similar to the original one (P;), P» is quite
different from P; because now, xi1,Z12, - ,T1,, have
fixed values, namely, z;; = 0,VYj # j*, and zy ;+ = 1.
The optimization variables in P, only includes the optimal
frequency f, and 1,222, ,T2,m, 31,32, " »L3,m,
©, Tp,1s%n2, 5 Ty,m. After solving P, we can assign
To according to X2 1,T22, -, T2, (solved for P»), which
is similar to what we do to assign 7;. Then, we can update
the optimization problem as Pj5, keeping in mind that we
have already assigned task 7; and 7o; solve it and assign
task 73. Then, solve Py to assign 74;---; solve P; to assign
7i; -+ +. Repeat the process until we finish assigning (n — 1)
tasks. We notice that, in some cases, assigning the last task
according to this iterative scheme may not be optimal. Thus,
for the last task, we just select the assignment which can
achieve the minimal overall energy consumption among all
possible assignments for the last task. Algorithm 2 shows our
Relaxation-based Iterative Rounding Algorithm (RIRA).

An illustrative example is provided, which considers assign-
ing 8 tasks to 3 processors. Tasks’ WCECs, C1,C5, -+ ,Cg
and the processor efficiency matrix, Agx3 are given in Table
II. For the need of some other techniques, a reference time
matrix is derived as tgyx3, where t; ; = Ci/)\i,j, which is also
provided in the same table. Notice that, in this example, tasks
are already in the required order for RIRA.

Fig. 2 (a) shows the partition by the min-min heuristic.
Fig. 2 (b) shows the partition by the max-min heuristic. The
RNRA solves P, (for this example) and gets the relaxed



. i j ti
B e N AR EE AN SR ANEE
1 7 i 4 .1 10 17.5 70
2 8 5 2 3 16 40 26.67
3 3 4 .1 2 7.5 30 15
4 5 5 2 4 10 25 12.5
5 9 .6 9 N 15 10 12.86
6 5 .8 3 .5 6.25 16.67 10
7 4 3 9 .6 13.33 4.44 6.67
8 4 4 .6 .8 10 6.67 5
TABLE 11
EXAMPLE
i Relaxed Assignment Matrix rgx 3 Assigngxs
j=115=2 j=3 j=1]1j=215=3
1 | 0.2920 | 0.7080 0 0 1 0
2 1 0 0 1 0 0
3 1 0 0 1 0 0
4 0 0 1 0 0 1
5 0 1 0 0 1 0
6 | 0.0665 0 0.9335 0 0 1
7 0 1 0 0 1 0
8 0 0 1 0 0 1
TABLE III

ASSIGNMENT BY RNRA

assignment matrix rgx3, as shown in Table III. Obviously,
by the naive rounding scheme, it can easily achieve the final
assignment matrix Assigngxs. Fig. 2 (c) shows the partition
by RNRA. Our RIRA first solves the original optimization
problem P;; assign 71 according to solutions 1 1,%1,2,%1,3
(solved for Pi). Then, it updates the optimization prob-
lem as P», solves it, and assigns 7, according to solutions
22,1, %2,2, 2 3 (solved for P,). Repeat the above process until
it assigns 7 tasks; for the last task, it selects the assignment that
achieves the minimal energy consumption. Relevant solutions
are shown in Table IV. Fig. 2 (d) shows the partition by
our proposed RIRA. In each figure in Fig. 2, the number
behind a task is the order in which this task is assigned;
for example, 77(1) in Fig. 2 (a) means that 77 is the first
task that is assigned. After a partition, the processors are
slowed down dependently such that the processor with the
greatest completion time meets the predefined deadline D
exactly. Assume that the common deadline is 100. The energy
consumption for these four partitions are as follows: 11.3 for
the min-min heuristic, 10.7 for the max-min heuristic, 8.464
for RNRA, and 8.08 for our RIRA. Obviously, our proposed
RIRA achieves the best partition in terms of overall energy
consumption.

i Relaxed Assignment z; 5 for P; Assigngxs
j=1 j=2 j=3 j=115=217=3
1 0.2920 0.7080 0 0 1 0
2 1 0 0 1 0 0
31 0.99984 | 0.00001 0.00015 1 0 0
4 1 0.00013 | 0.00001 0.99986 0 0 1
5 0 0.5379 0.4621 0 1 0
6 0.6504 0 0.3496 1 0 0
7 0 0.5062 04938 0 1 0
8 - - - 0 0 1
TABLE IV

ASSIGNMENT BY RIRA

73(3)16(4) T1(7) | 72(8) 72(1) | 74(5)
() T5(5) 74(2) 75(4) [tg(8)
Tal2)  T4(6) 73(3) | 76(6) |77(7)
() min-min (b) max-min
©2(2) 5@ |ra@)e
(1) | 75(5) w0 74(1) 75(5) 0
T4(4) | T6(6) rale) T4(4) (8
(c) RNRA (d) RIRA

Fig. 2. Partitions by different approaches

B. Dependent Platforms with Runtime Adjusting

For dependent platforms with runtime adjusting, an ap-
proach similar to that in [8] is applied here to determine the
optimal frequency scheduling during different time intervals
after we have achieved a partition. Given a partition, denoted
by an assignment matrix Zpxm, again, x; ; = 1 if task 7; is
assigned to processor M;, and is O otherwise. We define the
normalized effective execution cycles assigned to processor
M; as U; = >, IAZ? Without loss of generality, we
assume that processors are in ascending order of their U;
values, i.e., U} < Uy < --- < Uy,. Since all of the processors
must share a common frequency (though the shared frequency
can vary with time), the processor with a lesser U; value will
complete its tasks earlier than that with a greater U; value.
Introduce Uy = 0; the time interval between the time when
U;_1 is completed and the time when U; is completed, can
be calculated as t; = (U; — U;j_1)/ f;, where f; is the shared
frequency of the running processors during this time interval.
Thus, the energy consumption during the jth time interval is:

Ej = (m—j+1)f(U; - Uj1)

where, (m — j + 1) is the number of processors that are in run
mode during time interval ¢;. Thus, the frequency scheduling
problem can be formulated as:

min  Eyrar = 35 (m —j+ 1) f7(U; — Uj—1)
m Uj*Ujfl
s.t. Y1 <D
0< B=t <D, f; 20,V = 1,2, ,m.

The above optimization problem can be solved by the La-
grange Multiplier Method directly, and the optimal frequency
for the jth time interval can be achieved:

YUy =Uj)Ym —j+1
DIYm—j 11

fi =



t7(1) T5(5)
U = 14.44
(2 6
e e 3975
73(3)T6(4) T4(7) | T2(8)

(a) Sorted workloads after the min-
min partition

f1.t

f2 t

f3at3

t

44.3884 59.5912 100

(b) Runtime frequency adjusting, f1 = 0.3254, fa =
0.3725, f3 = 0.4693, t; = 44.3884, to = 8.2028,
ts = 47.4088

Fig. 3.  Runtime frequency adjusting for min-min partition

Let’s take the partition by the min-min heuristic in Fig. 2 (a)
as an illustrative example. The runtime frequency adjusting
procedures are shown in Fig. 3. Fig. 3 (a) shows the sorted
workloads among the three processors. After this, we can
determine the optimal frequencies for the three time intervals.
For this partition, by the Lagrange Multiplier Method, we can
get: f1 = 0.3254, fo = 0.3725, f3 = 0.4693, t; = 44.3884,
to = 8.2028, t3 = 47.4088. The overall energy consumption
is reduced from 11.3 to 10.3375.

After applying this runtime adjusting scheme for all of the
four partitions in Fig. 2, their overall energy consumptions can
be achieved: 10.3375 for the partition by the min-min heuristic,
10.4740 for the max-min heuristic, 8.1617 for RNRA, and
7.8776 for our RIRA. Our proposed RIRA also achieves the
best partition. This verifies that our partition method can also
provide a good solution on dependent platforms with runtime
adjusting.

IV. ENERGY-AWARE SCHEDULING ON HETEROGENEOUS
INDEPENDENT MULTIPROCESSOR PLATFORMS

In this section, we will apply our approaches for energy-
aware scheduling frame-based tasks on independent multi-
processor platforms. Again, we firstly consider the optimal
frequency setting after we have had a partition, denoted by a
binary matrix z,,x.,,. Since we assume independent platforms
here, in order to achieve minimal energy consumption, the
optimal frequency for the jth processor can be determined as:

- 1 " :177;7j01'
f J D )‘i,j

=1

T1(1) | 1(2)  |73(3) T1(1) | 72(2) |75(3)
75(5) 07 75(5) ®(7)Tg(8)
T4(8) | 76(6) a8 74(8) | 76(6)

(a) RNRA (b) RIRA

Fig. 4. Partitions by RNRA and RIRA

Then, the energy consumption on the jth processor M; is:
n

Z 1 z; :C;
_ £3 _ ) ~t\3
E; _ij_ﬁ(Z Aij )

i=1

Thus, to achieve the energy-optimal partition, it is equivalent
to solve the following optimization problem, denoted by P;:

zi Ci
Etotal - # Z;TLZI(Z;‘;I %)3
s.t. Zgﬁzll'i’j:l,Vi:]_’Q’... N
0<wz; <1,Vi=1,2,--- ,nVj=12--- m.

man

For simplicity, the binary optimization variables z; ;’s have
already been relaxed. RNRA solves problem Pl, , and adopts
the same process as in Algorithm I to assign all of the
tasks. Our RIRA solves problem Pll first, and assigns task 7;
according to solutions 1 1,Z12, - ,Z1,m; then, it updates
the optimization problem as PQ/:

7 k] Cl
Etotal = #ZTZI(Z:L:l %)3
s.t. Z;.":l;pi’j =1,Vi=2,---,n
OSIL'i,jS].,Vi:Z... ,n;Vi=1,2,--- ,m.

min

Assign  task 7 according to the  solutions
T2,1,%2,2, "+ ,T2,m (solved for le). Notice that the op-
timization variables of PQ/ only includes x2 1,722, ", T2,m,
231,232, ,T3m»> > Tn,1,Tn,2, " * Tn,m, SiNCE 71 has
already been assigned; in other words, z11,Z1,2, " ,Z1,m
have fixed values. Repeat updating and assigning in the same
way as in Algorithm 2; the only difference is that the jth
relaxed optimization problem for the independent platform is
denoted by Pi'. By this way, an energy-efficient partition for
independent platforms can be achieved.

For the example in Table II, obviously, the min-min and
max-min heuristics will produce the same partitions as in
Fig. 2 (a) and Fig. 2 (b). However, RNRA and RIRA will
produce partitions different from those in Fig. 2 (c) and
Fig. 2 (d). Using the same example on independent platforms,
the partitions derived by RNRA and RIRA are shown in
Fig. 4 (a) and Fig. 4 (b), respectively. The energy consumption
for the four partitions on independent platforms are: 7.11
for the min-min heuristic, 8.92 for the max-min heuristic,
6.14 for RNRA and 5.84 for our RIRA. Our proposed RIRA
still achieves the best partition in terms of overall energy
consumption.



V. PERFORMANCE EVALUATION

In this section, we will evaluate our RIRA from three
different angles under three settings. For each task assignment
problem on a multiprocessor platform, the four described
partitioning methods, namely, the min-min heuristic, the max-
min heuristic, RNRA, and RIRA, are applied to three types of
platform assumptions. We normalize energy consumption for
each case by their corresponding optimal energy consumption,
which is the solution for the first relaxed optimization prob-
lems, namely, P;, and Pl/. All experiments and comparisons
are done for scheduling 24 tasks on 6 processors.

A. Simulation Settings

In the first setting, we evaluate the performance of our
proposed RIRA for different processor efficiency matrices
and a fixed task set. Specifically, we choose the fixed set of
tasks with execution requirements: C' = [5,5,5,5,5,5,5,5;
10,10, 10, 10,10, 10, 10, 10; 15,15,15,15,15,15,15,15]. We
randomly generate 50 processor efficiency matrices Aogxg.
Within each matrix, the \; ;(i =1,2,---,24;j=1,2,--- ,6)
values are uniformly distributed in [0.1, 1]. For each processor
efficiency matrix, we can achieve the normalized energy
consumption (normalized to the optimal energy consumption
for the first relaxed problem) of the four partition methods
under a given platform assumption. We compare each partition
method’s 50 normalized energy consumption by computing
their means and standard deviations.

In the second setting, we evaluate the performance of our
proposed RIRA for different task sets and a fixed processor
efficiency matrix. More specifically, we consider the special
case where processors have different efficiencies, while one
processor has the same efficiency for different tasks. We
consider the following example: A\; 1 = 1, A\j 2 = 0.82, \; 3 =
0.64, \j 4 =046, \;5 =028, \j6 =01, Vi=1,2,---,24.
In a sense, these values are uniformly distributed in [0.1, 1].
We randomly generate 50 task sets. For each task set, the
C; values are uniformly distributed between [5, 15]. For each
task set, we can achieve the normalized energy consumption
(normalized to the optimal energy consumption for the first
relaxed problem) of the four partition methods under a given
platform assumption. We compare each partition method’s 50
normalized energy consumption by computing their means and
standard deviations.

In the third setting, we randomly generate 20 processor
efficiency matrices and 20 task sets. In each of the 20%20
cases, all A; ; values and C; values are uniformly distributed
in [0.1,1] and [5,15], respectively. For a given processor
efficiency matrix and a platform assumption, we average the
normalized energy consumption over the normalized energy
consumption of the 20 randomly generated task sets, and then
compare these 20 average normalized energy consumption.

B. Simulation Results

Results for the first setting is provided in Fig. 5. In each
figure of Fig. 5, the horizontal axis represents the partition

methods as indicated. The vertical axis represents the normal-
ized energy consumption for 50 randomly generated processor
efficiency matrices. Obviously, our RIRA achieves the best
performance in all of the three platform types. For dependent
platforms without runtime adjusting, RIRA reaches 1.2195
times that of the optimal energy consumption; for dependent
platforms with runtime adjusting, RIRA reaches 1.1893 times
that of the optimal energy consumption; for independent
platforms without runtime adjusting, RIRA reaches 1.0205
times that of the optimal energy consumption, which is only
about 2% greater than the optimal energy consumption. For
this setting, the normalized energy consumption of RIRA
achieves the smallest standard deviation. Thus, our RIRA is
better than all of the other three methods, in terms of both
average performance and stability.

Results for the second setting is provided in Fig. 6. In each
figure of Fig. 6, the vertical axis represents the normalized
energy consumption for 50 randomly generated task sets.
We notice that, in this special case, the RNRA attempts to
assign all of the tasks to the most efficient processor, i.e.,
processor Mj. Thus, the normalized energy consumption of
RNRA (about 6) is much greater than the other three methods
(less than 2). For clear comparisons between our RIRA and the
min-min and max-min heuristics, we do not show the results
for the RNRA method in Fig. 6. It can be seen that our RIRA
still provides the best performance. For the three types of
platforms, the average normalized energy consumptions are
only 1.0665, 1.0528, and 1.0267, respectively, which means
that the overall energy consumption is within 10% greater
than the optimal energy consumption, and can be considered
extremely good, though its standard deviation may be slightly
greater than some of the other methods.

Also, it can be noticed that the min-min heuristic achieves
better performance than max-min in the first setting, while
max-min achieves better performance than min-min in the
second setting. Thus, neither min-min nor max-min is a pure
winner when compared with each other.

Results for the third setting are shown in Fig. 7. In each
type of platforms in Fig. 7, the horizontal axis represents the 20
randomly generated processor efficiency matrices. The vertical
axis represents the average normalized energy consumption of
the 20 randomly generated sets of tasks, given a processor
efficiency matrix. Results for all of the 20 randomly generated
processor efficiency matrices are provided. This general setting
further verifies that the average performance of our proposed
RIRA is clearly better than other methods and is also stable
under various cases.

C. Simulation Summary

From all of the above experiments and comparisons, we
can see that our proposed RIRA method outperforms all other
methods in terms of overall energy consumption and achieves
a near optimal solution for various situations, especially on
independent platforms. Our RIRA achieves a good perfor-
mance mainly because of the two techniques it applies. The
first technique is the ranking scheme, namely, considering



3.04

2.04

151
tog

1.0+

Normalized Energy Consumption

max-min  RNRA  RIRA

Partition Methods

T
min-min

(a) Dependent Platform without Runtime Adjusting

11

T
min-min

r T

Normalized Energy Consumption

T T T
max-min RNRA RIRA

Partition Methods

(b) Dependent Platform with Runtime Adjusting

s

g 2.5

€

3

2

Q 2.0

(&)

>

=

2 151

w

3 | 1

@

N

‘© 1.0 - ===
£

S T T T T

z min-min  max-min RNRA RIRA

Partition Methods
(c) Independent Platform

Fig. 5. Setting I: given task set

the most “influential” task first, since such a task potentially
has the greatest influence on the overall energy consumption.
The second technique is the iterative rounding scheme. When
applying this technique, whenever we consider assigning a
task, the assignment that is closest to the optimal solution can
be chosen. Thus, our RIRA finally produces a partition with
an extremely good performance in terms of overall energy
consumption.

D. Additional Remarks

One important aspect we should notice is that, though
RIRA requires high computational complexity compared to
other methods, it is still a polynomial time algorithm, for the
interior point method is in polynomial time in terms of input
problem size, given a specific solution accuracy [16]. Besides,
in our RIRA, we actually do not need accurate solutions for
the relaxed optimization problems; in fact, we only need a

1.4
c
il
a
E 15 I
172}
c
S
(@]
5 1.24
2 1
i}
2 1.1
N
E E
13
S 1.0 T T T
z min-min max-min RIRA

Partition Methods

(a) Dependent Platform without Runtime Adjusting

N

w

=}
L

1.25+
1.20

1.154 I

1.104

1.05+ E

T
RIRA

N
=}
s}

Normalized Energy Consumption

max'—min
Partition Methods

T
min-min

(b) Dependent Platform with Runtime Adjusting

1.254
1.20+

1.154 I
1.10

1.05

S

1.00

Normalized Energy Consumption

T T
max-min RIRA

Partition Methods

T
min-min

(c) Independent Platform

Fig. 6. Setting II: given processor efficiency matrix A24x6

“rough solution” as long as it can guide our assigning decision.
Thus, we can reduce the accuracy requirement when solving
the relaxed optimization problems to reduce its computational
complexity. Thirdly, it should also be noticed that our schedul-
ing is an offline static scheme. The static scheduling overhead
can be considered negligible compared to tasks’ execution
times. Once the static scheduling is produced by our proposed
RIRA, little runtime/online scheduling overhead is required.
These aspects make RIRA a practically-applicable scheduling
scheme.

Besides, in our work, we assume that processors’ dynamic
power consumption is p = f3; our approach is not limited
by this assumption. Actually, our proposed RIRA works well
for the general assumption that the power consumption of
processor M is p; = [ f“, where (3; is a positive constant
factor for processor M, and « is a positive number greater



w

Ing
©

NV v

—6— Min—-min
—&— Max—min
——RNRA
—+—RIRA

W
288 Se 9BaZ 008 en s aas)

0 5 10 15 20
20 processor efficiency matrices

g
)

INd
kN

N
N

N

L
o ®

Average normalized energy consumption
.
»

(a) Dependent Platform without Runtime Adjusting

NN
o © w

—6— Min-min
—8— Max-min
—6— RNRA
—+—RIRA

N
I

INg
N

N

Iy
©

-
)

' i

>

=
N

I
N

Average normalized energy consumption

[

10 15 20
20 processor efficiency matrices

o
o

(b) Dependent Platform with Runtime Adjusting

—e— Min-min
—&— Max-min

N
o

INg
~

Ind
N

N

Average normalized energy consumption
-
©

——RNRA
—+—RIRA
16
1af
12} P oo e g 6 o0 OO0 o4
1 oo o6 o 'S
0 5 10 15 20

20 processor efficiency matrices

(c) Independent Platform

Fig. 7.  Setting III: both task sets and processor efficiency matrices are
randomly generated

than 2. Additionally, we only consider frame-based tasks in
our work, while it is also applicable to use our iterative
rounding scheme to partition periodic tasks on heterogeneous
multiprocessor platforms. This aspect is what we will consider
in the future.

Finally, as we have pointed out, this ranking method (always
considering the most influential task first) and iterative round-
ing approach also have their merits when we come to various
integer, especially binary integer, programming problems.

VI. CONCLUSION

In this paper, we addressed the problem of scheduling
frame-based tasks on heterogeneous platforms with the goal
of minimizing overall energy consumption. We proposed a
Relaxation-based Iterative Algorithm (RIRA) for three types of
heterogeneous platforms, namely, dependent platforms without

10

runtime adjusting, dependent platforms with runtime adjust-
ing, and independent platforms. We notice that a “workload-
balanced” partition is not optimal in terms of overall energy
consumption. In our algorithm, when assigning each task, we
always place the overall energy consumption at the highest pri-
ority. Thus, our proposed RIRA produces a better performance
than existing methods, and achieves near optimal solution for
most cases. Experiments and comparisons from three different
angles verify the strength of our algorithm.

REFERENCES

[11 S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw, “Combined
dynamic voltage scaling and adaptive body biasing for lower power
microprocessors under dynamic workloads,” in IEEE/ACM International
Conference on Computer Aided Design.

[2] W. Sun and T. Sugawara, “Heuristics and evaluations of energy-aware
task mapping on heterogeneous multiprocessors,” in International Sym-
posium on Parallel and Distributed Processing Workshops and Phd
Forum, May 2011, pp. 599 -607.

[3] K. Etminani and M. Naghibzadeh, “A min-min max-min selective
algorihtm for grid task scheduling,” in the 3rd IEEE/IFIP International
Conference in Central Asia on Internet, September 2007, pp. 1 —7.

[4] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund,
“Dynamic mapping of a class of independent tasks onto heterogeneous
computing systems,” J. Parallel Distrib. Comput., vol. 59, pp. 107-131,
November 1999.

[5] H. Izakian, A. Abraham, and V. Snasel, “Comparison of heuristics
for scheduling independent tasks on heterogeneous distributed environ-
ments,” in International Joint Conference on Computational Sciences
and Optimization, vol. 1, April 2009, pp. 8-12.

[6] J.-J. Chen and C.-F. Kuo, “Energy-efficient scheduling for real-time
systems on dynamic voltage scaling (dvs) platforms,” in the 13th
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, August 2007, pp. 28-38.

[7]1 J.-J. Chen, C.-Y. Yang, T.-W. Kuo, and C.-S. Shih, “Energy-efficient
real-time task scheduling in multiprocessor dvs systems,” in Asia and
South Pacific Design Automation Conference, January 2007, pp. 342—
349.

[8] C.-Y. Yang, J.-J. Chen, and T.-W. Kuo, “An approximation algorithm for
energy-efficient scheduling on a chip multiprocessor,” in Proceedings of
Design, Automation and Test in Europe, March 2005, pp. 468—473 Vol.
1.

[9] J.-J. Chen, H.-R. Hsu, K.-H. Chuang, C.-L. Yang, A.-C. Pang, and T.-W.

Kuo, “Multiprocessor energy-efficient scheduling with task migration

considerations,” in Proceedings of the 16th Euromicro Conference on

Real-Time Systems, June-July 2004, pp. 101 — 108.

J.-J. Chen and T.-W. Kuo, “Multiprocessor energy-efficient scheduling

for real-time tasks with different power characteristics,” in International

Conference on Parallel Processing, June 2005, pp. 13-20.

F. Kong, W. Yi, and Q. Deng, “Energy-efficient scheduling of real-time

tasks on cluster-based multicores,” in Design, Automation Test in Europe

Conference and Exhibition, March 2011, pp. 1-6.

C.-M. Hung, J.-J. Chen, and T.-W. Kuo, “Energy-efficient real-time task

scheduling for a dvs system with a non-dvs processing element,” in

the 27th IEEE International Real-Time Systems Symposium, December

2006, pp. 303-312.

C.-Y. Yang, J.-J. Chen, T.-W. Kuo, and L. Thiele, “An approximation

scheme for energy-efficient scheduling of real-time tasks in heteroge-

neous multiprocessor systems,” in Design, Automation Test in Europe

Conference and Exhibition, April 2009, pp. 694-699.

J.-J. Chen and L. Thiele, “Task partitioning and platform synthesis

for energy efficiency,” in the 15th IEEE International Conference on

Embedded and Real-Time Computing Systems and Applications, 2009,

pp. 393-402.

Y. C. Lee and A. Y. Zomaya, “Minimizing energy consumption for

precedence-constrained applications using dynamic voltage scaling,” in

the 9th IEEE/ACM International Symposium on Cluster Computing and

the Grid, May 2009, pp. 92 —99.

S. Boyd and L. Vandenberghe, “Convex optimization,” in Cambridge

University Press, 2004.

[10]

(11]

[12]

[13]

[14]

[15]

[16]



