
DeepSlicing: Collaborative and Adaptive CNN
Inference With Low Latency

Shuai Zhang , Sheng Zhang ,Member, IEEE, Zhuzhong Qian ,Member, IEEE, Jie Wu , Fellow, IEEE,

Yibo Jin , Student Member, IEEE, and Sanglu Lu,Member, IEEE

Abstract—The booming of Convolutional Neural Networks (CNNs) has empowered lots of computer-vision applications. Due to its

stringent requirement for computing resources, substantial research has been conducted on how to optimize its deployment and

execution on resource-constrained devices. However, previous works have several weaknesses, including limited support for various

CNN structures, fixed scheduling strategies, overlapped computations, high synchronization overheads, etc. In this article, we present

DeepSlicing, a collaborative and adaptive inference system that adapts to various CNNs and supports customized flexible fine-grained

scheduling. As a built-in functionality, DeepSlicing has supported typical CNNs including GoogLeNet, ResNet, etc. By partitioning both

model and data, we also design an efficient scheduler, Proportional Synchronized Scheduler (PSS), which achieves the trade-off

between computation and synchronization. Based on PyTorch, we have implemented DeepSlicing on the testbed with real-world edge

settings that consists of 8 heterogeneous Raspberry Pi’s. The results indicate that DeepSlicing with PSS outperforms the existing

systems dramatically, e.g., the inference latency and memory footprint are reduced up to 5.79� and 14.72�, respectively.

Index Terms—CNN inference, edge computing, scheduling, synchronization

Ç

1 INTRODUCTION

THE last decade has witnessed the emergence of deep
learning. As a representative, convolutional neural net-

works (CNNs) are ubiquitously utilized in a variety of
applications, e.g., image classification [1], [2], [3], object
detection [4], [5], [6] and video analytics [7], [8], [9].
Equipped with dedicated CNNs, these applications can
detect and classify objects from images/videos accurately.

Despite these advantages, it is worth noting that CNN
inference has a large demand in terms of the computing
resources. For instance, VGG-16 requires 15.5G MACs (mul-
tiply-add computations) to classify an image with 224 � 224
resolution [10]. On this account, conventional solutions per-
form inference on computationally powerful clouds to
reduce the latency. However, it is the network edge that the
input data are generated at. The long distance transmission
suffers from delay and jitter and it is hard to meet the
requirements of real-time applications.

Recently, the proliferation of Internet of Things (IoT)
brings about the growth of computing capability at net-
work edge, hastening the birth of edge computing [11].
User data can be fed into CNNs locally to avoid remote
transmissions. In order to alleviate the discrepancy between

the limited capability of edge devices regarding the compu-
tation and huge resource demands of CNNs, many app-
roaches have been explored, such as model compression
[12], [13], [14], model early-exit [15], [16], [17], model parti-
tioning [18], [19], [20], [21], [22], [23], [24], [25], data parti-
tioning [26], [27], [28], [29], [30] and domain specific
hardware/tools [31], [32]. More specifically, model com-
pression performs revisions on the target model for a com-
pacted one. Even though the CNN has been compressed,
large input data may overwhelm an IoT device if its RAM is
limited. Model early-exit tries to bypass some layers to
accelerate the inference, which brings about extra training
cost. Model partitioning splits CNN models between edge
and cloud so as to take advantage of both the network band-
width of edge and the computing power of cloud. Neverthe-
less, wide area network (WAN) transmission still exists and
the sequential partition execution does not fully utilize the
parallel nature of edge devices.

Different from these methods, data partitioning splits the
data among edge devices and performs the inference in a
parallel manner, fully utilizing the computing resources of
each edge device. Besides, data partitioning is edge native,
since the connections between devices at network edge are
much faster and more stable than that over WAN. With this
feature, communications will be more time-efficient, leading
to a small inference latency.

While there are several works [26], [27], [28], [29], [30]
already focusing on the data partitioning, they have the fol-
lowing weaknesses that exactly motivate our work:

Limited Support for CNN Structures. The structure of com-
monly used CNNs has become more and more complex.
Previous works [26], [27] only focus on chain-like CNNs,
e.g., YOLOv2 [6], VGG-16 [1]. In fact, there exist inception
and residual blocks in GoogLeNet [2] and ResNet [3], which

� Shuai Zhang, Sheng Zhang, Zhuzhong Qian, Yibo Jin, and Sanglu Lu are
with the State Key Laboratory for Novel Software Technology, Nanjing
University, Nanjing 210023, China. E-mail: {zhangshuai.cs, yibo.jin}
@smail.nju.edu.cn, {sheng, qzz, sanglu}@nju.edu.cn.

� Jie Wu is with the Center for Networked Computing, Temple University,
Philadelphia, PA 19122 USA. E-mail: jiewu@temple.edu.

Manuscript received 8 Oct. 2020; revised 3 Jan. 2021; accepted 2 Feb. 2021.
Date of publication 11 Feb. 2021; date of current version 16 Mar. 2021.
(Corresponding author: Sheng Zhang.)
Recommended for acceptance by R. Prodan.
Digital Object Identifier no. 10.1109/TPDS.2021.3058532

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021 2175

1045-9219 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Temple University. Downloaded on August 03,2021 at 16:02:18 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6464-8960
https://orcid.org/0000-0002-6464-8960
https://orcid.org/0000-0002-6464-8960
https://orcid.org/0000-0002-6464-8960
https://orcid.org/0000-0002-6464-8960
https://orcid.org/0000-0002-6581-6399
https://orcid.org/0000-0002-6581-6399
https://orcid.org/0000-0002-6581-6399
https://orcid.org/0000-0002-6581-6399
https://orcid.org/0000-0002-6581-6399
https://orcid.org/0000-0003-1625-7575
https://orcid.org/0000-0003-1625-7575
https://orcid.org/0000-0003-1625-7575
https://orcid.org/0000-0003-1625-7575
https://orcid.org/0000-0003-1625-7575
https://orcid.org/0000-0002-3472-1717
https://orcid.org/0000-0002-3472-1717
https://orcid.org/0000-0002-3472-1717
https://orcid.org/0000-0002-3472-1717
https://orcid.org/0000-0002-3472-1717
https://orcid.org/0000-0001-5560-1338
https://orcid.org/0000-0001-5560-1338
https://orcid.org/0000-0001-5560-1338
https://orcid.org/0000-0001-5560-1338
https://orcid.org/0000-0001-5560-1338
mailto:zhangshuai.cs@smail.nju.edu.cn
mailto:yibo.jin@smail.nju.edu.cn
mailto:sheng@nju.edu.cn
mailto:qzz@nju.edu.cn
mailto:sanglu@nju.edu.cn
mailto:jiewu@temple.edu

are not the chain structures. As a consequence, supporting
general CNN structures is important and required.

Overlapped Computation and High Synchronization Cost.
One type of previous works [27], [28], [29], [30] treats each
computing part of the output layer as an individual task. As
a result, overlaps occur between these tasks, which lead to
redundant computation. The other type [26] treats each
computing part of each single layer as an individual task,
which leads to high synchronization cost among workers.
DeepSlicing combines both data partitioning and model
partitioning together, leading to a flexible fine-grained par-
titioning method that finally translates into low latency.

Fixed Scheduling Strategy. Given heterogeneous CNNs and
edge environments, it is difficult for a fixed scheduling strat-
egy to perform well in all cases. In other words, the optimal
scheduling strategy might change with the specific situation.
For example, a given strategy may prefer to distribute the
data evenly among devices, which always results in the best
performance when the computing capabilities of the devices
are the same; however, the performance would be worse if
the capabilities of the devices differ greatly from each other.
Hence, if we can customize the scheduling strategy based on
the knowledge of the hardware and environment, a better
performance could be achieved. Albeit important, this is sel-
dommentioned in previous researches.

In this paper, we proposeDeepSlicing, a holistic, collabora-
tive and adaptive CNN inference system with low latency.
DeepSlicing models user-specified CNNs as directed acyclic
graphs (DAGs). It automatically slices the data anddistributes
related tasks to edge devices. Low latency is achieved through
a balanced trade-off between computation and synchroniza-
tion. In terms of the system design, DeepSlicing has the fol-
lowing features:

� Support for a majority of CNNs. DeepSlicing is able to
support all the DAG-structured CNNs, latest state-
of-the-art CNNs like ResNeXT101, RegNet included.
By providing the corresponding parameters, the
user is able to accelerate a customized CNN. Typical
CNNs (including AlexNet, VGG, GoogLeNet and
ResNet) have been built in DeepSlicing.

� Support for customized scheduling strategies. DeepSlic-
ing provides a set of APIs for users to get real-time
task status and data locations, conduct fine-grained
scheduling and timely memory reclamation. It offers
users the capability to customize their own schedul-
ing strategy, enabling them to design the optimal
strategy based on their prior knowledge. Besides,
DeepSlicing optimizes the communication between
workers to avoid the redundant transmissions.

We have implemented DeepSlicing and deployed it over
8 Raspberry Pi’s. Empirical measurements show that, with
the optimization of the memory reclamation and communi-
cation of DeepSlicing, state-of-the-art scheduling schemes
are improved significantly, e.g., with the help of DeepSlic-
ing, MoDNN [26] has 7.58� lower memory footprint and
2� smaller communication size than its original version.

On top of DeepSlicing, we also have designed the default
scheduler, which is called Proportional Synchronized Sched-
uler (PSS). PSS uses several synchronized points (SPs) to split
the CNN into blocks and assigns block-related tasks to

workers in a periodic and synchronous manner. In this way,
PSS trades off the cost of synchronization and computation,
and senses the real-time available computing resources of
each worker, resulting in a load-balanced scheduling. Experi-
mental results show that it achieves up to 5.79� lower latency
compared to the state-of-the-art scheduling scheme.

The remainder of this paper is organized as follows. Sec-
tion 2 motivates our work. Section 3 presents the overview
of DeepSlicing. Section 4 illustrates the Layer Range Deduc-
tion (LRD) mechanism in DeepSlicing. Section 5 proposes
an efficient default scheduler, PSS. Section 6 evaluates
DeepSlicing and PSS. Section 7 reviews the related work.
Section 8 discusses the limitations and future work. Conclu-
sions are given in Section 9.

2 BACKGROUND & MOTIVATION

We aim to build a collaborative adaptive CNN inference
accelerating system, in which the feature maps are parti-
tioned and distributed to resource-limited devices, so that
both memory footprint and latency are reduced. Thus, we
have made an investigation in the following aspects.

2.1 Characteristics of CNN Inference

Generally speaking, a CNN consists of two parts: feature
extractor and classifier. The original input is first processed
by feature extractor layers and the resultant features are then
classified by classifier layers.We compare the inference delay
of these two parts in different CNNs in Fig. 1. The annotations
on the bars are the inference delays of feature extractors in
seconds. Results show that the feature extractor accounts for
almost the entire inference delay and hence is exactly the
bottleneck of CNN inference. This part mainly includes con-
volution layers (Conv), pooling layers (Pool), batch normali-
zation layers (BN), activation layers (e.g., ReLU), etc. For each
layer in feature extractor, computing a part of its output only
requires a subset of its input. This peculiarity is beneficial to the
acceleration of the feature extractor in a parallel way, which
will be detailed later.

Different CNNs may have different structures, as shown
in Fig. 2. VGG is a chain, GoogLeNet has multiple branches,
and ResNet has two unbalanced branches with different

Fig. 1. Feature extractor accounts for almost the entire inference delay.

Fig. 2. Structures of typical CNNs.

2176 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: Temple University. Downloaded on August 03,2021 at 16:02:18 UTC from IEEE Xplore. Restrictions apply.

layer numbers. An adaptive system is supposed to handle
various structures sensibly. However, to the best of our
knowledge, no existing works [26], [27], [28], [29], [30] have
mentioned supporting various CNN structures.

Roofline Analysis. We collect the performance of Rasp-
berry Pi4B and the requirement of CNN feature extractors,
calculate their operational intensities, and draw the roofline
model [33] in Fig. 3. When the operational intensity is less
than 2.49, the program running on Pi4B is memory-bound,
otherwise it is compute-bound. It is obvious that all the typi-
cal CNNs in our experiments on Pi4B are compute-bound,
which proves that the collaboration of devices is an effective
way to accelerate the inference.

2.2 Overlaps in Data Partitioning

The feature map of CNN usually has two spatial dimen-
sions (width and height) and one depth dimension. Among
them, the spatial dimensions have the peculiarity men-
tioned in Section 2.1. Specifically, for the feature extractor
layers and on the spatial dimensions, the computing of an
element in the output only requires a small part of the input,
not the whole. Mao et al. have illustrated that splitting the
longer one among the width and height dimensions of an
input feature map is more beneficial than splitting the fea-
ture map into 2D-grids because of the decrease of the num-
ber of neighbors [26]. Therefore, in this paper, we always
split feature maps along the longer dimension of height and
width. A natural question is how to split it.

On the one hand, some of the previous data partitioning-
based work [27] treats each computing part of the output
layer as an individual task. This could lead to overlapped
computation and redundant tasks. We use Fig. 4a to better
explain this. There are two non-overlapped regions in the

bottom feature map; to compute them, the previous outputs
are required. The required regions of each bottom region
are marked in the same color. As we move backward, the
size of the overlapped feature map continues to increase.
When a CNN is deep, there is no doubt that the overlapped
computation leads to a longer inference latency. Fig. 4b
shows a concrete example using the split strategy in Deep-
Things [27]: four workers are responsible for computing
four non-overlapped regions in the output layer of GoogLe-
Net. Layers are numbered according to the computing
sequence. Different colors indicate different required input
ranges of the 4 workers. The overlapped area indicates the
redundant computation. It can be seen from the figure that
the closer the layer is to the first layer, the more redundant
computation it has.

On the other hand, it is also not advisable to treat each
computing part of each single layer as an individual task,
which is the Biased One-Dimensional Partition (BODP)
method used in MoDNN [26]. This will lead to extremely
high synchronization cost among workers, and the mutual
waiting would also greatly prolong the inference latency.

DeepSlicing combines both data partitioning and model
partitioning, enabling flexible fine-grained scheduling in
CNN. While traditional DAG task scheduling on heteroge-
neous multi-processors considers tasks as independent
black boxes [34], [35], tasks in DeepSlicing can be further
split and the resultant sub-tasks are correlated.

2.3 In-Time Memory Reclamation

Limited memory resources hinder the execution of complex
CNNs and large input data. During the execution of a
CNN, most of the intermediate feature maps will be obso-
lete and related memory should be reclaimed in time. Oth-
erwise, the lack of the memory easily leads to a dramatic
decrease of performance. We execute GoogLeNet on Rasp-
berry Pi 4 Model B in two ways - with and without memory
reclamation - and record the time cost and device memory
usage when each layer finishes. Results are shown in Fig. 5.
Without memory reclamation, memory usage soars even in
the first few layers and later the time costs of some layers
suddenly increase due to the lack of memory. In contrast,
when memory reclamation is enabled, the memory foot-
print is reduced from 94.7 to 12.4 percent, 7.64� less and the
inference time is reduced from 47.22 s to 30.93 s, 1.53� less.

Fig. 3. Roofline model for Raspberry Pi4B and typical CNNs.

Fig. 4. Overlapped use of feature maps in CNNs.

Fig. 5. Layer finish time (time) and memory usage (mem) with and with-
out memory reclamation (R).

ZHANG ETAL.: DEEPSLICING: COLLABORATIVE ANDADAPTIVE CNN INFERENCEWITH LOW LATENCY 2177

Authorized licensed use limited to: Temple University. Downloaded on August 03,2021 at 16:02:18 UTC from IEEE Xplore. Restrictions apply.

2.4 Category

Table 1 summarizes the key characteristics of the state-of-the-
art distributed CNN inference frameworks. DeepThings par-
titions data in the 2D-grid style, shares data via a coordinator
device, performs dynamic scheduling in the way of work
stealing, and refers to all the layers of CNN as a single task.
MoDNN partitions data in one dimension, and assigns tasks
to devices according to preconfigured computing capabilities,
so dynamic scheduling is not supported. Neither DeepThings
nor MoDNN considers the generality of CNN, custom sched-
uling strategy, andmemory reclamation.

3 DEEPSLICING OVERVIEW

The goal of DeepSlicing is to accelerate the collaborative infer-
ence of CNN on the resource-constrained devices by flexible
fine-grained scheduling and in-time memory reclamation.
Furthermore, DeepSlicing supports various CNNs and cus-
tomized scheduling strategies. Typical CNNs have been
built in DeepSlicing, including AlexNet, VGG, GoogLeNet,
and ResNet. Users can also define new CNNs by APIs pro-
vided in DeepSlicing. The scheduling strategy is abstracted
as the Scheduler in the master and users can develop new
scheduling strategies according to their own understanding
of CNNs and devices. Besides, we provide an efficient
scheduler PSS (Section 5) as the default scheduling strategy.

Fig. 6 overviews the architecture of DeepSlicing. There
are two roles for devices: master and worker. The master

monitors the global status and coordinates workers while
workers perform the concrete computation tasks and trans-
mit data to each other. DeepSlicing slices all the feature
maps on only one dimension and thus we use the term range
to represent the interval on the sliced dimension. Both the
master and workers maintain the structural information of
a CNN and adopt LRD (Section 4) to calculate the depen-
dency between two arbitrary feature maps.

Master. The left part of Fig. 6 shows the architecture of
the master. It maintains the Runtime Information for all
layers, updates the real-time status by the Runtime Monitor,
and uses the obtained information to support the decisions.
The structure of the Runtime Information is the same as that
of target CNN, and each vertex in this component corre-
sponds to the metadata of each layer. Each vertex contains
multiple tasks assigned by the Scheduler. The status of each
task is recorded in this component too. For example, in the
master part of Fig. 6, the filled slices represent those finished
tasks and the blank slices represent those unfinished ones.
Furthermore, each layer has 3 finished tasks, whose layer
IDs are ranging from 0 to 4.

The Scheduler is the key component in master. When
assigning a new job to aworker, the Scheduler first selects sev-
eral layers pending for execution, and then for each layer, the
Scheduler chooses a slice from unfinished output range as a
task. These tasks of the selected layers form a job for a worker.
For example, in the master of Fig. 6, the last job of worker 1
contains 5 tasks and the related layers are layers 0 to 4; for
each layer, worker 1 only computes 1/3 of the entire output
range. At the beginning of the inference, the Scheduler gener-
ates the initial job for each worker. Every time a task is fin-
ished, host worker notifies the Runtime Monitor and the
Scheduler. The Runtime Monitor then tracks the related ver-
tex in the Runtime Information and updates its status. The
Scheduler further checks the status of the layers, marks those
layers no longer in use as garbage and returns garbage marks
to the worker. The memory occupied will be reclaimed by
the worker soon. When a worker finishes its job, it requests
the Scheduler for a new one.

Worker. The architecture of theworker is shown in the right
part of Fig. 6. It stores the sliced featuremaps in the Data Stor-
age, executes assigned tasks in the Computation Thread, and
communicates with the master by the Updater Thread. It pro-
vides and fetches remote data using the Data Server Thread
andData Fetcher Thread, respectively. Similar to the Runtime

TABLE 1
Comparision of Different Frameworks

DeepSlicing DeepThings [27] MoDNN [26]

Partition
method

One-dim. 2D-grid One-dim.

Dynamic
scheduling

@ @ �

Scheduling
granularity

Arbitrary
layers

CNN Layer

General CNN @ � �
Custom
strategy

@ � �

Memory
reclamation

@ � �

Fig. 6. The architecture of designed DeepSlicing.

2178 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: Temple University. Downloaded on August 03,2021 at 16:02:18 UTC from IEEE Xplore. Restrictions apply.

Information in themaster, each vertex in the Data Storage cor-
responds to the output of each layer in a CNN. The difference
is that the Runtime Information only records the output range
of each layer, i.e., the meta information, while the Data Stor-
age saves the raw output data. When a worker receives a job,
it first uses LRD to check whether it has the required data. If
not, the Data Fetcher Thread requests the data and saves it in
the Data Storage. Accordingly, the Data Server Thread pro-
vides data that other workers need.

When the data is ready, the Computation Thread gets the
data from the Data Storage and executes all the tasks in the
job. The output of these tasks will be saved in the Data Stor-
age for future use. Since it stores a large amount of data, the
Data Storage tends to occupy lots of device memory. To
avoid this, every time a task is finished, the Updater Thread
communicates with the Runtime Monitor and asks the
Scheduler for garbage. According to the marked garbage
layers, the Updater Thread deletes the related data to
reclaim the memory. When the current job is finished, the
Updater Thread updates the results to the Scheduler.

Customization. The user can easily use the customized
Scheduler to accelerate a given CNN. The customization
mechanism details are in the supplemental material, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TPDS.2021.
3058532. Here is a brief introduction:

� CNN: To accelerate a customized CNN, the user
needs to provide the corresponding load function.
When starting, DeepSlicing will call this load func-
tion to generate the DAG of CNN. This load function
receives no arguments and returns three parameters
which contain structure and LRD information.

� Scheduler: A user-customized scheduler is able to
access the Runtime Information and should imple-
ment four abstract methods, including: initializing
the Scheduler, generating the initial task assignment,
scheduling the tasks and marking the garbage data.

4 LAYER RANGE DEDUCTION

In order to support various CNN structures and facilitate
customized scheduling strategy design, DeepSlicing pro-
vides Layer Range Deduction to query the dependency
between parts of feature maps from one certain layer to
another layer in a DAG-structured CNN. For example, in
Fig. 7a, a worker already holds a part (the orange region) of

the feature map outputted by layer BN. Prior to the follow-
ing inference, LRD can calculate the parts that this worker
can compute at the descendant layers. In this example, the
corresponding parts are the colored regions in the outputs
of Conv1, Conv2, ReLU, Pool, and DepthConcat. Con-
versely, if a worker is planned to compute a certain output
part of some specified layer (e.g., DepthConcat), LRD can
calculate the minimal input part for the previous layer (e.g.,
Conv1). Because only one dimension is sliced here, a range
refers to a closed interval at the sliced dimension of the fea-
ture maps. Elements in a range are counted from 0.

4.1 Adjacent Feature Maps

In this subsection, we introduce the range deduction for two
adjacent feature maps, which are only separated by one
layer, e.g., the input and output of Conv1 in Fig. 7a.

In DAG-structured CNNs, there are two types of layer
location that need attention: fork point and merge point. A
layer at the fork point has multiple descendants and its out-
put feature map is directly fed into the descendants, like BN
in Fig. 7a. A layer at the merge point has multiple ancients
and receives all their outputs, for example, DepthConcat in
Fig. 7a. For such layers, outputs from different ancients
have different depths but the same widths and heights, e.g.,
Inception in GoogLeNet and Bottleneck in ResNet. As a con-
sequence, their input ranges are bijective to the correspond-
ing output ranges. Activation (e.g., ReLU) and BN perform
element-wise operations to the input feature maps, so that
their input ranges are also bijective to the corresponding
output ranges. However, the Conv and Pool layers are more
complicated. They use a kernel to slide on the feature map
with a certain stride and compute a pixel of output using
the region that the kernel covers.

Let the input range, kernel size, and stride size be ½x; y�,
K, and S, respectively. Then the corresponding output
range of layer Lwill be

out rangeLðx; yÞ ¼
x
S

� �
; y�Kþ1

S

� �� �
L ¼ Conv or Pool

½x; y� o:w:

�

(1)

Similarly, if we need to know the required input range of
layer L for the output range ½x; y�, then it is

in rangeLðx; yÞ ¼
½Sx; SyþK � 1� L ¼ Conv or Pool

½x; y� o:w:

�

(2)

Fig. 7b shows an example in which K ¼ 2 and S ¼ 1.
Given an input range [1,2] (marked in light blue on the top),
the corresponding output range (marked in dark blue on
the bottom) is [1,1].

The aforementioned calculation of the expected output
range and the required input range is simple, though, in
real-world scenarios, there are two situations that might
bring extra complexity: padding and ceil mode. Padding
refers to padding zeros around the input on both width and
height dimensions. Ceil mode means the kernel can cover
the region on the border of an input, which does not in fact
exist. For layers that enable padding, LRD pads the input of

Fig. 7. Feature map dependency in a CNN.

ZHANG ETAL.: DEEPSLICING: COLLABORATIVE ANDADAPTIVE CNN INFERENCEWITH LOW LATENCY 2179

Authorized licensed use limited to: Temple University. Downloaded on August 03,2021 at 16:02:18 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TPDS.2021.3058532
http://doi.ieeecomputersociety.org/10.1109/TPDS.2021.3058532

Eq. (1) or the output of Eq. (2). For layers whose ceil mode is
true, LRD complements the missing part on the border of
the input when using Eq. (1) and removes the non-existent
part on the border of the output when using Eq. (2).

4.2 Arbitrary Feature Maps

For two arbitrary feature maps, we develop the Arbitrary
Input Range (AIR) algorithm to calculate the required range
of an input or output. Take Fig. 7a for example: If the sched-
uler plans to make a worker responsible for computing a
certain output range (marked in blue) of DepthConcat, AIR
can give the minimal input range of BN that this worker
requires for its responsibility. Since this worker might not
have the entire range of the required feature map and needs
to request related data from others, calculating the minimal
range can reduce the communication size. Besides, minimal
input size leads to the minimal computation.

Algorithm 1 shows the details of AIR. To compute the
output range ½xout; yout� of layer O, Algorithm 1 gives the
minimal required input range ½xin; yin� of layer I. Beginning
from layer O, it recursively traverses backward all the layers
between I and O in the DAG, calculates the minimal output
ranges required by these layers, and finally gives the mini-
mal required input range of layer I. We use the notation S

to represent the minimal required output ranges of the
intermediate layers between I and O.

Initially, the output range SL of each intermediate layer L
is set to ? to indicate that it has not been calculated. First,
AIR first checks whether SL is exactly ? to avoid potential
unnecessary recursion. If not, the current procedure must
be called by a parent procedure who has calculated the out-
put range of O. At this point, AIR compares the current
range and the calculated range SO. If ½xout; yout� is already
contained in SO, then for all the layers in front of O, their
ranges that are deduced by SO will certainly cover those
deduced using ½xout; yout�. In this situation, the recursion of
½xout; yout� is redundant and AIR directly returns ? to mark
this situation. If SO does not contain ½xout; yout�, then the out-
put ranges of layers in front of O need to be updated. To cal-
culate the ranges that cover both ½xout; yout� and SO, ½xout; yout�
is updated to their union.

Then, AIR checks whether I is exactly O. If so, the result
will be calculated directly by in range defined as Eq. (2). If
not, AIR checks whether layer O has any ancient. If layer
O has no ancient, then this layer is the first layer of the
whole CNN, and there can be no more backward recur-
sion, which means that there is no path between I and O,
and hence no dependency between the two given feature
maps. Otherwise, if layer O has ancients, the required
input range of layer I will be calculated recursively. The
required input range ½x0; y0� of layer O is calculated by
Eq. (2) and ½x0; y0� is the output range of ancient layers of
layer O. AIR calls a sub-procedure for each ancient layer
and each sub-procedure will return the minimal input
range ½xA; yA� of layer I and the corresponding S0, which is
used to update S. As mentioned before, ? is ignored.
Because all the range requirements are supposed to be sat-
isfied, the union of valid results of sub-procedures is
returned as the final result.

The Arbitrary Output Range (AOR) algorithm is similar
to AIR, so its details are omitted due to space limitation.

Algorithm 1. Arbitrary Input Range (AIR) Alg

Input: input layer I, output layer O, expected output range
½xout; yout�

Output: minimal input range ½xin; yin� of layer I, minimal
output ranges S of intermediate layers

1: Initialization: S fSLjSL ¼ ? ; 8Lg
2: if SO 6¼ ? then
3: if ½xout; yout� in SO then
4: return ? ; S
5: else
6: ½xout; yout� ½xout; yout�

S
SO

7: SO ½xout; yout�
8: if I ¼ O then
9: return in rangeOðxout; youtÞ; S
10: else if ancientsðOÞ ¼ ? then
11: No dependency between I and O
12: ½x0; y0� in rangeOðxout; youtÞ
13: ½xin; yin� ?

14: foreach A 2 ancientsðOÞ do
15: ½xA; yA�; S0 AIR(I, A, ½x0; y0�)
16: Update S using S0

17: if ½xA; yA� 6¼ ? then
18: ½xin; yin� ½xin; yin�

S ½xA; yA�
19: return ½xin; yin�; S

5 PROPORTIONAL SYNCHRONIZED SCHEDULER

The Scheduler distributes tasks to workers and also marks
the garbage layers after the executions.

5.1 Estimation on Inference Delay

During the parallel collaboration, mutual waiting can
severely affect the parallelism and prolong the overall latency.
To avoid this, accurate prediction on the inference delay of
layers is vital to the task assignment. Some previous works
have studied the offline version of this problem [23], [28], [36].
Most of them try to build a regression model for each type of
layer, in which the parameters of a layer are treated as the
input. However, in an online environment, the historical
delay can be easily obtained, which can be exploited to make
predictions.We claim that the inference delay of a layer is roughly
proportional to its input size on the sliced dimension. To verify
this, we have tested all the layers in the feature extractor of
GoogLeNet. For each layer type, we set the lengths of other
dimensions as fixed, vary the length of the input on the width
dimension, and record the inference delay. Fig. 8 shows the
results, which are consistent with our claim.

Observing that the data size on the sliced dimension
decreases linearly, it is also safe to assume that the input

Fig. 8. The inference delay of different layers in GoogLeNet.

2180 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: Temple University. Downloaded on August 03,2021 at 16:02:18 UTC from IEEE Xplore. Restrictions apply.

size on this dimension is approximately proportional to the
inference delay for multiple consecutive layers in a CNN.

5.2 Design of Proportional Synchronized Scheduler

As we mentioned before, a task should not contain all layers
or only one layer. The former causes a large amount of
redundant computation while the latter suffers from fre-
quent synchronization. Empowered by the fine-grained
flexible scheduling mechanism of DeepSlicing, we devise
the Proportional Synchronized Scheduler to achieve the
trade-off between computation and synchronization.

Model Partitioning. The basic idea of PSS is to partition the
DAG into multiple blocks according to a user-specified
parameter and corresponding cut points.1 In each block,
PSS distributes the related computation tasks to workers
using data partitioning in a load-balancing manner.

PSS partitions the DAG into blocks via a series of Syn-
chronized Points, which are chosen from cut points. Distin-
guishingly, the first and last vertices are always SPs such
that the inference can be initialized and completed nor-
mally. For instance, if a user wants to partition the DAG
into n ¼ 4 blocks (as shown in Fig. 9), apart from vertices 0
and 15, PSS chooses 3 and 7 to make sure each block (except
the first block which contains only one layer) has roughly
the same number of layers. Workers cannot start to compute
a new block before the SP of the current block is finished.
Specifically, only when layer 3 is finished can PSS generate
new jobs for workers, and each worker would compute a
range in the output of layer 7 in block 2.

Data Partitioning. Algorithm 2 gives the details of PSS.
When a user wants to partition a given CNN into n blocks,
PSS chooses P0; P1; . . .; Pn�1 as SPs, where P0 and Pn�1 are
the first and last layers, respectively. As the first job, PSS
evenly distributes the output range of layer P0 to each
worker. Afterwards, PSS schedules workers as shown in
Algorithm 2 whenever a SP Pc is completely finished. The
input parameters of Algorithm 2 are managed by PSS. For
each worker w, PSS records the input range length rw and
the time cost tw of its last job to estimate the computing
capability. Besides, PSS stores the expected output length zL
for each layer L, which is calculated by AOR in advance. As
the scheduling result, PSS returns Jw for each worker w, and
JL
w is the output range of layer L that worker w needs to

compute. Correspondingly, JL is the output range assign-
ment of workers at the layer L. PSS first determines the out-
put range JPcþ1 of layer Pcþ1 and then generates the
minimal output ranges of other layers by AIR.

Based on the analysis in Section 5.1, the inference delay is
proportional to the input size, so the ratio of input length of
the last job to the time cost of the last job can be an estima-
tion of the computing capability of a worker. In Algorithm 2,
PSS first calculates the estimated computing capability sw
for each worker w and then splits the expected output range
of layer Pcþ1 such that for each worker, the output range
length is proportional to its computing capability. However,
in order to make the time cost of each job as close as possi-
ble, it is the input length that should be proportional to the
computing capability, not the output length.

As a consequence, PSS iteratively optimizes the output
range assignment as follows. The new job contains layers
between Pc (not included) and Pcþ1 (included) and thus, the
input of this job is the output range of layer Pc. For each
worker w, PSS uses AIR to calculate the required output
range SPc for the current output range J

Pcþ1
w and estimates

the time cost tw by the ratio of the input range length jSPc j to
the computing capability. The ðmaxðtÞ �minðtÞÞ is the esti-
mated gap between the least and largest time costs and also
the metric of load balance of workers. A large value indi-
cates that the load of some workers does not match their
computing capabilities. Hence PSS fine-tunes the output
range assignment JPcþ1 to minimize the ðmaxðtÞ �minðtÞÞ
by shortening the output range of light-load workers and
lengthening that of heavy-load workers. This process will
be repeated until ðmaxðtÞ �minðtÞÞ can be reduced no
more. At this time, the input ranges will be approximately
proportional to the computing capabilities of workers and
the corresponding time costs of workers will be close,
namely load-balanced. Then PSS uses AIR to generate the
corresponding jobs. Taking the current J

Pcþ1
w as input, AIR

gives the minimal required output ranges of layers between
Pc and Pcþ1 for worker w, and the generated output ranges
are the tasks in the new job Jw of worker w.

Algorithm 2. PSS

Input: finished SP Pc, input range rw and time cost tw of the
last job of each worker w, the output range zL of each
layer L, the number of workersW

Output: new job Jw for each worker w
1: for w from 0 toW � 1 do
2: sw rw

tw
3: b 0
4: for w from 0 toW � 1 do
5: J

Pcþ1
w ½b; bþ swP

i
si
zPcþ1Þ

6: b bþ swP
i
si
zPcþ1

7: repeat
8: for w from 0 toW � 1 do
9: ½xin; yin�; S AIRðPc; Pcþ1; J

Pcþ1
w Þ

10: tw jSPc j
sw

11: Fine tune JPcþ1 to reducemaxðtÞ �minðtÞ
12: until no more reduction on ðmaxðtÞ �minðtÞÞ
13: for w from 0 toW � 1 do
14: ½xin; yin�; Jw AIR(Pc; Pcþ1; J

Pcþ1
w)

15: return new job Jw for each worker w

Garbage Detection. Given a job corresponding to SP Pc, a
worker only needs to request the data of the precursor SP
Pc�1. For example, in Fig. 9, a job of block 2 only needs the

Fig. 9. PSS partitions a DAG into multiple blocks according to a
user-specified parameter and its cut points.

1. A cut point of a graph is a vertex whose removal increases the
number of connected components, e.g., the cut points in Fig. 9 are 1, 2,
3, and 7, respectively.

ZHANG ETAL.: DEEPSLICING: COLLABORATIVE ANDADAPTIVE CNN INFERENCEWITH LOW LATENCY 2181

Authorized licensed use limited to: Temple University. Downloaded on August 03,2021 at 16:02:18 UTC from IEEE Xplore. Restrictions apply.

output of layer 3. Once the output of layer 3 is ready, this job
will be independent to other workers because the output of
layer 3 is enough to compute the output ranges of layers in
this job (i.e., block 2). Hence, during the execution of a job,
except for the output of the previous SP, the output of other
layers can be deleted. On the other hand, we can also iden-
tify the SPs whose descendant layers have been finished or
whose output has been obtained by workers, then DeepSlic-
ing can delete the output of these SPs. PSS detects these gar-
bage data in time and the memory they occupied will be
reclaimed shortly, thus keeping the memory footprint at a
low level.

Knob for Blocks. The number of blocks as a knob can be
customized for various situations. By default, the number of
blocks is 4, which is found to be a good choice empirically.
When the available computing resources are unknown, an
extra “explore step” is provided in DeepSlicing. It adds a
virtual SP in front of the original ones, which can make
PSS perceive the computing capabilities earlier and parti-
tion the range of the output of the next block using that
information. In fact, the number of blocks determines the
frequency of synchronization and the optimal selection of
the number of blocks is related to device load, transmission
bandwidth, CNN structure and input size. The load-fluctu-
ating environment needs more synchronization to sense the
real-time computing capability. A high transmission band-
width reduces the synchronization cost, hence the blocks
can be more to further lessen the computation. A deep
CNN tends to have much overlap data and the blocks
should be more. A large size on the sliced dimension of the
input barely has impact on the optimal number of blocks.
We have discussed these factors in detail in the supplemen-
tal material, available online.

6 EVALUATION

We implement DeepSlicing in Python, and the deep learn-
ing framework used in DeepSlicing is PyTorch, one of the
most popular frameworks. In this section, we compare
DeepSlicing with PSS against state-of-the-art distributed
CNN inference frameworks to validate its performance.

6.1 Methodology

Metrics. Evaluation metrics are listed as follows.
Layer finish time refers to the time from the start of the

CNN inference to the completion of that layer. The finish
time of the last layer is exactly the total latency of the infer-
ence. Note that layers are numbered in the order of execu-
tion on a single machine; however, in a distributed
environment, it is possible that a layer with a large ID fin-
ishes before a layer with a small ID. For example, layer 6
may finish before layer 4 in Fig. 9.

Memory footprint is the amount of memory occupied at
the completion of each layer in each worker. Considering
that multiple devices may be used in an experiment, we
use a band-shaped region in the figures to represent the
memory footprint of a framework on different workers.
The middle curve in the band is the median of workers’
memory footprints and the upper and lower bounds of the
band are the maximum and minimum of workers’ mem-
ory footprints, respectively.

Total computation time of a worker is the time (including
computation time and synchronization time) from the
beginning of the inference of a CNN to the its end.

Total communication size of a worker is the size of data
exchanged between this worker and other workers.

Baselines. In evaluation, two typical state-of-the-art frame-
works are implemented and used as baselines: Deep-
Things [27] and MoDNN [26]. DeepThings partitions the
feature map of each layer into small tiles and fuses them ver-
tically to form an independent task. Thus, the original task
is divided into multiple independent tasks. Work stealing is
adopted to schedule these tasks adaptively. MoDNN uses
prior knowledge of computing capabilities of workers to
assign tasks. Using the MapReduce programming model,
MoDNN synchronizes workers at each layer and transfers
data via a coordinator device.

Evaluation Setup. We implement DeepSlicing and PSS on
a real-world collaborative edge computing testbed that con-
sists of 8 Raspberry Pi’s, 1 switch, and 1 router. Fig. 10
shows the implemented hardware platform for DeepSlicing.
These devices represent heterogeneous hardware capabili-
ties (Table 2). We use a router TP-LINK WDR7660 (2.4/5
GHz WiFi, 1900 Mbps) and a switch TP-LINK SG1008M
(2000 Mbps) to represent wireless and wired connections,
respectively. The router is used by default. We use an image
with the size of 1920� 1080 as the default input, which is
one of the most popular video resolutions.

6.2 Results

6.2.1 Overall Improvements

WeevaluateDeepSlicing onGoogLeNet under different num-
bers of workers. The workers are added in the RAM non-
increasing order, i.e., 4B-4G, 4B-2G1, 4B-2G2, 4B-2G3, 4B-2G4,
and 4B-1G. The results are shown in Fig. 11. For the conve-
nience of comparison, the latency of single device is shown as
well, including 3B, 3Bp and 4B. We see, under both wireless
and wired networks and different worker number, that

Fig. 10. Heterogeneous collaborative edge testbed.

TABLE 2
Specifications of Edge Devices Used in Experiments

Pi3B Pi3B plus Pi4B

RAM 1GB 1GB 1GB 2GB 4GB

Name 3B 3Bp 4B-1G 4B-2G(1/2/3/4) 4B-4G

2182 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: Temple University. Downloaded on August 03,2021 at 16:02:18 UTC from IEEE Xplore. Restrictions apply.

DeepSlicing always performs the best because of its adaptabil-
ity to the CNN structures and balance of the synchronization
and communication cost. On the contrary, poor adaptability
affects both DeepThings and MoDNN. For the deep CNN, a
single task in DeepThings will cost much time on a worker
but others cannot provide any help. In the same case,
MoDNNmainly suffers from the layer-wise synchronization.
As a consequence, when the number of workers increases, the
latency ofMoDNN increases rather than decreases andDeep-
Slicing outperforms MoDNN by up to 5.79�. Besides, due to
the frequent synchronization, MoDNN is sensitive to the net-
work environment. For DeepSlicing, as the number of work-
ers increases, the memory footprint of workers is bound to
decrease but the improvement of inference latency might
be affected by synchronization cost. This is because the
more the workers are, the more potential waiting cost will be.
Please see the supplemental material for detailed discussion
on the scalability, available online.

To compare the memory footprint, we use 3 identical
workers (4B-2G1, 4B-2G2, 4B-2G3) to collaboratively execute
GoogLeNet. The results are shown in Fig. 12. For each
framework, the memory footprints of workers are close. We
see the memory footprint of DeepSlicing is always the low-
est and keeps below 250 MB. Compared to DeepThings and
MoDNN, DeepSlicing has up to 14.72� and 8.13� smaller
memory footprint, respectively. In each block in PSS, work-
ers execute their jobs independently. Given that it will not
be requested by other workers, much data will become
obsolete shortly after it is generated. PSS can mark it timely
to trigger the memory reclamation of DeepSlicing. Although
there is a large amount of garbage data in MoDNN, it does
not have any garbage collection mechanism, resulting in a
high memory footprint. In DeepThings, a worker executes
multiple independent tasks and hence stores a large amount

of intermediate data. Even worse, there exist many overlaps
among these data. As a result, its memory footprint is much
more than MoDNN.

Fig. 13 shows the comparison results on the computation
time and communication size when using 4 identical devi-
ces (4B-2G1, 4B-2G2, 4B-2G3, 4B-2G4). Generally speaking,
DeepSlicing reduces computation time by 20 percent com-
pared to DeepThings and has 58 percent less communica-
tion data compared to MoDNN. In DeepThings, workers
take more time to request data than DeepSlicing, thus it has
a larger computation time than DeepSlicing. Based on Map-
Reduce, MoDNN transfers intermediate data via a coordi-
nator device and such data relay brings about redundant
transmission. By block based synchronization, DeepSlicing
requires fewer data requests than DeepThings and trans-
mits less data than MoDNN.

6.2.2 Supporting a Variety of CNNs

In this subsection, we compare the layer finish times of
three frameworks on four typical CNNs (AlexNet, VGG19,
GoogLeNet, and ResNet50). Inference latency of a single
machine is also provided for comparison. Four identicalwork-
ers (4B-2G1, 4B-2G2, 4B-2G3, 4B-2G4) are used. Fig. 14 shows
the advantage of DeepSlicing.When the CNN is simple (Alex-
Net and VGG19), MoDNN outperforms the single machine.
However, when the CNN is complex and deep (GoogLeNet
and ResNet50), MoDNN is worse than a single machine. On

Fig. 11. Comparison on inference latency.

Fig. 12. Comparison on memory footprint.

Fig. 13. Comparison on total computation time and communication size.

Fig. 14. Layer finish time of four typical CNNs.

ZHANG ETAL.: DEEPSLICING: COLLABORATIVE ANDADAPTIVE CNN INFERENCEWITH LOW LATENCY 2183

Authorized licensed use limited to: Temple University. Downloaded on August 03,2021 at 16:02:18 UTC from IEEE Xplore. Restrictions apply.

the contrary, DeepSlicing outperforms a single machine,
DeepThings, and MoDNN by up to 2.95� (VGG16), 1.39�
(ResNet50) and 5.20� (ResNet50), respectively. Whe-ther the
architecture has a lot parameters (AlexNet), residual connec-
tions (ResNet) or other, DeepSlicing always have a significant
performance improvement.

6.2.3 Impact of Heterogeneity

We first evaluate the impact of the heterogeneous comput-
ing capabilities of workers. We use 3 workers (3B, 3Bp, 4B-
1G) with different CPUs and the same RAM size (i.e., 1 GB),
connected using the switch. To avoid the influence of mem-
ory shortage, we use the 960� 450 resolution. Fig. 15a
shows the results. In spite of the prior knowledge of the
computing capabilities, the frequent synchronization slows
down the MoDNN. Owing to the complexity of CNN, a sin-
gle task in DeepThings involves a lot computation. When a
computationally weak worker is trapped in such a task,
others cannot help until this task is finished. Coarse granu-
larity affects the performance of work stealing. Different
from them, DeepSlicing learns the available computing
capabilities of workers at each synchronization point and
adjusts the workloads correspondingly. Compared with
DeepThings and MoDNN, DeepSlicing reduces the infer-
ence latency by 1.57� and 4.37�, respectively.

We are also interested in evaluating the effect of the
explore step. The results in Fig. 15b show that the explore
step (DeepSlicing-e) improves the latency by 8.4 percent.
For the layers with IDs smaller than 12, their layer finish
time is pretty close, but the advantage of DeepSlicing-e
becomes apparent after layer 12. With the help of the
explore step, DeepSlicing-e learns the computing capabili-
ties of workers earlier than the original DeepSlicing.

We then evaluate the impact of the heterogeneous memo-
ries of workers. We use 3 workers (4B-1G, 4B-2G, 4B-4G) with
the same configurations except the RAM size. Fig. 16a shows

that DeepSlicing andMoDNNhave a lowermemory footprint
than DeepThings. In DeepThings, the memory footprints of
devices are dramatically unbalanced because the perfor-
mance of 4B-1G is affected by memory shortage early and
hence most tasks are assigned to others. Fig. 16b shows the
comparison results on layer finish time. Because of the low
memory footprint, DeepSlicing is almost not affected by the
memory heterogeneity and has a 14.32� and 4.08� smaller
latency compared to DeepThings and MoDNN, respectively.
We note that there aremany steep rises in the layer finish time
ofMoDNNandDeepThings, indicating that the 4B-1G suffers
frommemory shortage.

6.2.4 Contribution of Each Component

The layer-based memory reclamation mechanism of Deep-
Slicing supports PSS to keep the memory footprint at a low
level. Same as PSS, MoDNN also synchronizes workers peri-
odically (with different periods). This indicates that there is
also lots of useless datawhich can be deleted directly.

We use the APIs in DeepSlicing to mark the garbage
layers for MoDNN (denoted by MoDNN-R) and observe its
memory footprint. In this experiment, we use 3 identical
workers (4B-2G1, 4B-2G2, 4B-2G3) and the results are
shown in Fig. 17a, in which the reduction in memory foot-
print is up to 7.58�. Besides, the memory footprints become
close and thus the memory load of workers is balanced.

As mentioned earlier, communication via a coordinator
device leads to redundant transmissions in MoDNN. On the
contrary, data transmission in DeepSlicing is directly sending
from the source to the destination without any third-party
relay. This mechanism can also be used to improve MoDNN.
Similarly, we use relatedAPIs inDeepSlicing to helpMoDNN
obtain the data location and transmit data between workers
(denoted by MoDNN-C). We use 4 identical workers. The
comparison results are shown in Fig. 17b, in which the com-
municationmechanism in DeepSlicing helpsMoDNN reduce
the communication data size by up to 2.0�.

7 RELATED WORK

A variety of approaches have been proposed to accelerate
the inference of DNN at the edges, including model com-
pression [12], [13], [14], model early-exit [15], [16], [17],
model partitioning [18], [19], [20], [21], [22], [23], [24], [25],
data partitioning [26], [27], [28], [29], [30] and domain spe-
cific hardware/tools [31], [32].

Model Compression and Early-Exit. Model compression
tries to prune the redundant connections by learning which

Fig. 15. Layer finish time under heterogeneous computing capabilities.

Fig. 16. Performance under memory heterogeneity.

Fig. 17. Performance improvement of MoDNN by DeepSlicing.

2184 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: Temple University. Downloaded on August 03,2021 at 16:02:18 UTC from IEEE Xplore. Restrictions apply.

connections are unimportant [12] and apply the L1-norm
channel pruning and Fisher pruning [13]. There is also new
structure designed to reduce the computational require-
ment [14]. In face of large input data, even a compressed
model generates large intermediate data which might over-
whelm an IoT device. DeepSlicing is able to handle this situ-
ation and orthogonal to model compression.

Model early-exit argues that it is not necessary to exe-
cute a whole DNN to get the result [17]. BranchyNet modi-
fies several well-known DNNs by adding exit branches to
the original models [16] and DeepIns achieves the early-
exit based collaboration [15]. These approaches require the
developers to scrutinize the weights and structures of
DNNs and retrain models, which is time-consuming.
DeepSlicing has a series of developer-friendly APIs, facili-
tating the rapid deployment of pre-trained CNNs, even
with new structures.

Model Partitioning and Data Partitioning. Model parti-
tioning splits the DAG and distributes partitions to dif-
ferent devices. [18] and [19] partitioned between edge
devices and cloud servers. Jeong et al. performed compu-
tation and DNN distribution in parallel [20]. Ko et al.
reduced the communication cost by encoding [21]. This
method is mainly used to execute DNN between edge
and cloud, bringing about a large amount of intermedi-
ate data transmissions.

Data partitioning distributes data partitions to devices
and executes them in parallel. MoDNN proposed two parti-
tion schemes for convolutional and fully-connected layers,
respectively [26]. A single task in DeepThings referred to
the whole CNN, leading to overlapped computation and
redundant tasks [27]. Stahl et al. focused on the partition of
fully-connected layers to achieve the fully distributed exe-
cution [30]. Hadidi et al. studied the optimal partitioning
method for each layer [29]. These systematic researches
barely paid attention to the variety of CNN structures or
scheduling strategies while theoretical researches tended to
ignore the synchronization cost between devices.

Domain Specific Hardware/Tools. The Intel OpenVino
modifies the model and accelerates the computation by
underlying libraries [31]. The Google TPU is designed to
provide enough computational power for deep learning [32].
DeepSlicing is orthogonal to them and can run with these
specified technologies after necessary adaptions. The
detailed discussion is presented in the supplemental mate-
rial, available online.

DeepSlicing combines both data partitioning and model
partitioning, leading to a flexible fine-grained partitioning
method that finally translates into low latency.

8 DISCUSSION

We discuss several limitations of DeepSlicing that may
motivate future work.

CNN Distribution. DeepSlicing distributes pre-trained
CNN models to workers in the initialization phase. This
may prolong the inference time, but once distribution is
complete, workers can process every input with it. So distri-
bution dost not cost much time in the long term. Moreover,
we can split the entire CNN model into multiple parts and
make the distribution and execution taking place in parallel.

Memory Reclamation. At present, the basic unit of memory
reclamation in DeepSlicing is a single layer. Such granular-
ity is enough for PSS to keep the memory footprint at a
pretty low level. However, more fine-grained memory rec-
lamation can bring better performance to work-stealing
based schedulers and is left as our future work.

Continuous Inputs. DeepSlicing currently only supports
CNN inference with a single input. If continuous input is
supported, the Scheduler can learn the characteristics of
workers and CNNs from the previous runs, leading to more
judicious decisions. Nonetheless, a single run involves �800
tasks (GoogLeNet with 4 devices), which still can feed a lot
information to Scheduler for sensing the environment.

Graph Convolutional Network (GCN). GCN is an effective
tool to extract the feature in the graph-structured data.
Although CNN and GCN both involve convolution, the
input of GCN has no local translational invariance, which ena-
bles the data partitioning for CNN. As a consequence, it
may be hard to apply DeepSlicing to GCN directly.

9 CONCLUSION

In this work, we propose DeepSlicing, a collaborative adap-
tive CNN inference system. Our key findings are as follows:
1) DeepSlicing is general: on the one hand, it supports vari-
ous CNN structures and customized scheduling strategy;
on the other hand, it is a combination of model and data
partitioning and traditional partitioning methods can be
seen as special cases of DeepSlicing. 2) DeepSlicing is adap-
tive: it optimizes memory reclamation and communication,
and it distributes computation workloads to workers based
on their available resources. 3) DeepSlicing is configurable:
it allows developers to trade off between computation and
synchronization via specifying the number of synchronized
points. 4) DeepSlicing is efficient: experimental results show
that DeepSlicing with PSS reduces the inference latency and
memory footprint by up to 5.79� and 14.72� than state-
of-the-art frameworks. Moreover, by incorporating fully-
connected layer acceleration, DeepSlicing can be extended
to support more applications.

ACKNOWLEDGMENTS

This work was supported in part by the National Key R&D
Program of China under Grant 2017YFB1001801, in part by
NSFC under Grant 61872175, 61832008, in part by NSF of
Jiangsu Province under Grant BK20181252, and in part by
the Collaborative Innovation Center of Novel Software
Technology and Industrialization.

REFERENCES

[1] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in Proc. 3rd Int. Conf.
Learn. Representations, 2015.

[2] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770–778.

[4] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
real-time object detection with region proposal networks,” in
Proc. 28th Int. Conf. Neural Inf. Process. Syst., 2015, pp. 91–99.

[5] W. Liu et al., “SSD: Single shot multibox detector,” in Proc. Eur.
Conf. Comput. Vis., 2016, pp. 21–37.

ZHANG ETAL.: DEEPSLICING: COLLABORATIVE ANDADAPTIVE CNN INFERENCEWITH LOW LATENCY 2185

Authorized licensed use limited to: Temple University. Downloaded on August 03,2021 at 16:02:18 UTC from IEEE Xplore. Restrictions apply.

[6] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” in
Proc. IEEEConf. Comput. Vis. Pattern Recognit., 2017, pp. 7263–7271.

[7] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl,
and M. J. Freedman, “Live video analytics at scale with approxi-
mation and delay-tolerance,” in Proc. 14th USENIX Symp. Netw.
Syst. Des. Implementation, 2017, pp. 377–392.

[8] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: Scalable adaptation of video analytics,” in Proc.
Conf. ACM Special Interest Group Data Commun., 2018, pp. 253–266.

[9] K. Hsieh et al., “Focus: Querying large video datasets with low
latency and low cost,” in Proc. 13th USENIX Symp. Operating Syst.
Des. Implementation, 2018, pp. 269–286.

[10] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge intel-
ligence: Paving the last mile of artificial intelligence with edge
computing,” Proc. IEEE, vol. 107, no. 8, pp. 1738–1762, Aug. 2019.

[11] M. Satyanarayanan, “The emergence of edge computing,” Com-
puter, vol. 50, no. 1, pp. 30–39, 2017.

[12] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Proc. 28th Int. Conf.
Neural Inf. Process. Syst., 2015, pp. 1135–1143.

[13] E. J. Crowley, J. Turner, A. Storkey, andM. O’Boyle, “A closer look at
structured pruning for neural network compression,” 2019.

[14] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An extremely
efficient convolutional neural network for mobile devices,” in Proc.
IEEEConf. Comput. Vis. Pattern Recognit., 2018, pp. 6848–6856.

[15] L. Li, K. Ota, and M. Dong, “Deep learning for smart industry:
Efficient manufacture inspection system with fog computing,”
IEEE Trans. Ind. Informat., vol. 14, no. 10, pp. 4665–4673, Oct. 2018.

[16] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “BranchyNet:
Fast inference via early exiting from deep neural networks,” in
Proc. 23rd Int. Conf. Pattern Recognit., 2016, pp. 2464–2469.

[17] S. Scardapane, M. Scarpiniti, E. Baccarelli, and A. Uncini, “Why
should we add early exits to neural networks?,” Cogn. Comput.,
vol. 12, no. 5, pp. 954–966, 2020.

[18] Y. Kang et al., “Neurosurgeon: Collaborative intelligence between
the cloud and mobile edge,” ACM SIGARCH Comput. Architecture
News, vol. 45, no. 1, pp. 615–629, 2017.

[19] C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive DNN
surgery for inference acceleration on the edge,” in Proc. IEEE Conf.
Comput. Commun., 2019, pp. 1423–1431.

[20] H.-J. Jeong, H.-J. Lee, C. H. Shin, and S.-M. Moon, “IONN: Incre-
mental offloading of neural network computations from mobile
devices to edge servers,” in Proc. ACM Symp. Cloud Comput., 2018,
pp. 401–411.

[21] J.H. Ko, T.Na,M. F.Amir, and S.Mukhopadhyay, “Edge-host parti-
tioning of deep neural networks with feature space encoding for
resource-constrained Internet-of-Things platforms,” in Proc. 15th
IEEE Int. Conf. Adv. Video Signal Based Surveillance, 2018, pp. 1–6.

[22] S. Dey, J. Mondal, and A. Mukherjee, “Offloaded execution of deep
learning inference at edge: Challenges and insights,” in Proc. IEEE
Int. Conf. Pervasive Comput. Commun.Workshops, 2019, pp. 855–861.

[23] M. Xu, F. Qian, and S. Pushp, “Enabling cooperative inference
of deep learning on wearables and smartphones,” 2017,
arXiv: 1712.03073.

[24] W. He, S. Guo, S. Guo, X. Qiu, and F. Qi, “Joint DNN partition
deployment and resource allocation for delay-sensitive deep
learning inference in IoT,” IEEE Internet of Things J., vol. 7, no. 10,
pp. 9241–9254, Oct. 2020.

[25] D. Hu and B. Krishnamachari, “Fast and accurate streaming CNN
inference via communication compression on the edge,” in Proc.
IEEE/ACM 5th Int. Conf. Internet-of-Things Des. Implementation,
2020, pp. 157–163.

[26] J. Mao, X. Chen, K. W. Nixon, C. Krieger, and Y. Chen, “MoDNN:
Local distributed mobile computing system for deep neural
network,” in Proc. Des. Autom. Test Eur. Conf. Exhib., 2017,
pp. 1396–1401.

[27] Z. Zhao, K. M. Barijough, and A. Gerstlauer, “DeepThings: Dis-
tributed adaptive deep learning inference on resource-constrained
IoT edge clusters,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 37, no. 11, pp. 2348–2359, Nov. 2018.

[28] L. Zhou, M. H. Samavatian, A. Bacha, S. Majumdar, and
R. Teodorescu, “Adaptive parallel execution of deep neural
networks on heterogeneous edge devices,” in Proc. 4th ACM/
IEEE Symp. Edge Comput., 2019, pp. 195–208.

[29] R. Hadidi, J. Cao, M. S. Ryoo, and H. Kim, “Collaborative execu-
tion of deep neural networks on Internet of Things devices,” 2019,
arXiv: 1901.02537.

[30] R. Stahl, Z. Zhao, D. Mueller-Gritschneder, A. Gerstlauer, and
U. Schlichtmann, “Fully distributed deep learning inference on
resource-constrained edge devices,” in Proc. Int. Conf. Embedded
Comput. Syst., 2019, pp. 77–90.

[31] Intel distribution of OpenVINO toolkit. [Online]. Available:
https://software.intel.com/content/www/us/en/develop/tools/
openvino-toolkit.html

[32] Cloud TPU. [Online]. Available: https://cloud.google.com/tpu
[33] S. Williams, A. Waterman, and D. Patterson, “Roofline: An

insightful visual performance model for multicore architectures,”
Commun. ACM, vol. 52, no. 4, pp. 65–76, 2009.

[34] K. Yang, M. Yang, and J. H. Anderson, “Reducing response-time
bounds for DAG-based task systems on heterogeneous multicore
platforms,” in Proc. 24th Int. Conf. Real-Time Netw. Syst., 2016,
pp. 349–358.

[35] M. Han, T. Zhang, Y. Lin, and Q. Deng, “Federated scheduling for
typed DAG tasks scheduling analysis on heterogeneous multi-
cores,” J. Syst. Archit., vol. 112, 2020, Art. no. 101870.

[36] S. Yao et al., “FastDeepIoT: Towards understanding and optimiz-
ing neural network execution time on mobile and embedded
devices,” in Proc. 16th ACM Conf. Embedded Netw. Sensor Syst.,
2018, pp. 278–291.

Shuai Zhang received the BS degree from the
Department of Computer Science and Technol-
ogy, Nanjing University, China, in 2019, where he
is currently working toward the master’s degree
under the supervision of associate professor
Sheng Zhang. He is a member of the State Key
Laboratory for Novel Software Technology. He
has published two papers including IEEE
GLOBECOM 2018 and CCF TON. Currently, his
research interests include edge computing and
cloud computing.

Sheng Zhang (Member, IEEE) received the BS
and PhD degrees from Nanjing University, China,
in 2008 and 2014, respectively. He is an associate
professor with the Department of Computer Sci-
ence and Technology, Nanjing University, China.
He is also a member of the State Key Laboratory
for Novel Software Technology. His research inter-
ests include cloud computing and edge computing.
To date, he has published more than 80 papers,
including those appeared in the IEEE Transactions
on Mobile Computing, IEEE/ACM Transactions on

Networking, IEEE Transactions on Parallel and Distributed Systems, IEEE
Transactions on Computers, MobiHoc, ICDCS, INFOCOM, SECON,
IWQoS, and ICPP. He received the Best Paper Award of IEEE ICCCN
2020 and the Best Paper Runner-Up Award of IEEEMASS 2012. He is the
recipient of the 2015 ACM China Doctoral Dissertation Nomination Award.
He is a senior member of CCF.

Zhuzhong Qian (Member, IEEE) received the
PhD degree in computer science, in 2007. He is
an associate professor with the Department of
Computer Science and Technology, Nanjing
University, P. R. China. Currently, his research
interests include cloud computing, distributed
systems, and pervasive computing. He is the
chief member of several national research proj-
ects on cloud computing and pervasive comput-
ing. He has published more than 30 research
papers in related fields.

2186 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: Temple University. Downloaded on August 03,2021 at 16:02:18 UTC from IEEE Xplore. Restrictions apply.

https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
https://cloud.google.com/tpu

Jie Wu (Fellow, IEEE) is the director of the Center
for Networked Computing and Laura H. Carnell
professor at Temple University, Philadelphia,
Pennsylvania. He also serves as the director of
International Affairs at College of Science and
Technology. He has served as a chair of Depart-
ment of Computer and Information Sciences
from the summer of 2009 to the summer of 2016
and associate vice Provost for International
Affairs from the fall of 2015 to the summer of
2017. Prior to joining Temple University, Philadel-

phia, Pennsylvania, he was a program director at the National Science
Foundation and was a distinguished professor at Florida Atlantic Univer-
sity, Boca Raton, Florida. His current research interests include mobile
computing and wireless networks, routing protocols, cloud and green
computing, network trust and security, and social network applications.
He regularly publishes in scholarly journals, conference proceedings,
and books. He serves on several editorial boards, including the IEEE
Transactions on Mobile Computing, IEEE Transactions on Service Com-
puting, Journal of Parallel and Distributed Computing, and Journal of
Computer Science and Technology. He was general co-chair for IEEE
MASS 2006, IEEE IPDPS 2008, IEEE ICDCS 2013, ACM MobiHoc
2014, ICPP 2016, and IEEE CNS 2016, as well as program co-chair for
IEEE INFOCOM 2011 and CCF CNCC 2013. He was an IEEE Computer
Society distinguished visitor, ACM distinguished speaker, and chair for
the IEEE Technical Committee on Distributed Processing (TCDP). He is
a CCF distinguished speaker. He is the recipient of the 2011 China Com-
puter Federation (CCF) Overseas Outstanding Achievement Award.

Yibo Jin (Student Member, IEEE) received the BS
degree from the Department of Computer Science
and Technology, Nanjing University, China, in 2017,
where he is currently working toward the PhD
degree under the supervision of Professor Sanglu
Lu. He was a visiting student with the Hong Kong
Polytechnic University, Hong Kong, in 2017. His
research interests include big data analytics, edge
computing and distributedmachine learning.

Sanglu Lu (Member, IEEE) received the BS, MS,
and PhD degrees from Nanjing University, China,
in 1992, 1995, and 1997, respectively, all in com-
puter science. She is currently a professor with
the Department of Computer Science and Tech-
nology and the State Key Laboratory for Novel
Software Technology. Her research interests
include distributed computing, wireless networks,
and pervasive computing. She has published
more than 80 papers in referred journals and con-
ferences in the above areas.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

ZHANG ETAL.: DEEPSLICING: COLLABORATIVE ANDADAPTIVE CNN INFERENCEWITH LOW LATENCY 2187

Authorized licensed use limited to: Temple University. Downloaded on August 03,2021 at 16:02:18 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

