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Abstract— Delay tolerant networks (DTNs) are wireless mobile
networks that do not guarantee the existence of a path between
a source and a destination at any time. When two nodes move
within each other’s transmission range during a period of time,
they can contact each other. The contact of nodes can be
periodical, predictable and nonpredictable. In this paper, we
assume the contact of nodes is nonpredictable so that it can
reflect the most flexible way of nodes movement. Due to the
uncertainty and time-varying nature of DTNs, routing poses
special challenges. Some existing schemes use utility functions
to steer the routing in the right direction. We find that these
schemes do not capture enough information about the network
and their information processing is not adequate. In this paper,
we develop an information model that can capture more contact
information and uses regression functions for data processing.
Simulation results show that our routing algorithms based on
our information model can increase the delivery ratio of the
messages and reduce the delivery latency of routing compared
with existing ones.

I. INTRODUCTION

Delay Tolerant Network (DTN) is a hot research topic these
days [2]. It is a type of wireless mobile networks that does not
guarantee the existence of a path between a source and a desti-
nation at any time. When two nodes move within each other’s
transmission range during a period of time, they can contact or
meet each other. The terms “contact” and “meet” will be used
interchangeably in this paper. When they move away from
each other out of the transmission range, the connection is lost.
A DTN can be described abstractly using a graph. Each edge
in this graph represents a contact. If there is no contact with
the next host, the message to be delivered needs to be stored in
the local buffer of the current host until the connection comes
again. Depending on the application, the contact between
nodes may be there periodically, or can be predictable, or
nonpredictable. Therefore, the network must tolerant the delay
of the message. Representative DTNs include sensor-based
networks that use scheduled intermittent connectivity, terres-
trial wireless networks that cannot ordinarily maintain end-to-
end connectivity, satellite networks that have moderate delays
and periodic connectivity, and underwater acoustic networks
that display moderate delays and frequent interruptions due to
environmental factors.
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Due to the uncertainty and time-varying nature of DTNs,
routing poses unique challenges compared to conventional
wireless networks. In the literature, some routing approaches
are based on deterministic mobility [4], [S], [8], [9], [10], [11],
[12], [13], [17], [14] where some others are based on general
mobility in which nodes mobility cannot be predicted [1], [3],
[16]. In this paper, we use the general mobility model which
reflects the most flexible way of nodes movement: nodes can
move dynamically in different directions with different speeds.

If the general mobility model is used, one rudimental
approach is flooding and its derivatives [1], [3], [16]. However,
this kind of method results in large number of message copies
in the network and thus consumes a high amount of bandwidth
and energy which are scarce in DTNs. Therefore some people
use single-copy schemes where at any time there is one holder
or custodian of a message. The key point now is how to
select the next best router in the neighborhood of the current
custodian that has the highest potential to deliver the message
to the destination.

The solution to this is the design of utility functions which
are used by several papers in the literature [1], [3], [7] and
[15]. That means, each node maintains a utility value for
every other node in the network, calculated by different criteria
such as the last number of times two nodes met, the average
of nodes’ past meeting times, and the time elapsed since
two nodes last met etc. These utility values essentially carry
indirect information about relative node locations, which get
diffused through nodes’ mobility. Therefore, algorithms can
be designed so that the current custodian can select the next
best candidate from the nodes it can reach (including itself)
hoping that the candidate can forward the message closer to
the destination based on the utility function.

After a closer look at these utility functions in the literature,
we believe they do not capture enough information about net-
work mobility and there is still room to improve by deciding
which information to record and how to deal with them. In this
paper, we will develop an information model that can capture
more comprehensive information about the network and use
regression functions to process them. As our simulations show
later in the paper, the routing schemes developed based on
the information model can increase the delivery ratio of the



messages and reduce the delivery latency of routing compared
with existing routing algorithms.

In summary, our algorithms use general mobility model
and single-copy scheme. The contributions of this paper are:
(i) we develop an information model that can capture more
comprehensive information and adopts regression methods
for data processing so that better routing algorithms can be
derived; (ii) simulation results show that the routing algorithms
based on our information model have better delivery ratio and
delivery latency than the existing ones.

The rest of the paper is organized as follows: section II
introduces the related work, section III puts forward our infor-
mation model, section IV presents the routing algorithms based
on our information model, section V shows the experimental
results and section VI concludes the paper and points out the
future work.

II. RELATED WORK

Routing in DTNs poses unique challenges compared to
conventional wireless networks due to the uncertainty and the
time-varying nature of network connectivity. The addition of
time dimension significantly complicates the routing decision.
In the literature, some routing approaches are based on de-
terministic mobility while some others are based on general
mobility in which nodes mobility cannot be predicted. The ap-
proaches based on deterministic mobility or semi-deterministic
mobility include: the centralized routing approaches [5], [12],
the ferry-based routing [13], [17], [14], the probability-based
routing without a message delivery guarantee [4], [8], [9],
and the scalable routing in DTN where nodes have strict
repetitive motions [10], [11]. The approaches based on general
mobility models include the flooding-based approaches such
as [1], [3], [16]. In this paper, we will use the general mobility
model which reflects the most flexible way of nodes movement
where nodes can move dynamically in different directions with
different speeds.

If the general mobility model is used, when a source host
wants to find a route to a destination, since it does not know
where the destination lies, one rudimental approach is to
perform a flooding-based route discovery as in [16] where
whenever a host receives a message, it will pass it to all those
hosts it can reach directly at that time so that the spread of
the message is like the epidemic of a disease. The flooding-
based routing and its derivatives use multiple copies of a
single message to find independent path to the destination so
as to improve efficiency and robustness. However, they have
non-neglectable drawbacks [15]: they consume a high amount
of bandwidth and energy; may result in poor performance
because of high contention for shared resources. As the
average node degree increases, they are not scalable in terms of
memory size needed and number of transmissions performed.
Therefore, it is highly desirable to design efficient single-copy
schemes for DTNs.

In single-copy schemes, there is only one custodian for
each message. Therefore the key point in designing efficient
single-copy schemes is the selection of the next custodian,
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Fig. 1. An example of the routing process

that is, the current custodian tries to find, within the cluster
of hosts that it can reach directly at that moment, the host
that is the next best candidate to carry the message closer to
the destination. Thus a metric calculated by a utility function
must be defined to compare the potential of each node to reach
the destination. Figure 1 shows the process of routing. There
are four continuous snapshots (a)-(d) of the network in the
figure, each showing the custodian and the neighbors of the
custodian at a particular time. All other nodes in the network
are not drawn for cleaner pictures. Between the snapshots,
the nodes are moving dynamically in different directions with
different speeds. Suppose some source node wants to deliver
a message to the destination 10. After some time the message
reaches node 1 as shown by subgraph (a). Node 1 becomes the
custodian of the message. It has three neighbors: 2, 3 and 4.
Using some utility function, it is calculated that node 3 is more
likely to meet the destination in the future than others. So it is
selected as the next custodian. The message is then delivered
to 3. In the next snapshot (b), node 3 selects the next best
candidate 6 based on the results of the utility function applied
on each of its neighbors and itself. Then in (c), node 6 selects
node 8 using the same method. Then finally in (d), node 8 is
fortunate enough to meet the destination 10 and hands it the
message.

In literature, many papers design utility functions by record-
ing contact history of nodes. This is motivated by a simple
observation [3]: the history of contact between nodes contains
valuable, but noisy information about the current network
topology. Dubois-Ferriere, Grossglauser and Vetterli [3] record
the history of last encounters between nodes. This method
predicts the future by just looking at one past data, the number
of times two nodes met last time. This utility function is very
simple but it may not reflect the nature of future mobility. Chen
and Murphy [1] consider not only the last encounters but also
the frequency of the nodes contacting destination D in the past
and calculates the average. In this method more information is
included. However, it is also not adequate to reflect mobility as
shown in the example in the next section. There are also some
variations of these algorithms. For example, Spyropoulos,
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Fig. 2. The contact history of hosts A and B with destination D

Psounis and Raghavendra record the time elapsed since every
other node was last encountered [15] because the elapsed time
contains the relative location information of the nodes. And
Juang, Oki and Wang assign each node a hierarchy level based
on its past success in transferring data to the base station
(destination) [7]. These two methods are good for applications
where the nodes do not move very dynamically. If a network
topology changes very dynamically, a node that was previously
near the destination may no longer be the best communication
target. Then, the proposed protocol may mis-direct traffic
frequently and get a poor delivery success rate.

Therefore, a better information model that can capture more
accurate mobility feature should be developed to guide the
routing in DTNS.

III. INFORMATION MODEL

As stated above, we believe the information the existing
papers record is not comprehensive and there is still room to
improve by deciding which data to record and how to deal
with them. The following example explains why.

See Figure 2. Suppose the current time is 6, the history of
contacts of host A with destination D and B with D in the
past six units of time are represented by the solid dots in the
figures. In order to show the tendency, the future number of
contacts of each host with D in time units 7 and 8 are also
shown by not-filled dots. Now at time 6, a host needs to choose
A or B to relay a message. That is, at time unit 7, which host,
A or B, will have higher chance to meet D?

1) If the last meeting times is considered as mentioned
in the literature [3], during time unit 6, A met D six
times and B met D seven times, so B will be chosen
as the candidate to relay the message. But host A has a
tendency to contact D more and more and B’s tendency
becomes quite flat. At time unit 7, it is highly likely that
A will exceed B in the number of times to contact D.
That means, by just looking at the last meeting times
is not enough. We need to observe a longer history for
the tendency and apply the tendency to predict future
number of contacts.

2) If the average meeting times in the last six units of time
is calculated as in [1], host A’s average is: (24+2+4+4+
6+6)/6 = 4 while B’s is: (6+6+6+6+7+7)/6 = 6.3.
So again B will be chosen. But A is a better candidate.
If the average method is used, the meetings in the past
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Fig. 3. Tllustration of meeting D in the ¢ units of time

are treated with equal weights. Actually more recent
meetings should be more important than the meetings
long time ago.

This example explains both the last meeting times and the
average meeting times can mislead the routing sometimes.
Therefore, an information model that can capture more ac-
curate information should be developed to steer the routing in
the right direction in DTN.

In our information model, we require each host record all
the hosts that it has met in the last ¢ (¢ > 1) units of time.
And, unlike those in the literature that take an average of the
past meeting times, we weigh the meeting times differently
because a host that sees D one minute ago is more likely to
see it again in the future than a host that sees D one day
ago. We put different weights on different meeting times. The
more recent the meeting times, the larger the weight it will
get. The key point to the success of our information model
and the later routing protocols is the estimation of the future
number of contacts in time unit ¢ + 1 which is denoted by
n¢+1. In order to make a good prediction, we put forward the
following calculation methods (utility functions).

A. Weight and Frequency Method

In this method, see Figure 3, we observe t units time period
before the current time. Let n; be the number of contacts at
time unit 7. That is, the candidate host met D n; times in time
unit ¢, n;_q times in time unit ¢ — 1, - - -, and nq times in time
unit 1. The formula to predict the future number of contacts

is:
tng+(t—Dng_1+--+1-m

t+(t—1)+(t—-2)+---+1

The host with the highest value of n,; will be chosen.

Ni41 =

B. Regression Model Methods

In this section, we put forward a set of formulas that use the
regression models to do the prediction. Let X-axis represent
the time unit ¢ and Y'-axis represent the number of contacts
n;. Then we can obtain ¢ points (i,n;) (1 < i < ) in the
two dimensional space. Now, the Least Squares Method can
give a good prediction for n;4;. Depending on the regression
models we use, we can have the following formulas.

a. Linear Regression Although these ¢ points (i,7;) may not
all lie on a line, we may use a linear model y = ax + b to
predict ny; (see Figure 4). Since the line y = ax+b may not
go through each point (¢, n;), it is reasonable to examine d; =
n; — (ai+b) = n; —ai—b, which is the difference between the
y-coordinates of the point (¢,7n;) and the corresponding point
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on the line y = ax + b. The Least-Squares-Method criterion
for the “best” linear model approximation is to determine the
values of a and b that minimize the following function, which
is the sum of squares of all y-differences:

t

= Z(m —ai — b)?.

=1

F(a,b)

To minimize F'(a, b), we take the partial derivatives of F'(a,b)
and set them equal to 0 to find the unique critical point for
F(a,b):
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b. Weighted Linear Regression It is natural to assume that
a recent point (¢, n;) is more closely related to the prediction
of nyy1 than a less recent point (i — 1,7m;-1). So we add a
different weight w; to each point (¢, n;), where w; > wy_1 >
. > wi. (For example, one may use w; = 7.) The goal of
the Weighted Linear Regression is to minimize the following
sum of weighted squares of y-difference:

t
-t
i=1

i—ai—b)Q.

To minimize W F'(a,b), we take the partial derivatives of
W F(a,b) and find the unique critical point:

WF,(a,b) =— 22:1 2iw;(n; —ai —b) =0,
WEy(a,b) =—>_ 2wi(n; —ai—b) =0.
Then
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and n¢41
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- 22:1 1wy 25:1 P*w; 22:1 Wi

c. Quadratic Regression If we observe that distribution of
these points (4, n;) are not close to any straight line, we may
use a quadratic model y = ax?+bx+c to predict 1y 1. In this
quadratic model, the y-difference between each point (i,n;)
and its corresponding point on the graph of y = ax? +bx +c
is given by n; — ai? — bi — c. So the Least Squares Method
minimizes the following function:

t

Z(ni —ai® — bi —c)*.

i=1

Q(a,b,c) =

Similarly, we can take the partial derivatives of Q(a, b, ¢) and
find the unique critical point for Q(a, b, ¢). Then we obtain

a
ner=[ (t+1)% t+1 1] b |,
C
where
ot t t 171 ¢ b
Zi4 Zﬁ Zz‘? i’n;
=1 =1 =1 =1
a t t t t
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t t t
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d. Weighted Quadratic Regression Similar to the Weighted
Linear Regression, if we want to emphasize more on the point
(i,n;) than its previous point (i — 1,n;_1), we may add a
weight w; to each point (i,n;) with wy > w;q > ... >
wy. Then the goal of the Weighted Linear Regression is to
minimize the following function:

-y utn

2

Q(a,b,c) — ai® — bi — ¢)?.
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e. Polynomial Regression and Weighted Polynomial Re-
gression If we observe that the distribution of these points
(,n;) do not closely follow any linear or quadratic model, we
may use a polynomial model of higher order to predict n;4 ;.
Furthermore, if we want to emphasize more on the point (i, ;)
than its previous point (i —1,n,_1), we may assign a different
weight w; to each (i,n;) with wy > w1 > ... > wi.
Results can be obtained similarly. Mathematically speaking,
the higher the order of the polynomial, the more accuracy on
the prediction of ;1. On the other hand, the higher the order
of the polynomial, the more computational work is needed for
the prediction. So there is a trade-off between choosing the
order of the polynomial for the approximation model and the
complexity of the calculation.

IV. ROUTING ALGORITHMS

In this section, we describe various routing algorithms
based on the previous information model. In addition, we
present some related routing algorithms for later simulation
comparisons.

A. Information Model-based Routing Algorithms

Routing algorithms can be derived using the proposed in-
formation model to steer the forwarding in the right direction.
Specifically, when a host needs to choose a candidate from its
cluster of neighbors, each host in the cluster uses one of the
methods above as the utility function to predict the number
of contacts n;y; with D in time unit ¢ + 1 based on its past
history. The candidate with the highest number of contacts
will be chosen to relay the message. This method is based
on the assumption that if a host meets D very often in the
past, it is very likely that it will meet D again in the near
future. Based on our information model, we have the cor-
responding routing algorithms: Weight and Frequency (WF),
Linear Regression (LR), Weighted Linear Regression (WLR),
Quadratic Regression (QUADR) and Weighted Quadratic Re-
gression (WQUADR) algorithms.

One problem that associates with these utility-based routing
algorithms is that at the beginning it may take a while for
the current custodian to find a better next candidate. This
is especially true if the current custodian is far from the
destination and its neighbors all have poor utility values.
A solution to reduce the delivery latency is to initially use
random forwarding, which is described below, until the utility
value gets higher [15]. This hybrid approach initially allows
a message to actively explore the network until it finds a

good carrier, and then it uses the standard utility routing to
efficiently reach the destination. In our simulations, all our
schemes have been adapted to include this idea to reduce the
delivery latency.

B. Random Algorithm

In the random algorithm, the current custodian selects the
next candidate randomly among the neighbors that it can reach
instead of using any utility function.

Besides the Random Algorithm, in order to compare the
performance of these algorithms, we set a lower-bound and an
upper-bound delivery latency algorithms. The optimal routing
algorithm is used as the lower-bound latency algorithm and
the direct routing algorithm is used as the upper-bound latency
algorithm.

C. Optimal Routing Algorithm

In the optimal routing algorithm, we assume that we know
all the topologies of the network as the nodes move. In
that case, an optimal path can be found from a source to a
destination. This does not seem practical, but it provides the
optimal results for comparison with other algorithms.

D. Direct Routing Algorithm

In the direction routing algorithm, a source holds the
message until it directly meets the destination and passes it
the message. That is, the source does not use any other node
as an intermediate router. This algorithm is used as the worst
case scenario for comparison with other algorithms.

V. EXPERIMENTAL RESULTS

In this section, simulations are conducted to compare the
algorithms based on the information model with some existing
ones such as Last-time [3] and Average [1] Routing Algo-
rithms. For comparison, Random, Optimal and Direct Routing
Algorithms are also included. Therefore, here is the list of
algorithms that we are going to compare:

1) The Direct Routing Algorithm (DIR)

2) The Random Routing Algorithm (RAND)

3) The Last-time Routing Algorithm (LAST)

4) The Average Routing Algorithm (AVG)

5) The Weighted and Frequency Routing Algorithm (WF)

6) The Linear Regression Routing Algorithm (LR)

7) The Weighted Linear Regression Routing Algorithm

(WLR)

8) The Quadratic Routing Algorithm (QUADR)

9) The Weighted Quadratic Routing  Algorithm
(WQUADR)

10) The Optimal Routing Algorithm (OPT)

In order to compare routing strategies, we must define some
important metrics to evaluate their performance. In this paper
one metric is delivery ratio and the other is delivery latency
[6]. The delivery ratio is the fraction of generated messages
that are correctly delivered to the final destination within a
given time period. This metric shows the ability of a strategy to
deliver the message to the destination within a specified period



S
8
g
o
=
=
a
Total time observed
(a) Delivery ratio (r = 10,n = 15)

100 — 9
< 920 DIR —+— |
) RAND
-2 80 - LAST —x— A
= AVG —=—

)
2 0 TR f
g WLR —e—
60 r QUADR —=— 4
WQUADR —»—
50 OPT —~

30 40 50 60 70 80 90 100110120
Total time observed

(c) Delivery ratio (r = 15,n = 15)

Fig. 5.

of time. The delivery latency is the time between when a
message is generated and when it is received. A short delivery
latency can benefit many applications.

Initially all nodes are randomly generated in a 100m x 100m
area. A source and a destination are randomly picked. Then
these nodes move in different directions with different speeds
at every time step. We assume in our experiments that if a
node met the destination before, there is a tendency that it
will meet the destination again in the future.

First we look at the delivery ratio. When the total observa-
tion time is short, the transmission range and the number of
nodes are small, it is very likely that a message may not reach
the destination. We set the number of nodes n to be 15 and 20,
transmission range r 10 and 15, the length of one time unit [
to be 5 time steps and the number of time units ¢ to be 3. The
transmission ranges are set small in our experiments because
in a sparse graph it is more obvious to see how far away these
algorithms are from the OPT algorithm. The total observation
time is set as 30,60, 90, and 100 time steps respectively. Each
sample of parameters is run 1000 times. The delivery ratios
for each algorithm are recorded and averaged for comparison
in Figures 5(a), 5(b), 5(c) and 5(d).

From the figures, we can see that the delivery ratios of
OPT and DIR provide the lower- and upper-bound of all
the algorithms. Overall the regression utility functions are
better than RAND, LAST, AVG and WEF. Especially when
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the observation time is short (30 time steps), the difference
among them is large. That means, using these regression
utility functions can increase the chance to find a path to the
destination when time is short. As observation time increases,
the difference becomes smaller and smaller. If the observation
time is long enough, all algorithms can reach 100% ratio.
Next we compare the delivery latency of the algorithms.
The delivery latency is calculated in terms of number of hops
in this paper. Different from regular hop counting where one
hop is counted when a message is delivered from one node to
another, here if the next best candidate is still the current node
and thus is equivalent to the custodian delivering the message
to itself at that moment, hop count keeps accumulating. Since
delivery latency is the parameter that we want to look at,
we make the delivery ratio for each algorithm 100%. In our
experiments, setting the observation time to 200 time steps
is enough to achieve that. The length of one time unit [ is
set at 5 and 10 time steps and the number of time units ¢
is set at 3 and 5. The transmission range r is set at 10 and
15 respectively. The number of nodes n tried is 20, 40, 60, 80,
and 100. Each sample of parameters is run 1000 times. The
results are presented in Figures 6(a), 6(b), 6(c) and 6(d). Since
these figures use the same legend as the figures above them,
the legend is omitted in each figure for better presentation.
In both figures, DIR and OPT algorithms provide the upper-
and lower-bounds of delivery latency. If a custodian keeps
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holding the message until it meets the destination itself as in
the DIR algorithm, the delivery latency is the longest. It will
be better for the custodian to forward the message to some
node, even randomly. The three algorithms: Last, AVG and WF
provide similar results. The performance of Last is not bad in
the three considering the simplicity of information it records.
The four regression algorithms are better than the previous
three. The complexity of the algorithms does have a reward
here. However, the differences among the four regression
algorithms are not obvious. Unless you know that the mobility
of nodes follows a certain pattern, these regression algorithms
are already good enough. That also explains why we do
not further explore higher order regression functions such as
Polynomial Regression and Weighted Polynomial Regression
here. The OPT algorithm presents the shortest latency because
if the changes of the topology are all known, it is not difficult
to find the shortest path from the source to the destination.
Also we can see that the gaps in delivery latency between
the three algorithms and the four regression ones are larger
in Figures 6(a) and 6(c) than those in Figures 6(b) and 6(d).
That means in more sparse graphs where the routing is more
difficult, the regression algorithms are more likely to deliver
the message to the destination.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed efficient routing algorithms
for DTNs using our information model. In a DTN where nodes
move dynamically in different directions with different speeds,
we believe recording and processing the right information in
the right way will help a message to be delivered to the desti-
nation faster. Simulations have shown that our algorithms can
give better performance than those using simpler information
and simpler processing.

Our information model can be further improved. For ex-
ample, it can be extended by incorporating more important
parameters to the system such as energy and the future plans
of hosts. As we know, one of the scarcest resources of DTNSs is
the energy. In many applications, once the hosts are deployed,
it is difficult to recharge them. In the routing algorithms we
propose, if a host meets the destination very often, it will be
used to relay the message so frequently that its battery will
be depleted very soon. In order to balance the energy in all
the hosts, the information model should be extended to include
the energy parameter. Also, if more information can be known
about the hosts, for example, their future meeting schedules
with each other, the efficiency of the routing can be further
improved. The routing algorithm can be dynamically switched
from one to another when the future plan changes to best suit
the mobility of nodes. The concerns will be how to incorporate



the future plans in the information model and when to switch
the routing algorithm for the best results.

In addition, so far we have looked at the single-copy
schemes. In the next step, we are going to study multi-copy
schemes using our information model. How many copies are
needed and how are the copies distributed in each hop to find
the path to the destination efficiently will be the key points.
That will be our future work.
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