
Elasticity-aware Virtual Machine Placement for
Cloud Datacenters

Kangkang Li, Jie Wu, and Adam Blaisse
Department of Computer and Information Sciences

Temple University, Philadelphia, PA, 19122

Email: {kang.kang.li, jiewu, adam.blaisse}@temple.edu

Abstract—With the increasing popularity of cloud computing,
the cloud datacenter suffers from both limited resources and
the variation of users’ requests. One important feature of cloud
computing is on-demand scaling, enabling the fluctuation of
one user’s resource demand. However, amongst previous work
concerning the virtual machine (VM) placement in datacenters,
satisfying the VMs’ requested resources of users is the primary
objective, neglecting future demand variation. In this paper,
we propose the concept of elasticity, referring to how well the
datacenter can satisfy the growth of the input VMs resource
demands under both the limitations of physical machines (PMs)
capacities and links capacities. To consider both dimensions
of the machine and bandwidth resources simultaneously, we
propose our hierarchical VM placement algorithm. We also
prove the optimality of our algorithm in a frequently used
semi-homogeneous datacenter configuration. Furthermore, we
study the heterogeneous datacenter configuration, favoring the
characteristics of multi-tenant datacenters. Evaluation results
validate the efficiency of our algorithm.

Index Terms—Elasticity-aware; VM placement; Datacenters

I. INTRODUCTION

Nowadays, datacenters are becoming the mainstream host-

ing platform for cloud services. Due to the frequently exhi-

bition of high link utilization [1], today’s datacenter usually

reserves more bandwidth for the upper layer links. With

the resource limitation of both physical machines (PMs) and

links, previous works mainly focus on the efficient resource

management. One basic issue is the VM placement problem,

which is a complicated task involving various constraints.

However, among the existing literatures, most studies only

consider satisfying the resource demands of VM requests,

neglecting the future variation of VMs’ resource demands.

This is not an efficient way to manage the limited resources.

In this paper, we assume that VMs have identical machine

resource demands (i.e. CPU) of R and bandwidth demands of

B. Due to various reasons (e.g. incremental tasks from users),

the resource demands may fluctuate. If R and B increase

to R′ and B′, then the growth ratios of R′−R
R and B′−B

B
describe, respectively, to what extent the growth of machine

and bandwidth demands could be satisfied. So we define

the machine / bandwidth elasticity as the largest ratio that the

machine / bandwidth demand of each VM could increase. Due

to the heterogenous resources, for one VM, the elasticities of

machine and bandwidth resources are not the same. And we

choose the smaller elasticity to be the combinational elasticity
of the corresponding VM. Furthermore, the VMs belonging

������

������

���

���

��� ���

� �

���

���

��� ���

	
���
�
��

Fig. 1. Communication model

to the same user usually require the same growth ratio, while

these VMs scattered across the datacenter are not likely to

have the same elasticity. Therefore, we pay attention to the

worst-case. That is, we select the minimal elasticity among

all VMs in the datacenter as the objective to be maximized.

A hose model [2] is used to calculate the bandwidth

demands of PMs, as shown in Fig. 1. As aforementioned, each

VM desires an identical bandwidth, B, to communicate with

the other VMs, while the bandwidth allocated to each pair of

VMs is uncertain. For example, the bandwidth assigned be-

tween VM1 and VM2 is unknown, while the total bandwidth

token by VM1 is B. Then, PM1 has a communication demand

of at most B. This is because: (1) PM1 can use at most B
bandwidth since only VM1 locates inside it; (2) VMs placed

outside PM1 (three VMs) can use at most 3B bandwidth;

(3) the bandwidth desired by PM1 is limited to both the

VMs located inside and outside PM1, i.e., min{B, 3B} = B.

Therefore, the bandwidth desired by a PM is the minimum

bandwidth demands of the VMs located inside and outside it.

In order to maximize the combinational elasticity, we need

to consider both machine elasticity and bandwidth elasticity.

An example is shown in Fig. 2 (each PM has 10 VM slots,

each link bandwidth is 8 Gbps). Now we want to place 10
VMs, each of which needs one VM slot in the PM and 1
Gbps bandwidth. In order to optimize the machine elasticity

of each VM, we should adopt load balancing placement, and

each PM is assigned 5 VMs. In that case, the maximal machine

resource of each VM could increase to 10
5 = 2 slots (the

machine elasticity is 2−1
1 = 100%). However, according to

the hose communication model, the bandwidth usage on the

99978-1-4799-0568-3/13/$31.00 c©2013 IEEE

Switch

10 slots

8 Gbps

10 VM Requests

(each VM need 1 Gbps bandwidth)

10 slots

Switch

10 slots

8 Gbps

10 slots

Fig. 2. Illustration of VM placement

links connecting two PMs are 5 Gbps, leading to less reserved

links resources. The maximal bandwidth resource of each VM

could only increase to 8
5 = 1.6 Gbps (the bandwidth elasticity

is only 1.6−1
1 = 60%). On the other hand, if we want to

maximize the bandwidth elasticity, we should take a load-

unbalancing placement, which puts all 10 VMs on one PM. In

that case, there is no bandwidth load on the link connecting

two PMs. However, the machine resources are sacrificed, since

the machine elasticity is 0% (each VM cannot have any growth

in machine resources). From here, we could see the conflict

on the optimization of machine and bandwidth elasticity.

In a multi-layer cluster with M machines and N VM

requests, traversing all the possibilities to partition the N VMs

into M machines could find an optimal solution; however, it

would be extremely time-consuming. Therefore, we propose a

hierarchical scheme that recursively places VMs step by step

from the top layer to the bottom layer.

The remainder of the paper is organized as follows: In

Section II, we formulate the maximal-elasticity VM placement

problem. In Section III, we study a one-layer cluster with its

optimal solution. Section IV focuses on the multi-layer cluster,

and gives the hierarchical VM placement algorithm. In Sec-

tion V, we study the heterogeneous datacenter configuration.

Section VI conducts the simulations to validate the efficiency

of our algorithm. In Section VII, we extend our algorithm

into a K-ary tree topology with a linear elasticity relationship.

In Section VIII, we introduce some previous work. Finally,

conclusions are in Section IX.

II. PROBLEM FORMULATION

In this section, we formulate the maximal-elasticity VM

placement problem in a multi-layer binary tree datacenter.

The datacenter configuration is semi-homogeneous, as shown

in Fig. 3. Each PM has the same capacity of C. Also, each

link of the same layer has the same bandwidth capacity: Lk

(the kth layer link capacity). However, the upper layer links

have larger bandwidth capacities than the lower layer links,

i.e., L1 ≥ L2 ≥ L3. The links capacities only differ between

layers, we refer to this as the semi-homogeneous configuration,

which is widely used to ease upper-layer link congestion.

In this paper, we only study the scenario of VM requests

with homogeneous resource demands. Each VM has an iden-

tical machine resource demand of R and bandwidth demand

of B. The machine and bandwidth elasticities of a VMi are

L2

L1

Tree

Core

Aggregation

Access

L3

L2

L3

PMs

Fig. 3. Tree-based network topology

denoted as Er
i and El

i , with combinational elasticity to be

Ei = min{Er
i , E

l
i}. Then, we have:

R′i = Ri ∗ (1 + Ei) and B′i = Bi ∗ (1 + Ei) (1)

R′i and B′i are, respectively, the potential future machine

and bandwidth resource demands of a VMi. Our objective is

to maximize the achievable Ei among all the VMs:

Maximize min
i
{Ei} (2)

Ei is limited by both the PM capacities and the link

capacities. First, let us consider the machine elasticity. Suppose

there are mr VMs allocated into PMr, then the maximal

potential resource is R′= C
mr

, with the machine elasticity to

be R′−R
R . To maximize the machine elasticity, we have:

Maximize Er = min
r

{ C

R ∗mr
} (3)

On the other hand, the bandwidth elasticity is constrained by

the links. Suppose that, the sub-tree of link l with bandwidth

capacity of L contains ml VMs. According to the hose model,

the bandwidth requirement for link l is min B ∗{ml, N−ml}.

To maximize the bandwidth elasticity, we have:

Maximize El = min
l
{ L

B ∗min{ml, N−ml}} (4)

According to Eqs. 3 and 4, the combinational elasticity is:

E=min{min
r

{ C

R ∗mr
},min

l
{ L

B ∗min{ml, N−ml}}} (5)

The combinational elasticity in Eq. 5 is our objective to

maximize. Notably, maximizing the elasticity can be viewed

as minimizing the utilization of the PM and link resources. So

we transfer the objective functions Eqs. 3 and 4 into:

Minimize max
r

{mr
R

C
} (6)

Minimize max
l

{min{ml, N −ml}B
L
} (7)

According to Eqs. 6 and 7, the combinational utilization is:

U=max{max
r

{mr
R

C
},max

l
{min{ml, N−ml}B

L
}} (8)

Again, maximizing the elasticity is equivalent to minimizing

the utilization. In the next section, we focus on minimizing

the utilization in Eq. 8. For simplicity, let each VM’s machine

resource demand as one VM slot [3]. Let 〈N,B〉 denote that

there are N VM requests, and each VM’s bandwidth is B.

100 2013 IEEE 2nd International Conference on Cloud Networking (CloudNet): Full Paper

Switch

Physical

Machine

Physical Capacity: C

Link Capacity: L

Request <N, B>

Fig. 4. One-layer cluster

III. A ONE-LEVEL CLUSTER STUDY

We start from a simple case of a one-layer cluster, which

is extended into a multi-layer cluster case later. As shown in

Fig. 4, we have N VMs requests with bandwidth, each with

a demand of B. Each of the two PMs has a machine capacity

of C, and each of the two links’ capacity is L. At first, we

need to determine how many VM requests could be accepted.

First, let us consider the machine resources. For each PM,

the sum of the VMs’ machine resources should not exceed

the capacity limit. Therefore, we have N ≤ 2C. Second, we

take care of the link capacity. Suppose that each PM has 5

VM slots, each VM has a bandwidth demand of B, and the

capacity of each link is 2B. If we allocate one PM with 5 VMs,

based on the hose communication model, the other PM could

maximally hold 2 VMs due to link constraint. In the view of

link capacity limit, the maximal number is C + L
B . So we

have N ≤ min{2C,C + L
B }, which is the maximal number

of VMs that a one-level cluster can support. Hence, given N
VM requests, the number of VMs that can be accepted is:

N∗ = min{N, 2C,C +
L

B
} (9)

A. Elasticity Maximization in One-level Clusters

There are two main factors that determines the elasticity.

The first one is the input size. With limited resources, large

inputs will consume more resources, leading to worse elas-

ticity. The second is the VM placement, which is our major

concern. With N VM requests, there are N∗ VMs accepted

into the cluster (Eq. 9). Assume that we place x VMs in the

left machine, and leave the N∗−x to the right node (without

loss of generality, let x ≤ N∗−x). As the value of x increases

from 0 to �N∗
2 	, due to the symmetry of binary-tree, there are

�N∗
2 	+1 different ways to allocate the VMs in two machines.

However, the value of x may not be able to achieve 0 due to

the limitations of PM’s capacity, or �N∗
2 	 due to the limitations

of the links capacity. As x increases, the utilization decreases,

since the input VMs are allocated in a more balanced manner.

However, the utilization of the links increases, since the traffic

between the VMs in two PMs are more heavily loaded.

In this one-level cluster, links have identical capacities; we

can transfer the utilization in Eq. 7 of the link as x ∗ B
L .

Then, utilization of the machine resources in Eq. 6 could be

transferred as max{N−x
C , x

C }=N−x
C . Then, the combinational

utilization of PMs and links in Eq. 8 is:

U(x) = max {xB
L
,
N − x

C
} (10)

The optimal solution to minimize U(x) is in Appendix A.

B. Discussion

As we can see from Eq. 18, when BC ≤ L, the optimal

solution for x is �N∗
2 	, i.e., load-balancing. The insight is

that, the machine resource is not opulent compared to the link

resources. We refer this case as the machine resources hungry,

i.e., the machine resources dominate. When BC ≥ L, the link

resources are comparatively scarce. Load balancing will cause

large consumption on the links. To favor the link, we have to

use load-unbalancing. At this time, the optimal solution is no

longer evenly divided. If all the VMs are allocated into one

machine, the link capacity is not used at all. The more scarce

the link capacity is, the more load-unbalancing is needed.

IV. MULTI-LAYER CLUSTER STUDY

It is time-consuming to exhaustively search for the optimal

solution. However, based on the optimal results of the one-

layer cluster, we can generalize this solution to multi-layer

clusters, which has a low time complexity,

A. Binary Abstraction

For each switch in each layer, we can view its sub-trees

as abstraction nodes. Then, the multi-layer cluster could be

abstracted as a one-level binary cluster, which is easier to

study. However, the obstacle is to figure out how to abstract

the left or right sub-trees into a single abstraction node. We

need to determine the accumulative capacity of the abstrac-

tion node. Since a sub-tree consists of constraints of both

links and bottom-layer machines, we cannot just add up all

the machine resources of the machines as the accumulative

capacity, especially when the cluster is link resource hungry.

The accumulative capacity needs to reflect resource constraints

of both the links and PMs.

In order to combine the bandwidth and machine resources,

we must first unify the measuring unit. For the machine

resources, the measurement unit is the VM slot. Each PM

has several slots, reflecting how many VMs it can support.

For the bandwidth resources of links, we also want to convert

them into VM slots. We suppose that a VM has a bandwidth

demand of B, and the link capacity is 2B. Based on the hose

model, this link could support the communication of two VM

slots, i.e., the measuring unit can be converted into VM slots.

Therefore, we can use VM slots as the measuring unit to

represent the accumulative capacity of an abstraction node.

We can view each switch as the root of a one-layer binary

cluster, and try to abstract it into a single node. Starting from

the bottom-layer, each access connects two identical PMs with

capacities of C. On the one hand, each PM can support at most

C VM slots. That is, N ≤ C. On the other hand, constrained

by link capacity, each PM under that link can support L
B VM

slots. If L ≥ BC, then, one PM can support C VMs. However,

2013 IEEE 2nd International Conference on Cloud Networking (CloudNet): Full Paper 101

10B10B

4B 4B

6 slots

4B 4B

10B 10B

6 slots 6 slots 6 slots

8 slots 8 slots

Recursive Node

Abstraction

VM requests <8,B>

VM requests <4,B>

4B 4B

6 slots 6 slots

VM requests <4,B>

Recursive VM

Placement

Allotmet

2 VMs

Allotment

2 VMs

VM requests <8,B>

Fig. 5. The process of recursive node abstraction and recursive VM placement

if L ≤ BC, one PM can support, at most, L
B VMs. Therefore,

the number of VMs that one PM could support is:

min{L
B
,C} (11)

Due to the symmetry of the one-layer cluster, this result also

applies to both PMs connecting to the same switch. Therefore,

adding these two PMs together, for each switch connecting two

PMs, we can conclude that the maximum VMs this switch

connecting two nodes could support is: 2min{ L
B , C}. We

would view this maximal number of VMs as the accumulative

capacity of the abstraction node, as shown in Fig. 5.

Based on this abstraction of a bottom-layer switch, we are

able to abstract the entire multi-layer cluster to a one-layer

cluster. For each switch connecting two sub-trees at each layer

from bottom to top, each one-layer cluster can be recursively

abstracted into a single node. Upon reaching the root switch

at the top, the whole multi-layer cluster is abstracted into a

one-layer cluster. In the semi-homogeneous configuration, all

the links of the same layer share the same capacity, and all the

PMs have the same machine capacity, therefore, for abstraction

nodes with the same accumulative capacity, the inner structure

of the original sub-trees are the same. We can see in Fig. 5, a

cluster consisting of two machines with two lower-layer links

are abstracted into a single node of accumulative capacity of

8. Both the abstraction nodes with a capacity of 8 share the

same structure of the original abstracted one-layer sub-tree.

B. Hierarchical VM Placement for Multi-layer Clusters

With the abstraction of a K layer multi-layer cluster into

a one-layer cluster, we can use the optimal solution for the

discussion in Section 3. Based on that result, we propose our

hierarchical VM placement algorithm for a multi-layer cluster.

Theorem 1. For a semi-homogeneous datacenter configura-
tion, if BC ≤ LK , the proposed hierarchical VM placement
algorithm is optimal to minimize the combinational utilization.

The proof of optimality is shown in Appendix C. As a matter

of fact, the semi-homogeneous configuration with BC ≤ LK

is widely adopted in most datacenters.

�
 �

� ����� � �����

���� ��������
��

�� ��� ���� !��
"

�� ��� 	 ���
#� ��$��
�%&
	
���'�� 	
���
(
��
(
�'	�)������� * �����

Fig. 6. One-layer heterogeneous cluster

Algorithm 1 Hierarchical VM Placement Algorithm

Input: The links and PMs capacity; VM requests 〈N,B〉
1: for layer i=1 to N do
2: for all switches in layer i do
3: Calculate the accumulative capacity for each switch

connecting two sub-trees in the layer

4: if input VMs could be accepted then
5: for layer j=N to 1 do
6: for all switches in layer j do
7: Optimally allocate the VMs to this subtree

Our algorithm can be divided into two steps. Firstly, for

each switch from bottom to top, the accumulative capacity of

the abstraction node rooted at that switch is calculated. Upon

reaching the top-layer root switch, we obtain an abstracted

one-layer cluster. Secondly, for the input, provided that they

can be accepted, for each switch connecting two sub-trees at

each layer from top to bottom, recursively allocate the input

VMs into its two sub-trees according to our optimal result

in Eq. 19. Upon finishing the bottom-layer switch (access

switch), all the VMs are allocated into the PMs, as shown

in Fig. 5. We summarize our algorithm in Algorithm 1.

For each switch at each layer, our algorithm takes a constant

time to calculate the optimal solution, according to Eq. 19.

For a K layers cluster, layer k has 2k−1 switches. Therefore,

102 2013 IEEE 2nd International Conference on Cloud Networking (CloudNet): Full Paper

the total time of calculation is
∑K−1

k=1 k. Suppose we have M
machines at the bottom, then M = 2k. Our algorithm takes

two loops, one is the abstraction from bottom to top, the other

is the placement from top to bottom. One loop takes a time

of O(M). Two loops is still O(M). Therefore, the total time

complexity of our algorithm is O(M), which is very efficient.

C. Discussion

In a link hungry condition, the abstraction process from

bottom to top can be conservative. Therefore, the accumulative

capacity of the abstraction node can be smaller than the actual

capacity. This will lead to some situations where our algorithm

cannot schedule a VM request that should be able to be

scheduled. Since our abstraction process is layer-by-layer from

bottom to top, each step could be conservative calculated. The

boundary situation is that:

Observation 1. in layer k, if one abstraction node capacity
is larger than the sum of layer k’s links capacities minus
one layer k’s link capacity, the accumulative capacity is
conservatively calculated for layer k.

During the abstraction process from the bottom layer to

the top, granted that one such situation happened, the whole

calculation would be conservative. However, in real datacen-

ters, each PM usually supports 4 VM or 8 VM slots, usually

below 10. However, for the link capacity, the bottom layer

link is usually 1 Gbps, and the upper layer link capacities

are usually more than 10Gbps. On the other hand, one VM

usually requests for 100 Mbps. We can see that each link can

support more than 10 VMs. The links are usually not hungry;

therefore, the conservatively calculation is not a common case.

V. A HETEROGENEOUS CASE STUDY

Now we study the scenario of heterogeneous clusters, where

all the capacities of PMs are heterogeneous, along with the link

capacities, as shown in Fig. 6. The motivation for studying

this scenario is that today’s datacenters can support multiple

tenants’ requests. The VM requests of different tenants may

come at different times. After one tenant’s VMs are placed

into the datacenter, all the links and PMs capacities will

change, making the datacenter a heterogeneous configuration,

which will make this maximal-elasticity problem an NP-hard

problem. However, our hierarchical algorithm is still useful,

and could provide a great approximation to the optimal results.

A. One-layer Optimality

Similarly, we firstly study a one-layer cluster under het-

erogeneous configuration. However, the calculation of accu-

mulative capacity is different, as shown in Fig. 6. With an

input 〈N,B〉, considering the total machine resources of the

cluster, we have: N≤C1+C2. Secondly, with the link capacity

constraint, we have N≤max{C1, C2}+min{L1

B , L2

B }. Consid-

ering both link and machine capacity limitations, we have:

N ≤ min{max{C1, C2}+min{L1

B
,
L2

B
}, C1 + C2} (12)

This is the maximal number of VMs that this heterogeneous

one-layer cluster can support. We still use N∗ as the number

of VMs that can be accepted into this cluster, as follows:

N∗=min{N,max{C1, C2}+min{L1, L2}, C1 + C2} (13)

We try to obtain an optimal result for the one-layer cluster.

With N∗ accepted into this cluster, we allocate x VMs on the

left node, leaving N∗−x on the right node. In a heterogeneous

scenario, the configuration of a binary cluster is asymmetric,

hence, we need to consider all N∗+1 different ways to allocate

the VMs. We will discuss the problem separately in the interval

of x ≤ �N∗
2 	 and x ≥ �N∗

2 	, and then lead to the final result.

For x≤�N∗
2 	, the link utilization is max{x B

L1
, x B

L2
}, and

the machine utilization is max{x R
C1

, (N∗−x) R
C2

}. Then, the

combinational utilization of the cluster is:

U(x) = max{x B

L1
, x

B

L2
, x

R

C1
, (N∗ − x)

R

C2
} (14)

The deduction for Eq. 14 is in Appendix B.

B. Binary Abstraction

In the heterogeneous multi-layer clusters, each switch con-

necting two PMs is asymmetrical. Similar to the result in Eq.

11, one PM with capacity C1 can support min{C1,
L1

B } VMs,

while the other PM with capacity C2 can support min{C2,
L2

B }
VM slots. Hence, each switch connecting two PMs can support

at most min{C1,
L1

B } + min{C2,
L2

B } VMs. We would view

this maximal number of VMs as the accumulative capacity of

the abstraction node. After we recursively do the abstraction

process from bottom to top, we can use the optimal result in

Eq. 25 and Algorithm 1 to recursively place the input VMs

into each switch. Upon finishing the bottom-layer switch, all

VMs are placed in the PMs.

VI. EVALUATION

In this section, we conduct two simulations for both semi-

homogeneous and heterogeneous datacenter configurations.

The topology we use is a three-layer binary tree structure, as

in Fig. 3. Our VM placement algorithms are compared with

the optimal solution produced by brute-force search.

We conduct one evaluation for the semi-homogeneous

configuration. Since we have proven the optimality of our

algorithm for the machine resource hungry scenario, we only

evaluate under the link hungry scenario. For the link hungry

semi-homogeneous scenario, we vary the capacities of the

bottom-layer links as 2 Gbps, 4 Gbps, and 6 Gbps. All the

links between switches are identical: 10 Gbps. Each VM’s

bandwidth demand is 1 Gbps. Each PM has 10 VM slots. For

the heterogeneous configuration, we vary link capacity. Each

link capacity range is [5,10] Gbps, [5,15] Gbps, [5,20] Gbps.

Each VM’s bandwidth demand is still 1Gpbs.

From Figs. 7, 8, we can see that when the number of VMs

increase, the utilization increases. This is because more VMs

will consume more resources, leading to the increase in the

combinational utilization of the clusters, which will lower the

elasticity of VMs. From Fig. 7, when the bottom-layer link

2013 IEEE 2nd International Conference on Cloud Networking (CloudNet): Full Paper 103

capacity increase, the situation of a link-hungry cluster is

alleviated. Then, the datacenter can support more VMs, as

shown in the comparison in the sub-figures. Besides, we can

observe that our algorithm is very close to the optimal value.

From Fig. 8, under the heterogeneous scenario, we can see

that, as the links and PMs capacities increase, more VMs can

be supported by the datacenter. We can see that our algorithm

is very close to the optimal solution. In sum, under both link

hungry semi-homogeneous and heterogeneous scenarios, our

algorithm has a high approximation to the optimal solution,

which is likely to lead to a good performance for a multi-tenant

datacenter.

VII. EXTENSION: LINEAR ELASTICITY IN A K-ARY TREE

During the discussion above, we focus on a binary tree

structure, where each access switch connects with only two

PMs. In fact, today’s datacenter topology is usually a K-ary

tree with K PMs connecting to each access switch at the

bottom. Thus, we study the K-ary topology datacenter in a

semi-homogeneous configuration.

Besides, in Section II, for the same VM, we allow the

bandwidth and machine resource to have the same growth

ratio, thereby, the same elasticity. In reality, we might need

them to have different growth ratios. Hence, we integrate a

linear coefficient c to show the elasticity relationship between

bandwidth and machine resource. In that case, the combina-

tional elasticity of VMi is Ei = min{Er
i , cE

l
i}.

A. K-ary One-layer cluster optimality

Firstly, we focus on a one-layer K-ary tree to obtain the one-

step optimal result. Suppose that, we have N input VMs to

place into the one-layer K-ary cluster. Similar to the analysis

for the binary-tree, the maximal number of VMs that can be

accepted into the cluster is: max{Kmin{ L
B , C}, L

B + C}.

Given N input VMs, let N∗ denote the actual number of

VMs accepted into this K-ary cluster. Assume that the ith

PM is allocated to xi VMs. Due to the symmetry of this

K-ary tree, without of loss of generality, we assume that

x1 < x2 <, ..., < xK . Therefore, for the machine utilization,

Eq. 6 can be transferred as xK

C . Also, for the bandwidth uti-

lization, Eq. 7 could be transferred as: min{xK , N−xK}∗ B
L .

Then, considering the linear elasticity relationship between

bandwidth and machine resource, the combinational utilization

for PMs and links in Eq. 8 is:

max{xK

C
,min{xK , N − xK} ∗ B

cL
} (15)

Since we focus on worst-case, therefore, we minimize the

worst-case combinational utilization in Eq. 15. In that case,

we only pay attention to the allotment of xK . Hence, Similar

to the binary-tree analysis, we can obtain the optimal result to

minimize Eq. 15, as shown in Appendix D.

B. K-ary abstraction

After obtaining the one-step optimal result, we can use the

bottom-to-top abstraction and the top-to-bottom placement to

allocate the input VMs into the PMs. Similar to the result in

Eq. 11, each node can support min{C, B
L } VMs. Hence, each

switch connecting K nodes can support at most Kmin{C, B
L }

VMs. We can also abstract this multi-layer K-ary cluster into

a one-layer K-ary cluster. For each switch from the bottom

layer to the top, we recursively abstract it along with its K
sub-trees into one node. After that, we use the optimal result

in Eq. 34 and Algorithm 1 to recursively place the input VMs

into each switch. Upon finishing the bottom-layer switch, all

VMs are placed in the PMs.

VIII. RELATED WORK

Much work has been done regarding VM placement in the

cloud computing environment, which is a complicated task

involving various constraints, including performance [4], avail-

ability [5], and so forth. Among all these constraints, network

is one important concern in the VM placement problem. In

[6], the author proposes minimizing the traffic cost through

VM placement. Their objective is to place VMs that have

large communication requirements close to each other, so as

to reduce network capacity needs in the datacenter. Oktopus

[3] uses the hose model to abstract the tenant’s bandwidth

request, including both virtual cluster and oversubscribed

virtual clusters. They propose a VM allocation algorithm

to deal with homogeneous bandwidth demands, which is

also what we are using in this paper. The virtual cluster

provides tenants with guarantees on the network bandwidth

they demand, which, according to [7], could be interpreted as

the min-guarantee requirements. However, this min-guarantee

fails to consider the potential growth of a tenant’s network

demand. In that case, the virtual cluster allocation based on

this min-guarantee policy will not have enough resources to

accommodate tenants’ future growth demands, which can lead

to the loss of customers. In order to alleviate this problem,

we propose the concept of elasticity, which considers existing

customers’ growing bandwidth demand in the future.

IX. CONCLUSION

In this paper, we study the resource management problem

on the cloud datacenter, which is now suffering from both

limited resources and the variety of users’ requests. Compared

to the previous work, we focus on guaranteeing the on-demand

scaling of cloud computing, and we propose the concept of

elasticity of the VM requests. To maximize the elasticity of

the input VMs, we transfer it into the utilization minimization

problem, and propose our hierarchical VM placement algo-

rithm. We study the scheduability of the input VMs and also

prove the optimality of our algorithm under a frequently used

datacenter configuration. Furthermore, we also conduct a study

on the heterogeneous scenario to meet the requirements of a

multi-tenant datacenter. The evaluation results show the high

efficiency of our algorithm. At last, we extend our algorithm

into the K-ary datacenter topology.

ACKNOWLEDGEMENT

This research was supported in part by NSF grants ECCS

1231461, ECCS 1128209, CNS 1138963, CNS 1065444, and

CCF 1028167.

104 2013 IEEE 2nd International Conference on Cloud Networking (CloudNet): Full Paper

0 5 10 15 20
0.2

0.4

0.6

0.8

1

number of VMs

cl
us

te
r u

til
iz

at
io

n
proposal
optimal

(a) bottom-layer links capacities: 2 Gbps

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

number of VMs

cl
us

te
r u

til
iz

at
io

n

proposal
optimal

(b) bottom-layer links capacities: 4 Gbps

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

number of VMs

cl
us

te
r u

til
iz

at
io

n

proposal
optimal

(c) bottom-layer links capacities: 6 Gbps

Fig. 7. Performance evaluation: semi-homogeneous configuration

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

number of VMs

cl
us

te
r u

til
iz

at
io

n

proposal
optimal

(a) link capacity range: [5,10] Gbps

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

number of VMs

cl
us

te
r u

til
iz

at
io

n

proposal
optimal

(b) link capacity range: [5,15] Gbps

0 10 20 30 40 50
0.2

0.4

0.6

0.8

1

number of VMs

cl
us

te
r u

til
iz

at
io

n

proposal
optimal

(c) link capacity range: [5,20] Gbps

Fig. 8. Performance evaluation: heterogeneous configuration

REFERENCES

[1] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” in Proceedings of
the 9th ACM SIGCOMM conference on Internet measurement conference,
IMC ’09, (New York, NY, USA), pp. 202–208, ACM, 2009.

[2] J. Zhu, D. Li, J. Wu, H. Liu, Y. Zhang, and J. Zhang, “Towards bandwidth
guarantee in multi-tenancy cloud computing networks,” in Proc. of ICNP
2012, pp. 1 –10.

[3] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards pre-
dictable datacenter networks,” in Proc. of the ACM SIGCOMM 2011,
pp. 242–253.

[4] D. Kusic, J. Kephart, J. Hanson, N. Kandasamy, and G. Jiang, “Power
and performance management of virtualized computing environments via
lookahead control,” in Proc. of ICAC 2008, pp. 3 –12.

[5] E. Bin, O. Biran, O. Boni, E. Hadad, E. Kolodner, Y. Moatti, and
D. Lorenz, “Guaranteeing high availability goals for virtual machine
placement,” in Proc. of ICDCS 2011, pp. 700 –709.

[6] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data
center networks with traffic-aware virtual machine placement,” in Proc.
of IEEE INFOCOM 2010, pp. 1–9, 2010.

[7] L. Popa, A. Krishnamurthy, S. Ratnasamy, and I. Stoica, “Faircloud:
sharing the network in cloud computing,” in Proc. of ACM HotNets-X
2011, pp. 22:1–22:6.

APPENDIX A

ONE-LAYER HOMOGENEOUS CLUSTER OPTIMAL RESULT

The objective function is:

Minimze U(x) = max {xB
L
,
N − x

C
} (16)

With link and PM capacity limits, the domain of x is:

x ∈ [max{N∗ − C, 0},min{L
B
, �N

∗

2
	}] (17)

The minimal point for U(x) can be obtained, when x is:

x∗ =
L
B

min{C, L
B }+ C

N∗ (18)

Apparently, x∗ is within the domain, which is the optimal

solution to allocate the N∗ into two machines. However, x∗

in Eq. 18 may not be an integer. In that case, we compare the

value of U(x) under both x = �x∗	 and x = �x∗�. So the

optimal solution for maximizing the elasticity is:

x∗ =
{ �x∗	, U(�x∗) ≤ U(�x∗�)

�x∗�, U(�x∗) ≥ U(�x∗�) (19)

APPENDIX B

ONE-LAYER HETEROGENEOUS CLUSTER OPTIMAL RESULT

The objective function is:

Minimze U(x)=max{x B

L1
, x

B

L2
, x

R

C1
, (N∗−x)

R

C2
} (20)

The domain of x is:

x∈[max{min{N∗−C2, C1}, 0},min{L1

B
,
L2

B
,
N∗

2
}] (21)

There is a minimal point for U(x), when x is:

x∗l =
min{L1

B , L2

B , C1}
min{L1

B , L2

B , C1}+min{L1

B , L2

B , C1, C2}
N∗ (22)

Obviously, x∗l is within the domain of Eq. 21. Still, the value

of x∗ from Eq. 22 may not be an integer. We choose both

2013 IEEE 2nd International Conference on Cloud Networking (CloudNet): Full Paper 105

values of �x∗l 	 and �x∗l � for future comparison with another

interval. Similarly, for �N∗
2 	 ≤ x ≤ N∗, the objective function

for the utilization of the cluster is:

U(x)=max{(N∗−x)
B

L1
, (N∗−x)

B

L2
, (N∗−x)

R

C1
, x

R

C2
}

The domain of x is:

x∈[max{min{N∗−C2, C1}, N
∗

2
},min{L1

B
,
L2

B
,N}] (23)

To minimize U(x), we have:

x∗r =
C2

min{min{L1,L2,C1}
B , C2}+ C2

N∗ (24)

We will choose the values of �x∗l 	, �x∗l � ,�x∗r	 and �x∗r� for

comparison. Therefore, the optimal result x∗of allocation for

a one-layer heterogeneous cluster is shown below:

x∗=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�x∗l 	, Uh
l (�x∗l)=min{Uh

l (�x∗l), Uh
l (�x∗l �),

Uh
r (�x∗r), Uh

r (�x∗r�)}
�x∗l �, Uh

l (�x∗l �)=min{Uh
l (�x∗l), Uh

l (�x∗l �),
Uh
r (�x∗r), Uh

r (�x∗r�)}
�x∗r	, Uh

r (�x∗r)=min{Uh
l (�x∗l), Uh

l (�x∗l �),
Uh
r (�x∗r), Uh

r (�x∗r�)}
�x∗r�, Uh

r (�x∗r�)=min{Uh
l (�x∗l), Uh

l (�x∗l �),
Uh
r (�x∗r), Uh

r (�x∗r�)}

(25)

APPENDIX C

THEOREM 1 PROOF

A. A two-layer optimality

Suppose that the capacity of each machine is C in a two-

layer cluster, the bandwidth capacity is B1 for the upper layer

links, and B0 for the lower layer. We have B1 ≥ B0. Here

we adopt the unified measuring unit of VM slot. Given N
VM requests, without loss of generality, we assume each VM

requires machine resource of one unit of C, and bandwidth of

one unit of B1 or B0. Also, we assume that N VMs requests

are schedulable. Here, we study the case where B0 ≥ C.

Suppose that, based on our algorithm, the allotment for the

four machines is [a, b, c, d]. With the symmetric characteristic

of binary-tree, according to our algorithm, we always allocate

the larger allotment of the given input on the right side without

loss of generality. Then, we have a ≤ b ≤ c ≤ d.

Assume our algorithm is not optimal, therefore, there is

another allocation for the four machines of [a′, b′, c′, d′], that

is better than our algorithm in minimizing the combinational

utilization in Eq. 10. We assume a′ ≤ b′ ≤ c′ ≤ d′. Due to the

symmetry of binary-tree, we could swap each PM’s allotment,

so as to make [a′, b′, c′, d′] corresponds to [a, b, c, d].

Based on our algorithm, for the first allocation step, we

allocate the N requests into the two abstraction nodes of

representing the two sub-trees of the root switch. By Eq.

11, the accumulative capacity of each abstraction node is

min{2B0, 2C} = 2C. For the one-layer cluster, our algorithm

optimally allocates the N VMs based on the results of Eq. 19.

Since a ≤ b ≤ c ≤ d and a′ ≤ b′ ≤ c′ ≤ d′, therefore, for the

first step, we have:

max {a+ b

B1
,
c+ d

2C
} ≤ max {a

′ + b′

B1
,
c′ + d′

2C
} (26)

Then, After finishing the allocation for the top layer, accord-

ing to our algorithm, we are about to do the allocation for the

two switches in the second layer. The combinational utilization

for the second-layer switch is max {a+b
B1

, d
C , min{a+b+c,d}

B0
}.

Assuming our algorithm is not optimal, we have:

max {a+ b

B1
,
d

C
,
min{a+ b+ c, d}

B0
} (27)

≥max {a
′ + b′

B1
,
d′

C
,
min{a′ + b′ + c′, d′}

B0
}

Since B0≥C, the result in Eq. 19 will evenly divide the

input of the second-layer switch. Therefore, we have a=b, c=d.

Then, min{a+b+c, d}=d, and d
C
≥ d

B0
. Therefore, we have:

max {a+b
B1

,
d

C
,
min{a+b+c, d}

B0
}=max {a+b

B1
,
d

C
} (28)

Since d=c, then, d
C

= c+d
2C . Combing Eq. 28, we have:

max {a+b
B1

,
d

C
,
min{a+b+c, d}

B0
}=max {a+b

B0
,
c+d

2C
} (29)

Since a′ ≤ b′ ≤ c′ ≤ d′, therefore, d′ ≥ c′. Then,
d′
C ≥ c′+d′

2C . Therefore, we have:

max {a
′+b′

B1
,
d′

C
,
min{a′+b′+c′, d′}

B0
} (30)

≥max {a
′+b′

B1
,
c′+d′

2C
}

Hence, combing Eqs. 29, 30

max {a
′ + b′

B1
,
d′

C
,
min{a′ + b′ + c′, d′}

B0
} (31)

≥max {a
′ + b′

B1
,
c′ + d′

2C
} ≥ max {a+ b

B1
,
c+ d

2C
}

=max {a+ b

B1
,
d

C
,
min{a+ b+ c, d}

B0
}

A contradiction with the assumption in Eq. 27, therefore,

the proof is complete for B0 ≥ C.

B. Generalization of Optimality

From one-layer to two-layer, the potential factor that can

change the optimality of this greedy step is the change of

resource capacity, since we use the accumulative capacity

to complete the first step. In other words, c+d
CM

= c+d
2C can

be smaller than max{min{a+b+c,d}
B0

, d
C }. However, according

to the allocation scheme of our algorithm, we have proven

that max{min{a+b+c,d}
B0

, d
C } is equal to c+d

CM
, which guarantees

the generalization of optimality for one-step. Since all PMs’

capacities are the same, and the capacity of the links at the

same layer are the same, from the view of physical meaning,

our abstraction process misses no information of the lower

106 2013 IEEE 2nd International Conference on Cloud Networking (CloudNet): Full Paper

layer resources for both links and machines. Hence, we con-

clude that the optimality is secured for one-step generalization.

Based on this observation, we can use the induction method

to prove the optimality of our algorithm in a k layer cluster.

When k = 1, it is a one-layer cluster, and the optimal solution

is given. Suppose that, for the kth layer, our algorithm is

optimal, then, the optimality from the kth to kth + 1 layer

is also secured. Therefore, our algorithm is optimal.

APPENDIX D

K-ARY ONE-LAYER CLUSTER OPTIMAL RESULT

The objective function is:

Minimze U(xK)=max{xK

C
,min{xK , N−xK}∗ B

cL
} (32)

With link and PM capacity limits, the domain of xK is:

xK ∈ [
N∗

K
,min{L

B
,C}] (33)

The minimal U(xK) can be obtained, when xK is:

x∗K =

{
1
KN∗, C ≥ c L

B
C

c L
B+C

N∗, C ≤ c L
B

(34)

Obviously, x∗K is within the domain, which is the optimal

solution to allocate the worst-case machine. Of course, there

is also an integer problem, as before. We could use a similar

method to round the result into the integer. Due to the space

limitation, we do not repeat it here.

2013 IEEE 2nd International Conference on Cloud Networking (CloudNet): Full Paper 107

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

