Max Progressive Network Update

Yang Chen and Jie Wu

Temple University, USA

SDN Network Update

* Network update
* Can adapt to frequent traffic changes for high network utilization.

* Challenges
* Rule updates from the controller to the individual switches traverse an
asynchronous network and may arrive out-of-order.
* Objectives
* Optimality, consistency, and swiftness
* Basic update methods
* Ordering update protocols
» Two-phase update protocols
* In our paper
* We use switch buffer to assist the update in order to migrate flows consistently.

Motivation

+ * Consistency
* Loop-free
* Drop-free
* Congestion-free

Switch buffer (for swiftness)

buffer i@ | @
f5

e N N .

Problem Formulation

* Problem

* Given the initial and final network states, we need to find a feasible solution to
consistently migrate flows.

(Finding the optimal update schedule is NP-hard with the constraint of link capacity.)!
* Objective

* Find the quickest update schedule with the help of switch buffer: balance between
updating time and buffer size

* Definitions:
1. Dependency graph
2. Indegree and out degree of a flow node
3. Necessary condition for deadlocks: cycles among flows and link resources

I: “Dynamic Scheduling of Network Updates”, SIGCOMMI14

Max Progressive Updating Method (MAPUM)

DC: 0 @ CB: 0.2

; L) DA:03 | [AB:03 @
1 . \/
. — Ll
Link’s capacity: 1; Flow demand: £;=0.7; f, =0.8; f;=1 Dependency graph

e If the dependency graph is a DAG, then there are no deadlocks;
otherwise, limit flows to break all elementary cycles.

D. B. Johnson, “Finding all the elementary circuits of a directed graph,” SIAM 2006 Journal on Computing.

CB: 0.2

DC: 0

buffer——

CB: 0.2

() Y | o7
buffer f; \/ Release
buffer
AC:02 £:1)= AC:02
DC: 0.3 CB: 0.3 e |
AB:0.2 - DA:0 || AB:0.2

AC:0

CB: 1

AB:0.2

AC:1

Max Progressive Updating Method (MAPUM)

* First use Dionysus (SIGCOMMI14) to update flows until no - -
: DC: 0 CB: 0.2
more flows can be migrated any more. ,
* Remove potential deadlocks through rate-limiting flows O
degree (out) @
riority = —xmax delay(cycle
p v degree(in) y(eycle) /J‘
@= AC:0.2
T d
(EMAPUM: priority = degree(o.ut) * max delay(cyclek) * b) Deadlocks in the dependency graph
coreelin) (shown as three colored cycles)

 Select the highest priority flows to be buffered until all
elementary cycles are resolved. (b 1s flow demand.)

* Release the buffer and migrate the buffered flows to the final
states.

Evaluation

* We compare our MAPUM and EMAPUM with three schemes
1. RS (random selection);
2. DELS (delay-consideration);
3. DEGS (degree-consideration).

* Measurement (assume one hop takes one time step)
1. Updating time: from the first migration until all flows are migrated
2. Buffer size: X scp tr * by
(F': buffered flow set; tr: time of f'to be buffered; br: bandwidth of f)
3. The number of rate-limiting flows

Evaluation Results

3000 w ‘ ‘ ‘ Kk 1000 0.024

—=—MAPUM ‘ ‘ " [—==MAPUM | —=—MAPUM
——DELS ——DELS 9 ——DELS
2500 DEGS 800 | DEGS ' 0.022 |-+ DEGS
-+-RS ——RS <_% —+—RS
© 2000 | EMAPUM EMAPUM “cc-» 0.02, EMAPUM
£ 2 s00t =
w
21500 5 %0.018—
© = =
g @ 400" o
31000 t ©0.016 |
Qo
200 | ©
500 / S 0.014
<
S —— - ‘
0’ : ‘ : ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘ 0.012 : : : : :
5000 5500 6000 6500 7000 7500 8000 5000 5500 6000 6500 7000 7500 8000 60 65 70 75 80 85 20
The number of flows The number of flows Percentage of used link capacity(%)

* Compared with RS, MAPUM and EMAPUM can reduce the updating time by 41% and 53%, respectively.
* Interms of buffer size usage, MAPUM and EMAPUM save over 37% and 42% buffer compared to RS.

* For ratio between rate-limiting and total flows, MAPUM and EMPUM are only 72% and 67% compared to RS.

