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SDN Network Update

* Network update
* Can adapt to frequent traffic changes for high network utilization.

* Challenges
* Rule updates from the controller to the individual switches traverse an
asynchronous network and may arrive out-of-order.
* Objectives
* Optimality, consistency, and swiftness
* Basic update methods
* Ordering update protocols
» Two-phase update protocols
* In our paper
* We use switch buffer to assist the update in order to migrate flows consistently.



Motivation

+ * Consistency
* Loop-free
* Drop-free
* Congestion-free




Switch buffer (for swiftness)
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Problem Formulation

* Problem

* Given the initial and final network states, we need to find a feasible solution to
consistently migrate flows.

(Finding the optimal update schedule is NP-hard with the constraint of link capacity.)!
* Objective

* Find the quickest update schedule with the help of switch buffer: balance between
updating time and buffer size

* Definitions:
1. Dependency graph
2. Indegree and out degree of a flow node
3. Necessary condition for deadlocks: cycles among flows and link resources

I: “Dynamic Scheduling of Network Updates”, SIGCOMMI14



Max Progressive Updating Method (MAPUM)
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e If the dependency graph is a DAG, then there are no deadlocks;
otherwise, limit flows to break all elementary cycles.

D. B. Johnson, “Finding all the elementary circuits of a directed graph,” SIAM 2006 Journal on Computing.
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Max Progressive Updating Method (MAPUM)

* First use Dionysus (SIGCOMMI14) to update flows until no - -
: DC: 0 CB: 0.2
more flows can be migrated any more. ,
* Remove potential deadlocks through rate-limiting flows O
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(EMAPUM: priority = degree(o.ut) * max delay(cyclek) * b) Deadlocks in the dependency graph
coreelin) (shown as three colored cycles)

 Select the highest priority flows to be buffered until all
elementary cycles are resolved. (b 1s flow demand.)

* Release the buffer and migrate the buffered flows to the final
states.



Evaluation

*  We compare our MAPUM and EMAPUM with three schemes
1. RS (random selection);
2. DELS (delay-consideration);
3. DEGS (degree-consideration).

* Measurement (assume one hop takes one time step)
1. Updating time: from the first migration until all flows are migrated
2. Buffer size: X scp tr * by
(F': buffered flow set; tr: time of f'to be buffered; br: bandwidth of f)
3. The number of rate-limiting flows



Evaluation Results
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* Compared with RS, MAPUM and EMAPUM can reduce the updating time by 41% and 53%, respectively.
* Interms of buffer size usage, MAPUM and EMAPUM save over 37% and 42% buffer compared to RS.

* For ratio between rate-limiting and total flows, MAPUM and EMPUM are only 72% and 67% compared to RS.






