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Abstract—Cloud computing has emerged as a new type of
commercial paradigm. As a typical cloud service, each file
stored in the cloud is described with several keywords. By
querying the cloud with certain keywords, a user can retrieve
files whose keywords match his query. An organization that
has thousands of users querying the cloud can set multiple
proxy servers inside itself to reduce the querying cost. All
users can be classified into different groups, and the users
in a group will send their queries to the same proxy server,
which will query the cloud with a combined query, i.e.,
the union of keywords in a group of queries. In such an
environment, an important problem is cost efficiency, i.e.,
how to classify users into different groups so that the total
number of returned files is minimized. Observing that this is
mainly affected by the number of keywords in the combined
queries, our problem is translated to classifying n users into
k groups in the case of k proxy servers, so that the number
of keywords in £ combined queries is minimized. Since more
common keywords in a group of queries will generate less
keywords in the combined queries, we should group users with
the most common keywords together. Two additional aspects
needed to be addressed are load balancing and robustness,
i.e., the workloads among proxy servers are balanced and
each user obtains search results even if some proxy servers
fail. To solve above problems simultaneously, we propose
mathematic grouping and heuristic grouping strategies, where
mathematic grouping solves the relaxed problem by using a
local optimization method, and heuristic grouping is based on
the classical heuristic clustering algorithm, K-means. Extensive
evaluations have been conducted on the analytical model to
verify the effectiveness of our strategies.

Keywords-Cloud computing, dynamic grouping, cost effi-
ciency, load balancing, robustness.

I. INTRODUCTION

Cloud computing has emerged as a new type of com-
mercial paradigm due to its overwhelming advantages [1].
Organizations with limited budgets can achieve significant
cost savings, scalability, and flexibility by outsourcing their
data resources to the cloud. Let us consider the application
that is shown in Fig. 1: University A outsources the online
library resources to the cloud for easy access by its staff and
students. Each file is described with several keywords, and
the universal keywords are uniformly distributed in the file
set. Each user can query the cloud with certain keywords,
and the cloud will process the query on each file and return
files whose keywords match the query. When University A

University A

Cloud

File | Keywords
F, A, B
F, A,D
F, C,D
Fy B,C

Figure 1. University A outsources online library resources to the cloud.
Files I, F», F3, and Fy are described with keywords “A, B”, “A, D”, “C,
D”, and “B, C”, respectively. There are two proxy servers and four users
that query with keywords “A, B”, “A” , “ C, D”, and “C”, respectively.

has thousands of users querying the cloud, the querying cost
will be excessive if each user executes queries individually.

To reduce querying costs, University A can deploy multi-
ple proxy servers inside itself and classify all its users into
different groups. The users in a group will send their queries
to the same proxy server, which will aggregate a group of
user queries and query the cloud with a combined query, i.e.,
the union of keywords in a group of user queries. Take the
application in Fig. 1 as an example, without proxy servers,
the cloud needs to execute queries four times and return 10
files in total; with two proxy servers, the cloud only needs
to execute queries twice and return 6 files in total. In this
way, the computation and communication costs incurred at
the cloud are saved by 50% and 40%, respectively.

An important problem in this scenario is how to classify
users into different groups so that the querying cost incurred
at the cloud is minimized. A naive grouping strategy would
be getting each user to send his query to a random proxy
server. The main drawback of this simple solution is the
waste of unnecessary bandwidth. For example, if users with
with no common keywords are randomly grouped together,
e.g., Alice and Clark are in a group, and Bob and Donland
are in another group, then 25% of the bandwidth is wasted



compared to the scenario in Fig. 1. An alternative solution
is for all users to send their queries to a single proxy server.
The main drawback of this solution is that it can easily
trigger a performance bottleneck and has a single point of
failure. If the single proxy server fails, all users will lose
their search results.

In this paper, we address three important issues in such an
environment: cost efficiency, load balancing, and robustness.
Cost efficiency refers to minimizing the total number of files
returned from the cloud. Note that keywords are uniformly
distributed in the file set, and the probability of each keyword
in a file is the same. Thus, this problem is equivalent to
minimizing the total number of keywords in the combined
queries. Since more common keywords in a group of queries
will generate less keywords in the combined queries, we
need to group users with the most common keywords
together. As shown in Fig. 1, the basic idea of our grouping
strategy is to construct a public dictionary that consists of the
universe of keywords. A user query or the combined query
is converted to a 0-1 bit string, where a bit is set to 1, only
when a corresponding keyword in the dictionary is chosen
by the user or by at least one group member. For example,
given dictionary that consists of (A, B, C, D), Alice’s query
string is (1100), when she queries with keywords “A, B”.
The optimization problem is converted to grouping users
with the most common keywords together to minimize the
number of 1s in each combined query, causing the minimal
total number of 1s.

Load balancing refers to balancing bandwidth among
proxy servers. For each proxy server, the transfer-in band-
width is mainly incurred by receiving results from the
cloud, and the transfer-out bandwidth is mainly incurred by
distributing results to each user. Our solution is to make the
number of users in each group (group size) to be just the
same to balance the dominating transfer-out bandwidth. As
an extension, we relax the constraint of equal group size and
make the number of keywords in each group to be almost
the same to balance the transfer-in bandwidth.

Last, but not least, is robustness, which ensures that each
user obtains search results even if some machines fail. Our
solution is to generate multiple copies for each query, where
each copy will be classified into different groups and sent
to different proxy servers. In this way, so long as one proxy
server runs, the user will not lose his results. The main merit
is to allow a dynamic adjustment of the number of query
copies that will be sent, and to make sure that the bandwidth
will not grow linearly with the number of copies.

In this paper, we design group strategies to simultaneously
solve above three issues. Note that our work is essentially
different from content distribution network (CDN) [2]-[4].
CDN is an efficient approach to deliver Web content, where
multiple replicas of each content are scattered over the
Internet. A request for a single content is routed to its closest
replica. CDN also considers load balancing among replicas.

Cloud

Figure 2. System model.

Our design goal is to equally classify n queries into k
groups in the case of k proxy servers, so that the number
of 1s in each combined query is minimized. This is similar
to clustering and graph cutting problems, which have been
proven to be NP-Hard [5]. We propose two kinds of group-
ing strategies: mathematic grouping and heuristic grouping.
Mathematic grouping formulates the grouping problem in
a mathematical way and solves the relaxed problem by
using a local optimization method. Heuristic grouping, called
K-Mean-based Dynamic Grouping (KMDG), is based on
the classical heuristic clustering algorithm, K-Means [6].
We provide robust versions for both strategies by letting
each user generate 2 < « < k query copies with the
constraint that o copies of each query cannot be in one
group. The robust version of heuristic grouping is called
KMDGTI. Specifically, heuristic grouping has a second ex-
tension, called KMDG?2, which relaxes the constraint of
equal group size to balance the transfer-in bandwidth. Our
key contributions are as follows:

1) To the best of our knowledge, it is the first attempt to
devise a dynamic grouping strategy in a cloud.

2) We resolve the grouping problem in both mathematical
and heuristic ways to simultaneously achieve cost
efficiency, load balancing, and robustness.

3) Extensive experiments were performed on the analyt-
ical model to validate our grouping strategies.

II. PRELIMINARIES

In this section, we will first provide the system model
of this paper. Then, we will describe our design goals and
analyze which parameters will affect these goals.

A. System model

The system consists of three entities: the cloud, many
users, and many proxy servers, as shown in Fig. 2. The
proxy servers can be classified into query router (QR) and
aggregation and distribution machines (ADMs). Once in a
while, a QR will be elected from the proxy servers and
the remainder proxy servers become ADMs. To ensure the



Table T
SUMMARY OF NOTATIONS

Notation | Description

n Number of users in a batch

d Number of keywords in the dictionary

k Number of groups

gj> S5 Group 7, Seed of group j

Qi Qj User 4’s query, Combined query of g;

Q An n X d matrix contains n users queries
Si S'j Number of 1s in Q;, Qj

normal operation of the system, a new QR should be elected
if current QR fails in an interval. The length of an interval
may depend on the scale of the organization, which is out
of the scope of this paper. The most relevant notations in
this paper are shown in Table L.

The cloud holds a collection of ¢ files { F, . .., F}}, where
each file can be described by a set of distinct keywords. The
universe of d keywords form a dictionary that is publicly
available. The main functionality of the cloud is to process
queries to return search results to the ADMs.

The ADM has two functionalities: querying the cloud on
behalf of a group with a combined query, and distributing
results to each user in a group. User i’s query @); or group
j’s combined query Qj is a 0-1 bit string of length d, where
the [-th bit is 1 only if the /-th keyword in the dictionary is
chosen by user ¢ or at least one user in group j.

All users will first send their queries to the QR. If a user
cannot receive response from the QR in a period of time,
he will send his query to a random ADM. The QR will
wait for a period of time to aggregate enough queries, and
dynamically classify n users into k groups based on user
queries. Then, the QR will respond each user and send user
queries to different ADMs based on the grouping decision.

Note that our system will incur some processing delay
since the QR should batch enough queries to make group-
ing decision. However, the degree of aggregation can be
controlled through a time-out mechanism to meet a given
processing delay requirement, e.g., thousands of users may
query the cloud in a sequence of batches, where each batch
has hundreds of users. The length of the time-out is affected
by many factors, such as transfer delay and system load.

B. Design goals

To enable our grouping strategies to work well, our design
should simultaneously ensure the following guarantees:

« Effectiveness: obtain optimal grouping results within a
polynomial time.

o Cost efficiency: minimize the bandwidth at the cloud.

o Load balancing: balance the bandwidth among ADMs.

o Robustness: make sure each user obtains search results
even if some machines fail.

To illustrate our design goals, we provide the following
example, which will be used as the sample application in this

Table II
SAMPLE FILES
Keyword File Keyword File

A Fi,..., Fio0 E Fyo1, - - -, F500
B Fio1,---, F200 F Fso01, - - -, F600
C Fbo01, - - -, F300 G Feo1, - - -, F700
D F301, - - -, Faoo H Fro1, - - -, F800

Table III

SAMPLE USER QUERIES

Q1 = (11100000) = (AB,C) | @5 = {00000111) = (EG,H) |
[ Q2 = (11000000 = (A.B) | Qs = (00000011) = (G,H) ]
Qs = (11000000) = (A.B) | Q7 = (00000011} = (G.H)

Q4 = (00010000) = (D) Qs = (00001000) = (B)

gi B2 83 g4

Q.]11000000] | |Qs[11000000] | [Q4 00010000
Qo 00000011] | |, 00000011] | [, ] 00001000

p1 |[Q:]11200000
a,| 00000111

Q2] 11000000 | | Q5| 00000011 | |05 |00000111
0] 11000000 | |q,| 00000011 | |, 00001000

/11100000

P2 1
Q,| 00010000

Q.| 11000000 Qs | 00000011

P3
[@:[11100000 Q.| 11000000 (9s[oo0o0111 Q,/00000011

Q4|00010000) Qa‘ 00001000

Q.[11100000] | |@3]11000000]| Qs [111200000] || Qs 11000000
b | [s/00000111)| q, 00000011 s/ 00000111/ || o, | 00000011
Q,[11000000| | Q4| 00010000]| |Q2|11000000] | (0] 00010000
Q, 00000011 | |, |00001000]| | q,] 00000011/ | | g, 00001000

Q1]11100000 Qs‘OOOOOOll Q1]11100000] | | Q5| 00000011
ps | Qs 00010000 | | q,|00000011 | |q,| 00010000 || Q,| 00000011
Q2]11000000 Q5‘00000111 Q,|11000000| | | Q5| 00000111
Q| 11000000/ | | Qg | 00001000} | | Q4| 11000000 | | Qg| 00001000

Figure 3. Sample group patterns.

paper. The example assumes that the dictionary consists of
(A,B,C,D,E,F,G, H), and files stored in the cloud are
as shown in Table II. Suppose that there are four ADMs,
ADMjy, ..., ADM,, and eight queries, as shown in Table
III. All users are classified into kK = 4 groups g1, ..., g4,
and all queries in g; are sent to ADM;, where 1 < j < k.

We provide 3 group patterns, (P1, P2, P3), for a single
query copy, and two group patterns, (P4, P5), for the robust
version, (two query copies), as shown in Fig. 3. P1 and P4
are the instances of the basic version and robust version of
random grouping, respectively; P2 and P5 are the instances
of the KMDG and KMDG1; P3 is the instance of KMDG?2.

Cost efficiency. This design goal is equivalent to grouping
users with the most common keywords together to minimize
the total number of 1s in the combined queries. For example,
in P1, where users with no common keywords are grouped
together, the number of 1s in each group are 6, 4, 4, 2,
respectively, and the total number of Is is 16. For file set
in Table II, the cloud returns 600 files to ADM;, 400 files
to ADMS,, 400 files to ADMs5, and 200 files to ADM,,



thus the total number of returned files is 1,600; in P2 and
P3, where users with more common keywords are grouped
together, the total number of 1s is 12. For file set in Table I,
the cloud returns 1,200 files, saving 25% of the bandwidth.

Load balancing. KMDG balances the transfer-out band-
width among ADMs by making each group size just the
same. KMDG?2 balances the transfer-in bandwidth among
ADMs by relaxing the constraint of equal group size to
make the number of 1s in each combined query basically the
same. For example, each group has 2 members in P2, but
the group size of g» and g4 is triple that of ¢g; and g3 in P3.
For file set in Table II, in P2, each ADM needs to return 400
files to all users in a group and consumes the same transfer-
out bandwidth, however, ADM; and AD M, need to receive
400 files from the cloud, which consume double the transfer-
in bandwidth compared to ADM, and ADMs; In P3, each
ADM receives 300 files from the cloud and consumes the
same transfer-in bandwidth, however, ADM, and ADM,
need to return 500 files to all users in a group, which
consume 1.7 times the transfer-out bandwidth compared to
ADMl and ADM3

Robustness. To ensure that each user obtains search
results even some machines fails, we generate multiple
copies for each query, with the constraint that each copy
will be classified into different groups. Our solution still
groups users with the most common keywords together, and
thus the increased bandwidth will not grow linearly with the
number of copies. For example, in P4, the cloud needs to
return 2,400 files, which is double that of P2; in P35, the
cloud needs to return 1,600 files, and the bandwidth only
increases 33% compared to P2.

C. Parameter analysis

We first analyze which factors will impact cost efficiency
and load balancing.

Cost efficiency refers to minimizing the number of files
returned from the cloud. Suppose that the dictionary contains
d keywords, and each file is described by ~ keywords. The
probability of a keyword in a file is /d. Then, the expected
value of the number of returned files can be calculated with
Z?Zl t-(1—(1—~/d)%), where t is the number of files
stored in the cloud, k is the number of groups, and S’j is
the number of 1s in group j’s combined query Qj. Given
that ¢, k, v, and d are fixed, the total number of returned
files depends on S’j where 1 < j < k. Therefore, cost-
efficiency is equivalent to minimizing the number of 1s in
each combined query.

Load balancing refers to balancing the transfer-in and
transfer out bandwidth among ADMs. The transfer-in band-
width at each ADM is mainly incurred by receiving files
from the cloud. As described above, the number of returned
files depends on the number of 1s in each combined query.
The transfer-out bandwidth at each ADM is mainly incurred
by transferring files to each user in a group. Suppose that the

dictionary contains d keywords, and each file is described
by v keywords. The probability of a keyword in a file is
7/d. Then, for ADM; that combines group j’s queries, the
estimated value of the number of files that are returned to
group j can be calculated with Zlgjl t-(1—(1—~/d)>,
where ¢ is the number of files stored in the cloud, |g;| is the
number of users in group j, and S; is the number of 1s in
user i’s query ;. Given that ¢, 7, and d are fixed, and .S; is
basically the same, transfer-out bandwidth mainly depends
on the group size. Therefore, achieving load balancing is
equivalent to balancing the number of 1s in each combined
query and group size among ADMs.

III. MATHEMATIC GROUPING STRATEGY

In this section, we provide a basic mathematic grouping
strategy and will provide the robust version in Section V.

Let @ be an n x d matrix, representing n query strings
with length d. We consider classifying these query strings
into k groups such that each group has the same number of
query strings, and the total number of 1s in the sum query
string from each group can be minimized.

Let Y € {0,1}"** denote the grouping setting, then the
problem can be formulated into the following optimization

myin tr(ET6(YTQ)) (D

yT1=21 vi=1
k

where 1 denotes a vector of all s, assuming that its length
can be determined from the context; E denotes a kX d matrix
of all 1s; §(-) denotes an indicator function. The problem we
formulated above, however, is NP-hard, and it is difficult to
conduct optimization directly over it. We thus propose to
solve a relaxation problem instead. Firstly, we approximate
the indicator matrix, 5(Y T Q), with a smooth function, 1 —
exp(—BY TQ), where 3 is a large constant number, e.g.,
B =10, 20, 30, 40. We then relax the integer matrix Y into a
continuous matrix. After relaxation, we obtain the following
optimization problem:

Y € {0,1}"*,

min  tr(ET (1 - exp(-AY"Q))) 2
0<Y <1, YT1:%1, Y1=1
which is equivalent to:
max  tr(E" exp(—pY Q) 3)
0<Y <1, YT1:%1, Y1=1

Let f(Y) denote the objective function in (3). Then f(Y") is
a convex function of Y. However, maximization over a con-
vex function is a non-convex optimization problem. We use
a first-order local optimization method to conduct optimiza-
tion, which is similar to our previous work [7]. The gradient
can be computed as Vy f(Y) = —BQexp(—3Q"Y).



Algorithm 1 KMDG

Algorithm 2 KMDG!1 (Robust version of KMDG)

1: Construct a set, Candi(), with the universal user
queries

2: Randomly choose k distinct queries from Candi() as
seeds s1, . .., s for groups g1, ..., gk, and remove them
from CandiQ
{Runs the following process multiple rounds}

3: while Candi@) is not empty do

for j =1to k do

5: Neighbor; is a subset of Candi() that accommo-
date s;’s nearest neighbors
6: Choose a random element ); € Neighbor; into

g; and remove it from Candi@)
7: Initialize C'andi@) with the universal user queries
8: for j =1to k do
9:  Randomly choose a query from g; as the seed s; for
the next round and remove it from Candi@)

After obtaining a continuous solution, Y, to (3), we can
then round it back to a feasible integer matrix by using a
heuristic greedy procedure: in each iteration, we find the Y
entry, Y;;, with the largest value among all of the entries
in consideration. If there are currently less than n/k 1s in
the jth column, we set Y;; = 1, and we set all the other
entries on the same row to 0. We then remove this row from
further consideration. If there are already n/k 1s in the jth
column, we set Y;; = 0 and go to the next iteration. When
the maximum Y;; returned is O, we complete the procedure.

The solution we obtained after using the proposed op-
timization method above is a local optimal solution. To
overcome the drawback of local optima, we use random
restarts to produce multiple local optimal solutions, and we
pick the best one.

IV. HEURISTIC GROUPING STRATEGY

In this section, we will first provide related definitions
as background knowledge, and then we describe a basic
heuristic grouping (KMDG). We will describe the robust
version (KMDG1) in Section V and an additional extension
(KMDG?2) in Section VI.

For ease of illustration, we use the example in Section II
to illustrate the following definitions.

Group seed. For 1 < j <k, the group seed s; is the center
and first member of group g;.

Distance. The distance between query Q; and query @Q;,
denoted as Dist(Q;, Q;), is the number of increased s for
Q; after combining with Q;.

For example, if Q1 = (11100000) and Q> = (11000000,
Dist(Q1,Q2) = 0, and Dist(Qs, Q1) = 1.

Nearest neighbor. Given a query Q;, query Q; with the
minimal distance from Q) ; is called as Q) ;’s nearest neighbor.

1: Construct a set, Candi@, with 2 < o < k query copies
2: Line 2 in Alg. 1
{Runs the following process multiple rounds}
3: while Candi( is not empty do
for j =1to k do

Neighbor; is a subset of C'andi) that accommo-
date s;’s nearest neighbors

6: Choose a random element (); € Neighbor; and
Q; ¢ g; into g; and remove it from CandiQ

7: Initialize Candi@ with 2 < o < k query copies

8: Line 8 to line 9 in Alg. 1

Take the queries in Table III as an example, (J1’s nearest
neighbors include @2, Q3 with the minimal distance 0, and
(Q2’s nearest neighbor is ()3 with the minimal distance 0.

The basic idea of KMDG is to classify the top n/k nearest
neighbors of the group seed s; in group g; to minimize the
total number of 1s in the combined query Qj. The grouping
strategy (Alg. 1) generally has two steps. The first step is
to find k group seeds. In the first round, since no group
has been formed yet, k£ seeds are randomly chosen from n
queries; in the following rounds, given k groups, each seed
is chosen randomly from n/k queries in each group.

The second step is classifying n — k queries into k
groups based on k seeds. Specifically, given seed s;, a set
Neighbor;, that accommodates the nearest neighbors of s,
is first constructed. Then, we classify a random element in
Neighbor; into g;. Note that there will be a conflict when
a query, @;, is the nearest neighbor of 1 < m < k seeds,
e.g., S1,..-,5m. We resolve this conflict by classifying
Qi into Neighbor; with Dist(Q;,s;) < Dist(Q;,s;) for
1 < 4,1 < m. The above two steps will be run within
multiple rounds, and in each round, the grouping result will
be recorded. At the end of this algorithm, the optimal result
will be the output.

V. EXTENSIONS

In this section, we provide robust versions for both math-
ematic grouping and heuristic grouping. For mathematic
grouping, we only provide the construction for two query
copies. However, our grouping strategy can be easily adapted
to more than two query copies.

Mathematic grouping. Now we assume we have two
copies of (Q; assigning the two copies of each query string
to different groups is required. Let Z = [Q; Q] be a 2n x d
matrix, we then have:

min tr(ET6(Y T Z)) (4)

2
Y € {0,112k yT1 = ?”1,1/1 —1,4Y <1

where A = [I,I], and [ is an n X n identity matrix. The



relaxed optimization problem is:
tr(ET exp(-8Y ' Z)) )

T 2n
Y'1= 3 1,

The heuristic greedy rounding procedure can be updated
correspondingly: in each iteration, we find the Y entry, Y;;,
with the largest value among all the entries in consideration.
If there are currently less than 2n/k 1s in the jth column,

we set V; =1, YU =0 (if ¢ > ¢, then i=1i— n, otherwise

max
Y

0<Y <1, Yi=1, AV <1

i = 1+ n), set all of the other entries on the ith row to O,
and remove this row from further consideration. If there are
already 2n/k 1s in the jth column, we set Y;; = 0 and go
to the next iteration. When the maximum Y;; returned is 0,
we complete the procedure.

Heuristic grouping. Heuristic grouping can be extended
to a robust version, as in Alg. 2, with the constraint that
each copy should be classified into different groups.

Note that Alg. 2 will cause a dilemma: a query cannot
be grouped unless we break our constraint. To illustrate,
let us assume that g1 = Q4, @5, Qs, @7, 92 = Q1,Q5, s,
g3 = Q6,Q7,Qs, and g4 = Q1,Q2, Q3. Thus, we need to
classify Q1,Q2, Q3 into go, g3, g4. However, the constraint
that each copy should be classified into different groups will
be broken, no matter what we classify (either Q1, @2, or
Q@3) in g4. The reason for this dilemma is that the strategy
requires each group size to be just the same and some
queries which are the farthest neighbors of k—1 group seeds
are classified into the same group. To avoid this dilemma,
we should track the grouping process and make different
decision at the critical point.

VI. DISCUSSION

In this section, we will provide an additional extension,
KMDG?2, for heuristic grouping. We first provide the fol-
lowing definition:

Friendliest neighbor. Given group g; with seed s;, Query
Q; that is the nearest neighbor of s; and causes the minimal
number of 1s after combining Q; into g; is g;’s friendliest
neighbor. The number of Is after combining a friendliest
neighbor to g; is called group cost, denoted as C'j.

Take the queries in Table III as an example, if Q2 and Q3
are in g; with Q5 as the seed, then the friendliest neighbor
of g1 include @1, Q4, s, and related group cost 6’1 is 3.

KMDG?2 relaxes the constraint of equal group size to bal-
ance the transfer-in bandwidth among ADMs. Since KMDG
is a special case of KMDG2, KMDG2 can perform better.
The basic idea of KMDG?2 is to classify a group’s friendliest
neighbors into this group to minimize the number of 1s in
the combined queries.

KMDG?2 (Alg. 3) includes two steps: (1) choose k group
seeds; (2) classify n — k queries into k groups. The first
step is the same as in KMDG, and the second step is

Algorithm 3 KMDG2 (Balancing transfer-in bandwidth)

1: Line 1 to line 2 in Alg. 1

{Runs the following process multiple rounds}
2: while Candi@ is not empty do
for j =1to k do
4: Friend; is a subset of C'andi() that accommodate
friendliest neighbors of g; and éj is group cost

5. if C; < C) where 1 < j,1 < k then

: Add a random query in Friend; to g;

7: Line 7 to line 9 in Alg. 1

Table IV

PARAMETERS
Notation | Description Value
[F File size 500K B
n Number of users in a batch 1-200
d Number of keywords in the dictionary | 100
t Number of files stored in the cloud 1,000
k Number of groups 5, 10
T Number of rounds 500
S; Number of 1s/keywords in Q; 1-5
« Number of query copies 2
¥ Number of keywords in each file 5

changed as follows: Given a group g; with seed s;, a set
Friend; that accommodates the friendliest neighbors of g;
is first generated. The related group cost C’j should also
be recorded. Then, a random element in Friend;, with
C'j < C’l for 1 < 5,1 < k, will be grouped into g;.
Note that a query, (); may be the friendliest neighbor of
1 < m < k groups, e.g., g1, - - - , gm. However, this will not
cause a conflict since each time only one query that causes
the minimal group cost will be grouped.

VII. EVALUATION

In this section, we will compare the proposed strategies
from the following aspects: the bandwidth incurred at the
cloud and the load balancing among ADMs. Our simulations
are conducted with MATLAB R2010a, running on a local
machine with an Intel Core 2 Duo E8400 3.0 GHz CPU
and 8 GB RAM. We summarize the parameters in Table I'V.
For the ease of comparison, mathematic grouping and its
robust version are denoted as Optimization and Optimization
Robust; random grouping and its robust version are denoted
as Random and Random Robust; KMDG’s robust version
(KMDG1) is denoted as KMDG Robust.

A. Performance

We first compare the total number of 1s in all combined
queries in different grouping strategies under different num-
bers of groups k. In Fig. 4, we know that our strategies
generate less number of Is than random grouping in the
case of a single query copy and the robust version. Take
the setting of d = 100 and k£ = 5 as an example, KMDG
can reduce the amount of number 1s by 8.4% under a
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Figure 5. Comparison of bandwidth at the cloud. X-axis denotes the
number of users and Y-axis denotes bandwidth at the cloud (MB).

single query copy, and by 8.9% under the robust version,
compared to Random. Furthermore, as the number of groups
k increases, heuristic grouping works better. For example,
as the number of groups increases from 5 to 10, under the
setting of n = 200 and d = 100, the percentage of reduced
Is increases to 13% and 15% in the case of a single query
copy and the robust version, respectively.

We also observe that (1) KMDG?2 performs the best; (2)
While the number of users exceeds 100, Optimization works
better than KMDG. The reason of (1) is that Optimization
and KMDG, which require equal group size, are special
cases of KMDG2. The reason of (2) is that heuristic group-
ing is apt to obtain the local optimal result while the number
of users is sufficiently large. Optimization can relieve this
problem by setting multiple random restarting points. Then,
we compare the bandwidth incurred at the cloud. We assume
that keywords are uniformly distributed in file set. From Fig.
5, we observe that our strategies can save more bandwidth.
However, as the number of files that have been returned to
the ADMs approaches 1,000, all strategies perform similarly.

B. Load balancing

The transfer-in bandwidth at each ADM is mainly affected
by the amount of 1s in the combined query, and the transfer-
out bandwidth at each ADM is mainly affected by the
sum of Is in a group of queries. We will first compare
the imbalanced number of 1s by calculating the average
differences of 1s between any two ADMs.

From Figs. 6 and 7, we know that heuristic grouping can
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Figure 6. Comparison of imbalanced number of ls. X-axis denotes the
number of users and Y-axis denotes the imbalanced number of 1s.
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Figure 8. Comparison of transfer-in bandwidth. X-axis is the number of
users and Y-axis is the imbalanced transfer-in bandwidth (MB).

achieve better results than random grouping in both a single
query copy and the robust version. Furthermore, KMDG
is generally more effective than KMDG?2 in balancing the
sum of Is in a group of queries, and KMDG?2 is generally
more effective than KMDG in balancing the number of 1s in
the combined query. Optimization and Optimization Robust
have worse balancing results.

Then, we compare the imbalanced transfer-in and transfer-
out bandwidth by calculating the average differences of
bandwidth between any two ADMs. In Figs. 8 and 9, we
know that KMDG is generally more effective than KMDG?2
in balancing the transfer-out bandwidth, and KMDG?2 is gen-
erally more effective than KMDG in balancing the transfer-
in bandwidth. Furthermore, Optimization and Optimization
Robust still have the worse results. However, as the number
of users increases, the number of files returned to each
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Figure 9. Comparison of transfer-out bandwidth. X-axis is the number of
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ADM will approach 1,000, and the imbalanced transfer-in
bandwidth among ADMs will decrease.

VIII. RELATED WORK

Our work provides feasible grouping strategies in cloud
computing to simultaneously achieve cost efficiency, load
balance, and robustness. To the best of our knowledge,
no previous works have addressed this problem. Existing
research that is the most related to ours can be found in the
areas of K-means [6], [8]-[14].

K-means, as a building block of the heuristic grouping
strategy, is closely related to a number of other clustering
and location problems, such as Euclidean K-medians [15]
and the geometric K-center problem [16]. In statistics and
data mining, K-means clustering is a method of cluster
analysis which aims to partition n members into k clusters
so that each member belongs to the cluster with the nearest
mean [9].

Although this problem is computationally difficult (NP-
hard) [5], there are efficient heuristic algorithms that are
commonly employed that converge quickly to a local opti-
mum [17]. For example, [6] solved the K-means problem by
using a simple iterative scheme for finding a locally minimal
solution; [10] solved the K-means problem for scalar data
based on the simple observation that the optimal placement
of a center is at the centroid of the associated cluster;
[11] proposed an asymptotically efficient approximation for
the K-means clustering problem; [12] provided an efficient
implementation of the K-means algorithm in [10].

IX. CONCLUSION

In this paper, we study the problem of dynamic grouping
in cloud computing. To simultaneously achieve cost effi-
ciency, load balancing, and robustness, we propose two kinds
of grouping strategies: mathematic grouping and heuristic
grouping. Extensive experiments have been performed to
verify the effectiveness of our strategies. For our future
work, we plan to improve our work in the follows aspects:
First, we will try to conduct experiments on other keyword
distributions in the file set to test our strategies; Second,
we will try to improve the heuristic grouping strategy to
accelerating convergence.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, and I. Stoica,
“A view of cloud computing,” Communications of the ACM,
2010.

[2] K. Johnson, J. Carr, M. Day, and M. Kaashoek, “The mea-
sured performance of content distribution networks,” Com-
puter Communications, 2001.

[3] J. Kangasharju, J. Roberts, and K. Ross, “Object replication
strategies in content distribution networks,” Computer Com-
munications, 2002.

[4] M. Pathan and R. Buyya, “A taxonomy of CDNs,” Content
delivery networks, 2008.

[5] R. Michael and D. Johnson, “Computers and intractability:
A guide to the theory of NP-Completeness,” WH Freeman &
Co., 1979.

[6] E. Forgy, “Cluster analysis of multivariate data: efficiency
versus interpretability of classifications,” Biometrics, 1965.

[71 Y. Guo, “Active instance sampling via matrix partition,” in
Proc. of NIPS, 2010.

[8] J. MacQueen, “Some methods for classification and analysis
of multivariate observations,” in Proc. of Berkeley Symposium
on Mathematical Statistics and Probability, 1967.

[9] J. Hartigan and M. Wong, “Algorithm as 136: A k-means
clustering algorithm,” Journal of the Royal Statistical Society,
1979.

[10] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans-
actions on Information Theory, 1982.

[11] J. Matousek, “On approximate geometric k-clustering,” Dis-
crete & Computational Geometry, 2000.

[12] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silver-
man, and A. Wu, “An efficient k-means clustering algorithm:
Analysis and implementation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2002.

[13] G. Frahling and C. Sohler, “A fast k-means implementation
using coresets,” in Proc. of the ACM Symposium on Compu-
tational Geometry, 2006.

[14] D. Arthur, B. Manthey, and H. Roglin, “K-means has poly-
nomial smoothed complexity,” in Proc. of IEEE Symposium
on FOCS, 2009.

[15] S. Arora, P. Raghavan, and S. Rao, “Approximation schemes
for euclidean k-medians and related problems,” in Proc. of
ACM symposium on Theory of computing, 1998.

[16] P. Agarwal and C. Procopiuc, “Exact and approximation
algorithms for clustering,” Algorithmica, 2002.

[17] M. Mahajan, P. Nimbhorkar, and K. Varadarajan, “The planar
k-means problem is NP-hard” WALCOM: Algorithms and
Computation, 2009.



