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APPENDIX A
EXTENDED ENERGY COST MODEL (COST(ei))
One of our important objectives is to minimize the
energy cost of the network regarding various aspects,
including the sensor fault detection and recovery, dam-
age event detection. Let cost(ei) denote the total energy
cost of sensor i, including measurement, computation,
transmission, and overhead. The sensor i has discrete
power level that it can adjust it in ranges from Rmin

to Rmax. In the beginning, sensor i adopts its minimum
power level and then i may dynamically increase it.

We describe here how energy consumed in transmit-
ting a packet. The maximum energy cost of i depends
on the routing protocol used by the data collection
application. Consider a shortest path routing model [1],
[2]; there is a path from sensor i to neighboring sensor
node or the BS j: q = z0, z1 . . . zk. Sensor i propagates
the data to them. We can find the ith hop sensor on
each path and calculate the amount of traffic that passes
along on the paths within each round of monitoring
data collection (Td, d=1,2,. . . , n). Then, the cost(ei) can
be decomposed into the following four parts:

cost(ei) = eT + ecomp + esamp + eoh (A1)

We describe these terms in the following:
• eT is the total energy cost for data transmission in

a round of data transmission over a link between a
transmitter and a receiver, where sensor i uses its
power level from a minimum to a maximum, but
not beyond the maximum power. We use a stan-
dard energy cost model for calculating the packet
transmission cost [3].
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• ecomp is the energy cost for processing data locally,
e.g., computing equation (6) in Section 4.2. If a
sensor is allowed to transmit the raw vibration data
to the BS directly, ecomp would be very low. The
cost is mainly due to the onboard processor, such
as a micro-controller, DSP chip, or FPGA [4]. These
devices consume energy proportional to the num-
ber of processing cycles, as well as the maximum
processor frequency f , switching capacitance µ, and
hardware specific constants k and β, respectively [4].
We focus on the number of cycles taken for tasks,
e.g., equation (6) and the amount of samples taken.
The number of cycles required to perform a task
on the amount of samples (denoted by w) are es-
timated according to the computational complexity
O(w), which describes how many basic operations,
i.e., averages, additions, multiplications, etc., must
be performed in executing the task. Given these
parameters, the computational energy to complete
a task can be calculated according to:

ecomp = O(w) · µ(f
k
+ β) (A2)

• esamp is the energy required for a sampling cost
of M data points; when sensors capture vibration
signals, assuming a maximum 50% overlapping,
M = (na/2 + 1/2) · cr, where na and cr are the
number of averages mainly for the purpose of noise
reduction, that practically ranges from 10 to 20
and cross-correlation factor, respectively [5], [6]. We
assume that na and cr are set by fixed values on a
sensor.

• eoh is any additional overhead for some causes, e.g.,
fault detection and signal reconstruction, copying
data to a local buffer, and network latency.

APPENDIX B
METHOD OF EXTRACTING LOCAL MODE
SHAPE

In Section 4.2, we have described the state-space model
for structural mode shape computation (Φ) at individual
sensor. Here, we show a method to local Φ extraction
and explain benefits of utilizing the extracted Φ over f
towards sensor fault detection and tolerance.
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Fig. C1. Based on acquired vibration signal characteristics, measured natural frequencies captured by sensor 1 and
sensor 2 under manual input excitation on the structure, respectively. This shows the structural system oscillation
(moving back and forth) between its original state and its displaced state, captured by the two in their vicinity.
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A specific vibration pattern

of a structure at a specific

frequency is called a

mode shape. Each sensor

decision on mode shape

corresponds to the sensor

location status, where each

such mode contains several

elements information

around the location.

Fig. C2. (a) The finite element model (FEM) of our designed physical infrastructure; (b) its original mode shape; (c)-(e)
its three mode shapes: mode 1, mode 2, and mode 3. FEM is a computer based numerical model often used for
calculating the behavior and strength of structural mechanics, such as vibration and displacement.

Definition C1 [Natural Frequency]. Every structure
has a tendency to vibrate with much larger amplitude at
some frequencies than others. Each such frequency is called
a natural frequency denoted by f . f is an internal vibration
signal characteristic of structure, and is different for different
structures (such as from building to bridge, from indoor to
outdoor). In other words, it is defined as the number of
times that a structural system oscillates (moves back and
forth) between its original state and its displaced state when
assuming there is no outside interference.

Definition C2 [Mode shape]. When subjected to external
forces, the response of a structure is conceptually similar to
the response of a vibrating string or structural components
such as a metal plate. Upon excitation, the vibrations are a
combination of several harmonics (or at a specific frequency of
vibrations), known as modes. Each mode deforms the structure
into a particular spatio-temporal pattern known as a mode
shape, denoted by Φ.

B.1 Local Mode Shape by Each Sensor
As the network modeled in Section 3.1, m sensors are
available for deployment on a structure, and they extract
a total of p mode shapes from the measurement of

m sensors. The corresponding natural frequencies and
mode shapes are represented, respectively, as follows:

f = [f1, f2, . . . , fp] (B1)

Φ =
[
Φ1 Φ2 . Φm

]
=


ϕ1
1 ϕ1

2 . ϕ1
p

ϕ2
1

.
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. .

ϕ2
p

.
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1 . ϕm

2 . ϕm
p


(B2)

where fk(k = 1, . . . , p) is the kth natural frequency, Φk

is the mode shape corresponding to fk ·ϕk
i (i = 1, . . . ,m)

is the value of Φk at the ith sensor. For example, Fig.
C1 and Fig. C2 illustrate the first two sensors’ natu-
ral frequencies and corresponding mode shapes of a
physical structure, receptively, which are extracted from
measurements of 10 deployed sensors in our prototype
system. In the experiment, vertical accelerations at all the
given sensors are obtained, and 10% noise is added to
all measurements. Under the artificial input excitation,
the measured accelerations (the peak frequency pointed
by 1, 2, . . .) at sensors 1 and sensor 2, respectively, refer
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to Fig. C1 and Fig. C2 (which are obtained by using
network topology in Fig. 3).

B.2 Φ over f in Sensor Fault Detection
The difference between f and Φ can be observed by
comparing (C1) with (C2) and Fig. C1 with Fig. C2.
According to the ACSM theory, f is not suitable char-
acteristic for damage event detection due to several
reasons:

(i) f is not a sensitive indicator to damage event,
where only severe damage event causes noticeable
change on the set of f ;

(ii) Due to the global property, f does not contain any
spatial information, and thus localizing damage
event is difficult, while damage event detection
using f is computationally inefficient;

(iii) High frequency modes are more susceptible to
additional noise than low frequency modes; iv) f is
susceptible to additional noise [6]; To improve the
usability of the f to detect damage event of small
magnitude, high-frequency modes, which are asso-
ciated with local responses, may be used. However,
we argue that adopting f is not suitable for WSNs
considering WSNs’ resource limitation;

(iv) Importantly, a large set of f is required to be sent
to the BS (e.g., SPEM [2], NFMC [5]); damage event
detection is greatly affected if a portion of it is lost
during transmission.

(v) Φ is directly linked to topology of the structure and
Φ highly features the dynamics of the structure.

On the other hand, it can be seen from (C2) that Φ has
elements corresponding to each sensor, thus containing
spatial information. Φ and its derivatives have been
proven to be very sensitive features to detect damage
event. It takes into account out-of-frequency-bandwidth
modes of the structure, and is also applicable to a
complex linear structure. This is why we target on Φ
computation and observe the impact of sensor faults on
Φ. However, theoretically, Φ is a global parameter of a
structure which means that, using sensor deployed on
different locations of a structure, the same set of Φ may
not be obtained. To mitigate this problem, we allows
each sensor estimate Φ taking measurements about its
vicinity (i.e., local structural response).

In this paper, we utilize the mode shape curvature
method proposed by civil engineering to identify sig-
nificant change (i.e., damage event) in the mode shape
[7]. The mode shape curvature has high sensitivity to
damage event.

APPENDIX C
THE REASON OF NEGLECTING DAMPING
In Section 4.2, we have described the space-space model
for the structural response measurements by sensors. In
(6), we have considered the matrices of mass and stiff-
ness coefficients of the various elements of the structure,
but we have neglected the damping.

Damping is neglected in the model (6), considering
individual sensor measurement estimation. In any case,
(a) faults in the sensors will only be identified if they
cause changes in the response of a greater magnitude
than the errors in the estimated mode shape, and (b)
the modes with low damping, having approximately real
modes, will be strongly excited. Thus, undamped mode
shapes can be accurately estimated by (6) at each sensor.

APPENDIX D
THE STATE-SPACE-EQUATION BASED KF FOR
SIGNAL ANALYSIS

In Section 6, we proposed the Kalman filter (KF)
technique for signal reconstruction. In this Appendix,
a graphical representation of the state-space equation
based KF is presented in Fig. D. This equation is made
with the help of the state-space representation of the
structural system, as described in Section 6.1. In Fig. D,
ut is the structural excitation at a specific frequency at
time t. Mt and Kt are transition matrices. The signals
σt−1 and σt represent the measurement noises, respec-
tively. When measuring the responses of a dynamical
structural system by wireless sensors, the actual signals
produced by the sensors are contaminated by noises due
to internal manufacturing defects, physical interference,
or external environmental effects. According to features
of the KF, we assume that every measurement from
the wireless sensors contains noises; thus, if the noise
measurement is zero, the KL collapses. Setting the mean
of noise as zero is a common practice: E[σt] = 0.
Noises are assumed to be independent of each other,
and are normally distributed with covariance matrices,
cv = [σσT ]. The underlying KF information is that KF
is a recursive algorithm consisting of a loop, which is
passed through for each time instant t.

APPENDIX E
MISSING SENSOR DETECTION METHOD

In Section 5, we presented Algorithm 2 for faulty sensor
detection. However, if a sensor is missing or is out of
service during the monitoring operation, if the sensor
cannot be reached because of communication constraint
or failure, or there is an unknown reason, the algorithm
cannot guarantee detection of such a sensor node. In
order to detect these sensors, we apply a method of
Kullback-Leibler divergence (KL) [8] between the mea-
sured and estimated sensor signals and update Kalman
filter (KF) with KL, which can be used as a fault indica-
tor λKL−KF

ni
KL-KF (Kullback-Leibler-Kalman-Filter) for

such sensors. Note that for a faulty sensor signal recon-
struction, we will use the Kalman filter (KL) technique.

The symmetrized form of the KL between the proba-
bility distributions of one measured signal (yi) at time t
and with the KF estimated signal ŷi is as follows:

KL =
1

2

∑
i

[pyi
− pŷi

]log2
pyi

pŷi

(E1)
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Fig. D. Graphical representation of the state-space equation based Kalman filter that is used in sensor’s faulty signal
reconstruction.
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Fig. E. Missing or failed node detection in a WSN-based system: (a) an example of MII change in the sensor signals;
(b) the detection result under the KL-KF.

where pyi is the probabilities based on the number of
points falling into the ith bin. When the KL between
two probability distributions is zero, the signals are
identically distributed. The fault indicator is defined as:

λKL−KF
p =

1

pmax − 1

pmax∑
p=1

KLp, 1 < p < pmax (E2)

If the faulty sensor p is not used for the estimation of
the pmax sensor signals, then the KL distance between
the measured and estimated signals will be minimal;
otherwise, the distance will be higher. This is shown
under the network topology in Fig. 3a. It can be seen
in Fig. D that without sensor 5, the best estimation is
possible, which clearly indicates the sensor is faulty. This
method based on KF is able to detect a missing or failed
sensor. Also, pure bias faults with the MII method are
enhanced further by this KL-KF method. Thus, using KF-
KL with the help of Algorithm 2, it can be guaranteed
to detect the fault types that produce faulty readings.

We illustrate the justification of sensor fault identifica-
tion method based on MII (i.e., ω) through Algorithm
2. In our real experiment, under the manual random

excitation and 5th sensor removal, the 5th sensor is
detected as faulty. As shown in Fig. E(a), the relative
change in MII indicates the sensor 5 as faulty. Actually,
the sensor was removed from the location, however, the
sensor is detected as missing by λKL−KF

p , as shown in
Fig. E(b). To guarantee a certain redundancy of informa-
tion in each sensor data set, the initial frequency should
be available for identifying the faulty vibration signal.
Therefore, if one of the neighboring nodes is missing, the
KL-KF divergence between the measured and estimated
sensor signals can be used as a sensor fault indicator.

APPENDIX F
MORE RESULTS OF WSN-BASED SHM SYS-
TEM DEPENDABILITY

In Section 7.1.2, we have partly performed an analysis of
the system dependability. In the analysis, we have used
a combination of true positive and true negative results
in the sensor fault detection accuracy estimation. In this
Appendix, we continue the analysis of the performance
of the system dependability. We particularly consider the
dependability of WSN-based SHM schemes as the ability
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Fig. F1. Dependability verification: fault detection ability of
different schemes.

of fault detection and the ability of structural health
event (damage) detection of the schemes.

At first, we discuss the detection ability of different
WSN-based schemes. Fig. F1 demonstrates the fault
detection ability of DependSHM and other schemes. We
can see that the detection ability of DependSHM is much
better than that of cSHM, NFMC, and SPEM. NFMC
shows higher detection errors than DependSHM, even
higher than cSHM. Looking into details of causes, we
summarize the following observations under the random
fault injection:

(i) The same pick frequencies cannot be achieved in
many neighborhoods or clusters in NFMC;

(ii) One or more clusters are disconnected from the
network, as one or more faulty sensors are iso-
lated based on the natural frequency comparison
(although it shows the good ability rate of fault
detection in some clusters);

(iii) The scheme is limited to the frequency matching
based fault detection;

(iv) NFMC fails to detect other types of faults;
(v) The fault detection ability of SPEM is very low,

due to non-faulty reading losses that results in a
increased amount of faulty readings;

(vi) When attempting to recover from the faults, both
SPEM and NFMC schemes require a significant
amount of energy cost.

We next examine the system dependability in terms
of the structural health event detection ability of a
system. This can provide us an implication that how
much a system can cope with sensor faults and what
is the significance of addressing dependability issue in a
system. We gather all the false positive and false negative
cases appeared in the WSN-based SHM (achieved from
a total of 50 simulation runs), and we get an average.
Then, we calculate the structural health event detection
ability rate as 1-(false positive rates + false negative
rates). The results is depicted in Fig. F2. We also take
into account the structural health monitoring under NO
recovery (a preliminary analysis has been done based on
these results, as illustrated in Fig. 8). Here, we intend to
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Fig. F2. Dependability verification: structural health event
detection ability of different schemes.

find evidence that what exactly happens when there is
NO dependability option (fault detection and recovery)
provided.

In Fig. F2, we can see the results, which shows that
the structural event detection ability of DependSHM is
between 93% and 97.2%, which greatly outperforms oth-
ers. In SPEM, the detection ability under recovery from
sensor faults tolerance algorithm is inferior (between
75% and 92%) among all of the schemes, while it is
between 74% and 95% in NFMC and 87% to 95% in
cSHM. There can be various reasons that SPEM provides
poor detection rate, including i) centralized decision
making on the fault detection and tolerance (data losses
on the fly is a factor), ii) application-specific sensor
deployment, iii) natural frequency matching problem,
and so on. In NFMC, the peak natural frequency signals
used in the sensor fault detection and recovery, by which
the actual mode shape curvature slightly distorted. This
lead to a lower MII that results in a lower structural
event detection ability. As it can be seen in Fig. F2,
the structural event detection ability becomes lower in
NFMC and SPEM than in DependSHM and cSHM, as the
number of faulty sensor nodes in the WSN increases.

From the results in Fig. F2, the structural event de-
tection ability rate is around 65% in a system with NO
recovery from sensor faults. It may make us surprised
that the monitoring operations in a WSN-based SHM
can be often meaningless if there is no dependability
option provided. From a deep observation, we have
found evidence that faulty sensors can corrupt results
of a health event in a structural system without being
detected. We have seen that measured signals introduced
by some faulty sensors often identify its location as dam-
aged (actually it is undamaged location). We also have
found that some faulty sensor identify its location as
undamaged (actually the location is damaged). There are
a large number of such wrong diagnoses (false positive
and false negative) that lead to a reduced structural
event detection ability.
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APPENDIX G
MORE DETAILS OF THE WSN PROTOTYPE SYS-
TEM IMPLEMENTATION
G.1 Extended Detail of the Experimental Setup
We validate DependSHM by implementing a proof-of-
concept system using the TinyOS on Imote2 platforms
[9]. Our main objective is to verify i) the dependability
and ii) the energy-efficiency of the system. We target the
accuracy or successful Φ identification, because it can
provide us with the answer, whether or not a WSN-
based SHM system is dependable in terms of various
sensor faults.

The Imote2 (IPR2400) is an advanced wireless sen-
sor platform (off-the-shelf), offering sufficient process-
ing capability and communication resources to locally
and continuously monitor vibration characteristics under
intensive conditions. Its main board combines a low
power PXA271 XScale processor with an 802.15.4 radio
(CC2420) and an antenna using 2.4 GHz. The major
limitation with it is the energy.

We employ 10 integrated Imote2s called SHM motes
on a test structure, as shown in Fig. G1; an additional
Imote2 is located 15 meters away as the BS mote, and a
PC as a command center for the BS mote and data visu-
alization. The test structure has 10 floors; at each floor,
a mote is deployed to monitor the structure’s horizontal
accelerations. Each mote runs a program (implemented
in the nesC language) to process the acceleration data
acquired from on-board accelerometers. The BS receives
the data packets from the sensors through wireless com-
munication, and relays the data to the PC over a USB
cable. The PC commands and sets parameters for the net-
work through BS. Java and Matlab are used to calculate
and visualize the whole structural health condition. In
the experiment, Rmin is adjusted by the diameter of the
structure, which is adjusted by estimating the height of
the test structure and each floor. Imote2’s discrete levels
of range are set to use Rmin and Rmax.

G.2 Sensor Identified Natural Frequencies
In Section 7.2.2, we have given experimental mode
shapes, estimated based on natural frequencies. In the
first set of experiments, we compute the natural frequen-
cies, as shown in TABLE G1. These frequencies are used
in creating mode shapes (Φ) in the base-line structural
system, when there are no damage events and no sensor
faults. Note that such a base-line mode shape should be
not fixed but should be dynamic, i.e., a WSN-based SHM
system can be enabled to adapt or update its base-line
mode shape, taking into account dynamic environments
and environmental noise factors. We find that the MII
in different frequencies identified at different sensors is
low (the result has been shown in Fig. 11).

G.3 Signal Reconstruction at a Faulty Sensor
In Section 7.2.2, we have also provided the sensor fault
detection results, where we have found that sensor 5 is

Imote2 

The SHM Mote

(a) An integrated SHM mote (b) Test building structure (c)

sensor
 board

 module

radio-triggered wakeup &
 synchronization module

Fig. G1. (a) The SHM mote integrated by Imote2; (b)
twelve-story test structure and the placement of 10 SHM
motes on it; (c) their deployment.
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Fig. G2. Signal reconstruction of the 5th sensor (that is
detected faulty).

faulty. In order to the support the results, we hereby can
observe the faulty signal reconstruction of the 5th sensor,
as shown in Fig. G2. The drift in the measured signal (red
line) is corrected by the estimated signal (green lines).
We observe the mutual independence under the fault
injection at the 5th sensor. In DependSHM, when sensor
nodes process data locally, the small value in the MII
is achieved, ranging from 2% to 4%, and they are not
considered faulty. The MII provides the best value, when
there is a remarkable change in the sensor measured
signals, i.e., the 5th sensor and 10th sensor are faulty.
This reveals that there can a better accuracy of fault
detection in DependSHM in practice, compared to others.

G.4 Energy Cost (cost(ei))
Due to space limitation, we have not presented the
performance of energy cost of the WSN in Section 7.2.2,
which we present in this Appendix.

We allow all of the sensors to sleep after each monitor-
ing period to perform power management. The TinyOS
2.0 drivers for the Imote2 supports putting all of the
hardware to sleep when it is switched off. This is obvious
for a WSN-based SHM system, since a WSN does not
always need to run actively in case of specific structural
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TABLE G1
Identified natural frequencies by the first five sensors of the experimental WSN in SPEM and DependSHM.

 
Mode 

Frequencies (Hz)  

Centralized processing (SPEM)  Localized processing (DependSHM) 

            

1 13.211 12.213 14.131 15.123 13.435  14.134 13.141 15.312 16.856 14.355 

2 17.341 14.798 15.112 16.234 15.141  17.741 15.141 17.214 17.852 16.641 

3 20.834 21.334 19.134 21.434 19.746  21.341 22.932 21.341 22.344 21.341 

s1 s2 s3 s4 s5 s1 s2 s3 s4 s5

0 0.10 0.20 0.30 0.40

DependSHM

cSHM

NFMC

SPEM

Energy cost (mAh)

Measurement

Computation

Transmission

Overhead

Fig. G3. The performance on the energy cost of the WSN
in different schemes.

event monitoring. For example, in case of aerospace
vehicle monitoring, when it is not flying, the WSN may
not need monitoring operations. In another case, the
WSN can be scheduled to run periodically or a part of
the sensors can be scheduled to wake up periodically
and check health event status. cost(ei) is calculated by
the energy cost for computation, transmission, measure-
ment, and overhead, where the overhead statistics with
current cost data is combined. The data sheet can be
found in [9].

Fig. G3 shows the energy cost of a round of moni-
toring, Td=1. The DependSHM method significantly de-
creases the energy cost compared to SPEM, from 0.197
mAh to 0.072 mAh. The reason is that the major energy
is consumed by the raw signal transmissions to the BS.
The actual computation cost in DependSHM is 0.0072
mAh to execute the basic equations and fault detection
and signal reconstitution. However, it fully depends on
the number of cycles that a sensor CPU requires. It
also varies from sensor to sensor based on the tasks
a needs to do. A sensor does not need computation
for signal reconstruction if there is not fault. In such a
case, a sensor can save an average of 0.0027 mAh. More
importantly, in DependSys, the computation saves the
Imote2 an average of 0.165 mAh during transmission,
since it reduces the time that the CC2420 radio is active.
The overhead is caused by end-to-end transmission de-
lay and writing/reading data to/from Imote2’s memory,
since we depend on local processing. In both SPEM and
NFMC methods, transmitting a large amount of raw data
in each Td (i.e., transmission of natural frequency sets
and frequent retransmissions caused by packet losses)
increases cost(ei). However, NFMC achieves slightly

Energy cost (mAh)

0 0.2 0.3 0.4 0.5

T1

T2

T3

T4

T5

DependSHMNFMC

Fig. G4. The performance on the energy cost of the WSN
in the first five round of monitoring in DependSHM and
NFMC.

lower energy cost for transmission than SPEM.
Further performance analysis of cost(ei) in five rounds

of monitoring (Td, d = 1, ..., 5) can be seen in Fig. G4.
This shows the actual amount of energy cost required in
DependSHM. We can see that DependSHM outperforms
NFMC significantly because of the above causes, cluster
maintenance, and network maintenance (e.g., faulty sen-
sor isolation), particularly the set of mode shapes trans-
mitted from the cluster-head to the BS. This is because
the final mode shapes of each cluster is transmitted by
each cluster-head, while SPEM requires transmission of
all natural frequency sets. In our distributed solution,
there is no frequent retransmission and the final mode
shapes transmitted by each sensor are without sensor
fault information. In the case of faulty sensor detection
and signal reconstruction, the system consumes a small
amount of energy in computation with a slight overhead,
which is 5% to 8% of the total energy cost in each round.

In a concluding remark about the results we have
found and presented in this paper, our proposed de-
pendable, distributed SHM solution outperforms central-
ized solution almost in all aspects, including, energy cost
of the WSN and offering monitoring system dependabil-
ity.
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