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Abstract—As an alternative to current wired-based networks, wireless sensor networks (WSNs) are becoming an increasingly
compelling platform for engineering structural health monitoring (SHM) due to relatively low-cost, easy installation, and so forth.
However, there is still an unaddressed challenge: the application-specific dependability in terms of sensor fault detection and tolerance.
The dependability is also affected by a reduction on the quality of monitoring when mitigating WSN constrains (e.g., limited energy,
narrow bandwidth). We address these by designing a dependable distributed WSN framework for SHM (called DependSHM) and then
examining its ability to cope with sensor faults and constraints. We find evidence that faulty sensors can corrupt results of a health event
(e.g., damage) in a structural system without being detected. More specifically, we bring attention to an undiscovered yet interesting
fact, i.e., the real measured signals introduced by one or more faulty sensors may cause an undamaged location to be identified as
damaged (false positive) or a damaged location as undamaged (false negative) diagnosis. This can be caused by faults in sensor
bonding, precision degradation, amplification gain, bias, drift, noise, and so forth. In DependSHM, we present a distributed automated
algorithm to detect such types of faults, and we offer an online signal reconstruction algorithm to recover from the wrong diagnosis.
Through comprehensive simulations and a WSN prototype system implementation, we evaluate the effectiveness of DependSHM.

Index Terms—Wireless sensor networks, structural health monitoring, dependability, fault detection, fault-tolerance, energy-efficiency.
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1 INTRODUCTION
Wireless sensor networks (WSNs) consist of a number
of sensor nodes that can collaborate with each other
to perform monitoring tasks. WSNs have been widely
deployed on the ground, vehicles, structures, and the like
for enabling various applications, e.g., target detection,
safety-related, and traffic monitoring [1], [2], [3]. Recent
work has explored that WSNs can be a compelling
platform for engineering structural health monitoring
(SHM), due to relatively low-cost, easy installation, and
so forth [4], [5], [6], [7], [8]. In a typical SHM system, the
interest is in monitoring possible changes (e.g., damage,
crack, corrosion) on physical structures (e.g., aerospace
vehicles, buildings, bridges, nuclear plants, etc.) and pro-
viding an “alert” at an early stage to reduce safety-risk.
This prevails throughout the aerospace, civil, structural,
or mechanical (ACSM) engineering communities.

Both ACSM and computer science (CS) com-
munities have already addressed numerous chal-
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lenges/requirements, including data acquisition, com-
pression, aggregation, damage detection, distributed
computing. However, there is still an unaddressed chal-
lenge: the application-specific dependability, which is the
ability of a WSN providing application-specific meaning-
ful monitoring results under sensor faults. Particularly,
such a system should be able to detect the sensor data
faults online and take recovery actions immediately to
avoid meaningless monitoring operations. In fact, de-
pendability is highly desired in a WSN-based SHM, as
an “alert” about a structural event conveys a serious
concern with public safety and economic losses.

On the one hand, SHM algorithms in wired sensor net-
works used by ACSM are generally centralized/global-
based [6], [9], [10], [11], in which they may not need to
seriously consider data collection quality and synchro-
nization errors, etc. This is because they may not often
handle data losses or mismatch, as there are no issues
like poor wireless connectivity, narrow bandwidth, and
energy constraints. The dependability is affected by a
reduction on the quality of data when mitigating the con-
straints. Moreover, once data from the WSN is collected
at a centralized base station (BS), it becomes complex to
scrutinize all the collected data (including faulty signals).

On the other hand, significant efforts have been
made for specific fault types in WSNs [12], [13]. Some
prominent schemes, namely, decision fusion (or 0/1 de-
cision), threshold-based decision, heartbeat reception have
been suggested for fault-tolerant phenomenon (such as
an event) detection problems [12], [14], [15], [16], [17].
These often use simplified data and few measurements
to adequately detect certain faults. However, they are
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not able to function properly in an SHM system, since
SHM algorithms use totally different methods to detect
a damage event. For example, the algorithms need raw
measured signals rather than the decision fusion, and the
analysis of signals (vibration, strain, damping, etc.) that
requires a substantial knowledge from ACSM domains
(e.g., finite element model updating, Eigen matrix, mode
shape properties) [18], [8], [5], [19]. We have evidence
from experimental settings that when there is a change
in structural health properties (as shown Fig. 1a), 0/1
decision schemes tell sensor 5 is faulty, but they can-
not tell what happen (faulty signals or damage event)
around sensors 4 and 6. Regarding all these issues above,
a question might be posed: is it possible to have a
dependable SHM system using WSNs?

The answer is positive. In this paper, we design a
dependable and distributed WSN framework for SHM
(called DependSHM) that jointly considers ACSM and CS
requirements. In DependSHM, we propose an algorithm
to detect sensor faults efficiently under the constraints of
the WSN. Dependability in WSNs suffers from various
types of faults, including, transceiver failure, link errors,
security attacks (e.g., collusion), etc [13], [20]. Numerous
efforts are being published every day in handling these
fault types. Instead, we are interested in some types of
sensor faults that are common but difficult to identify:
sensor debonding (when a sensor partially or completely
debonds from the host structure), faulty signals, faults in
offset, bias, precision degradation, and the amplification gain
factor of signals, noise faults, node missing or failure.

Most of the sensor data faults fall within these fault
models and they directly interrupt a WSN system from
detecting damage. Sensors with some of these faults
seem to work properly, to communicate to neighbors, to
exchange heartbeats, but they return incorrect readings
or decisions. Under any of the fault occurrences in a
practical SHM, we discover a fact that goes to SHM
system dependability: both faulty and non-faulty sensors
can generate abnormal signals or decisions (i.e., remarkable
changes in the measured signals). The difficult part is
that sensor data, the only available information, will be
affected by both structural damage and sensor faults. We
further discover an interesting fact that such a possibility
can cause an undamaged location to be identified as damaged
(false positive) or a damaged location can be given undamaged
(false negative) diagnosis. When we transform these false
positive and negative rates into a structural health event
detection ability as the performance of system depend-
ability (as shown in Fig. 1b), we find that those decision
based and current SHM schemes do not perform well.

We use a new general measurement, mutual information
independence (MII), between two signals u and v from two
different sensors for evaluating results in the absence
of the ground truth. We think that mutual statistical
information can be used as an indicator to decide on
a sensor fault detection in conjunction with damage
detection. We attempt to reconstruct faulty sensor signals
using Kalman filter techniques so that if there is damage,
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Fig. 1. Investigation of the dependability performance of
different schemes in structural health monitoring (SHM).

it can be recovered after the reconstruction. This does not
require any costly actions, including sensor grouping,
faulty sensor avoiding, masking, isolating, or replacing.

Our major contributions in this paper are as follows:
• We study a WSN-based SHM system dependability

problem and design DependSHM to address the
problem. This task is by no means easy, as it requires
multi-domain knowledge and is associated with
optimizing WSN resource constraints.

• We propose a non-faulty data collection algorithm,
by which we utilize an online faulty sensor detection
algorithm based on the function of MII. Although
we focus on sensor faulty signals in DependSHM,
MII does not rely on a particular fault type.

• In DependSHM, we present a recovery algorithm
to reconstruct faulty sensor signals based on the
Kalman filter technique. The recovery is directly
applicable to any kind of spatially and temporally
correlated signals that are caused by numerous sen-
sor faults in a WSN-based SHM system.

• We evaluate DependSHM via simulations using real
data sets, adopted from a SHM system deployed on
the GNTVT structure [21]. We implement a proto-
type system developed by the TinyOS [22] running
on the Imote2, and verify it on a test structure. The
results show that a careful use of recovery from
faulty signals in DependSHM is effective and can
lead to a dependable WSN-based SHM system.

This paper is organized as follows. Section 2 reviews
related Work. Section 3 provides system models and
problem formulation. Section 4 presents the DependSHM
framework. The faulty sensor detection algorithm is in
Section 5. Faulty sensor signal reconstruction is detailed
in Section 6. Performance evaluation is outlined in Sec-
tion 7. Section 8 concludes this paper.

2 RELATED WORK
Dependability in WSN-based SHM. WSNs have been
widely suggested and validated in experimentation for
SHM system by both the ACSM and CS communities in
recent years [5], [6], [8], [9], [10], [19]. Existing schemes
already have sufficient contributions to ACSM and CS
requirements [2], [4], [5], [6], [7], [8], [9], [10], [11], [19],
[23], but they suffer from the dependability problem.

On the one hand, generally data can be corrupted
at four stages, namely acquisition, processing and local
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decisions, wireless transmission, and the final analysis
at the BS. Among them, the most important stage is the
acquisition stage that can ensure the quality of sensor
readings in WSNs at the beginning. The quality is also
affected when application-specific requirements are con-
sidered, including high-resolution data, raw data, non-
faulty data, dependable and real-time decision-making
to analyze actual structural health conditions. These
additional requirements are traditionally guaranteed by
using wired networks. To make WSNs effective alterna-
tives to wired network system instruments, a first step
in this direction is SHM system dependability in terms
of detection of faulty sensor readings and a collection
of non-faulty readings at the BS, and then dependable
monitoring results. In this paper, we take such a step.

Work from Generic WSN Applications Related to
SHM Dependability. Fault tolerance in WSNs has been
studied extensively by researchers in computer science
[12], [14], [15], [8], [24], [15], [17]. The application back-
ground is largely event/target detection in battlefield
surveillance, environment monitoring, etc. The general
objective is that when some sensor nodes give faulty
readings, how to achieve the correct detection of an
event/target over a specific region. Among them, a
large part of the schemes on fault detection are off-line
and centralized-based. Most schemes rely on various
detection methods, including correlation analysis, 0/1
decision, value fusion, decision rules or threshold. Some
more details can be found in our earlier work [15], [4],
[24], [17].

Although dependability support by fault detection
and tolerance problem in SHM looks similar to the
problem of making binary “0/1” detection decisions or
value fusions [4], [15], [16], it is fundamentally different
from them. To check the validity of this assumption and
the dependability, we have conducted WSN-based SHM
experiments on a physical structure (the settings are
described in the later part). For these experiments, faulty
signals are injected into sensor nodes to validate the
systems capabilities to autonomously detect and tolerate
the fault. As shown in Fig. 1, these schemes do not
show a satisfactory performance in SHM; specifically,
they cannot identify what exactly occurs in a WSN-
based SHM. We can see that when there is a change
in structural health properties (as shown Fig. 1a, a
0/1 decision scheme [16] tells sensor 5 is faulty, but
it cannot tell what happens (faulty signals or damage
event) around sensors 4 and 6. There are also changes
in signals of sensors 5 and 6. Those existing schemes
show here a high rate of fault positive and false negative
rates, resulting in a low system dependability. When
we consider WSN-based system dependability as the
structural health detection ability, we can see that these
schemes show low dependability performance, as shown
in Fig. 1b. The methods of detecting faulty sensors
by measured signals, removing faulty signals from the
measured signals, and then identifying what happens
exactly in a structure are different from the methods in

those schemes.
Numerous techniques towards the area of fault de-

tection and isolation (FDI) have been proposed, e.g.,
model-based techniques, knowledge-based techniques,
or a combination of both [25]. There are also techniques
on fault-tolerant data aggregation that deal with faulty
sensor readings caused by security attacks, such as node
compromising, collusion [13], [20]. They use some fil-
tering algorithms (e.g., iterative filtering) at the upper-
stream nodes (e.g., cluster head) to remove the faulty
signals. Though the algorithms seem to be applicable for
our case, we could not justify them. However, it may be
difficult to apply such filtering algorithms at a upper-
stream node once such a high-resolution big accelera-
tion data from a number of nodes reaches at a upper-
stream node and the upper-stream node filters all the
raw data. Various constraints in WSNs and application
requirements might be an issue in them.

Work from SHM Applications Related to SHM
Dependability. On the contrary, there are also fault
detection schemes from ACSM engineering domains
[26], [27], [28], [29]. The concepts in most of them are
associated with system failure detection dating back to
the 1980s. Here, the failure does not imply to faults
in a WSN system, but to faults (e.g., damage) in a
physical systems. FDI concepts (described previously)
have also been implemented in a number of engineering
disciplines, such as ACSM, to improve the availability
and reliability of SHM systems [29]. However, these are
centralized and computationally-intensive, and usually
developed in wired networks.

A noteworthy WSN deployment method for SHM
applications called SPEM [11]. SPEM nicely explains the
ACSM and CS requirements and is verified on the real
structure. It adjusts the quality of sensor locations to
better fit WSN requirements; meanwhile, the adjustment
satisfy ACSM location-quality requirements. We have
verified SPEM under sensor faults in simulations and
found that the SHM dependability performance in SPEM
drastically decreases from 87% to 28% as the number of
sensors in the WSN increases, as shown in Fig. 1b. This
is just because of a lack of the dependability support.

To the best of our knowledge, as the first step, we
have worked towards the WSN-based SHM application-
specific dependability, and have got preliminary results
[4], [24]; and this paper is an extension. Our first work
is about sensor fault detection algorithm and structural
damage event in WSN-based SHM [24] that works on
Natural Frequency extraction and Matching in Clusters
(NFMC for short), and then tackles faulty sensor read-
ings. However, it has several shortcomings, described
in [4]. After improving the shortcomings, we check the
dependability performance by NFMC, as shown in Fig.
1b. Its dependability performance falls between 96%
and 76%, which is much better than all other schemes.
However, such a performance is still not enough to put
our confidence in a WSN-based SHM system.

As an extension, this paper includes several aspects. (i)
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Fig. 2. WSN-based SHM frameworks.

We deal with the problem of SHM system dependability and
design DependSHM for the problem. (ii) We propose a
WSN framework to observe the dependability by remov-
ing faulty sensor data from structural damage data and
by finding a fault indicator based on MII. To ensure the
dependability, we devise a new method for tolerance to
a missing or failed sensor. We then address the challenge
of when both structural damage and sensor fault occur at
the same time, and identify what exactly happens in a
structure. Generally, it is not easy to make sure that there
is a faulty sensor but there is no damage. Particularly, we
attempt to make DependSHM efficient for recovery from
the sensor faults that occur for a short duration; thus,
masking or isolating the sensor (as required in NFMC)
is not needed. (iii) For the faulty sensor, we present
a process flow of the Kalman filter and a graphical
representation of it for the signal reconstruction. (iv) The
motivation for the dependability, clarifications on system
models, and SHM-specific terms are given. (v) A detailed
performance evaluation and new results are presented.

3 MODELS AND PROBLEM FORMULATION
In this section, we provide some necessary models and
definitions. Then, we formally formulate our problem.

3.1 Network Model
We assume that a set P of m wireless sensors is in
charge of performing different types of application tasks
(e.g., sensing the vibration, strain, and damping signals,
pressure, temperature, etc., in the context of SHM) and
sending its measurements to neighboring nodes. A ref-
erence 2D building model is shown in Fig. 2a, where
sensors (white circle) are deployed on it and a remote
monitoring center or BS station location (colored circle)
is at a remote place. Fig. 2b shows the traditional WSN
framework for SHM (which is similar to the framework
in [11]), while Fig. 2c shows the proposed distributed,
dependable WSN-based SHM framework, DependSHM.

Consider that the set of sensors is deployed on a
structure by finding locations from a set of candidate
locations of the structure; L = {l0, l1, l2, · · · , lm}, where
sensor i is placed at location li, and l0 is a suitable lo-
cation of the BS. For high-quality monitoring results, we
follow engineering-driven sensor deployment method
[8], [11], [30]. Regarding DependSHM in Fig. 2c, sensor i

1 2 3 4 5 6 1 2 3 4 5 6

(a) 2 overlapping sensors
          and 3 neighbors 

(b) 2 overlapping sensors
          and 4 neighbors 

Fig. 3. Topologies with different numbers of overlapping
sensors in different neighborhoods.

can be allowed to acquire data, analyze it locally (prepare
natural frequency if needed), identify faulty readings,
and finally compute mode shapes locally or transmit the
non-faulty raw data to the BS (see Appendix B for the
natural frequency and mode shape definitions).

Let Rmax and Rmin be the maximum and minimum
communication ranges of a sensor, respectively. Rmin is
used to maintain local topology, where a number of sen-
sors is allowed to share their signals with their neighbors
for damage detection, also used for fault detection. The
intention of adopting adjustable communication range
is to reduce energy cost for transmission. Note that
Imote2 sensor platform supports discrete power levels
[31]. Two local topologies can be seen in Fig. 3; each
sensor can be overlapped by one or more sensors. When
a sensor communicates to the BS directly, Rmax is used.
Each sensor corresponds to a vertex in a network graph
denoted by G, and two vertices are connected in G if
their corresponding sensors communicate directly. The
graph G is called the communication graph of this WSN.

3.2 Sensor Faults
3.2.1 Fault Model
We focus on the following set of sensor faults that occur
in a real WSN-based SHM system:

• Sensor debonding—it is a very common fault in a
WSN-based SHM that occurs when a wireless sensor
slightly or completely debonds/detaches from the
host structure. This affect is seen in terms of accurate
vibration capturing from the structural response.

• Faulty signals—these are caused by precision degra-
dation, breakage, etc., especially in vibration signal
capturing. For example, a sensor reports a constant
value for a large number of successive samples,
where the constant value is either very high or very
low compared to the “normal” or “reference” value.

• There are faults in offset, bias, and the amplification
gain factor of signals. For example, the offset fault
is due to calibration errors in sensor signals, which
differs from the normal value by a constant amount,
but the sensor readings still exhibit normal patterns.

• Noise faults are caused by longer duration noisy
readings that affect a number of successive samples.

• There is also node missing or failure.
Sensors with these faults seem to work properly (ex-

cept for the last type), to communicate to neighbors and
exchange messages, but they return incorrect values or
decisions. We tackle these faults in DependSHM.

3.2.2 Fault Detection Model
We assume that sensor i exchanges its signals with its
neighbors in each sampling instant t in Td, where Td
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is the monitoring round, i.e., the time is divided into
discrete sampling periods. In each period, i broadcasts
its current readings to one-hop neighboring nodes using
Rmin. Besides the readings, i may be enabled to make
a decision locally or recover the mode shape and for-
warded it to the BS. The signal yti measured by a faulty
sensor at t is subject to noise effect σ. Then, let y be the
measured output reading that would be transmitted to
the neighboring nodes, which is given as follows:

y = yti + σ (1)

The measurement noise, σ, for non-faulty sensors may
be a small random noise in practice. However, it also
can greatly affect damage event detection. Consider that
a subset N of sensors is non-faulty at time t. In SHM,
when all of the sensors are non-faulty, it is easily possible
to estimate the mode shape from the signals. However,
if a sensor is faulty, it is possible to produce predicted
signals for the mode shape by using neighbors’ signals,
correlation statistics, and the extent of σ. Suppose that
damage may occur at time t, anywhere in the structure.
A subset D ⊂ P of sensors around the damage area is
possibly able to detect the damage. Some of the sensors
from D may provide faulty signals. Thus, to detect faulty
sensors, the sensors in D split into two further subsets:

N= sensors assumed to be non-faulty
F = sensors assumed to be faulty

Note that these two sets are disjoint so that
N ∩ F = {} and N ∪ F = D, where D ⊂ P

Generally, sensors anywhere in the WSN can be
faulty/failed. However, we put an emphasis on continu-
ous monitoring and on those sensors whose signal have
changed significantly (due to a fault/damage).

Definition 1 [MII: Mutual Information Independence].
A function denoted by ω() is defined by the quantify of how
much the measurement correlation between sensor nodes in N
and sensor nodes in F deviate from the correlation model.

We state the MII function as an indirect vibration
signal measurement. Assume that a prior correlation
model C of xt

P presents [32]. C can be given as a
reference set by all immediately-stored data in the sensor
local memory after WSN system initialization. The MII
function between two signals of sensors i and j at time
t in D, is given as follows.

ω(yi, yj , C) (2)

Consider that the sensors in N and F capture vibration
signals and broadcast their measured signal sets yN
and yF , respectively. Thus, MII between the two sets of
signals of N and F is given as follows:

ω(yN , yF , C) (3)

Given R consecutive signals, the MII function estimates
the correlation between yN and yF at time t as:

∆(N,F ) =

R∑
t=1

ω(yN , yN , C)−
R∑

t=1

ω(yF , yN , C) (4)

∆(N,F ) is achieved by reducing the deviation between

non-faulty sensors in N , and by maximizing the devia-
tion between non-faulty sensors in N and faulty sensors
in F . D can be controlled by the system user considering
Rmin, neighborhood size, or network density.

3.3 Energy Cost Model (cost(ei))
One important objective is to minimize the energy cost
of the network. Let cost(ei) denote the total energy
cost of sensor i, including measurement, computation,
transmission, and overhead. Consider a shortest path
routing model [8], [11]; there is a path from sensor i
to neighboring sensor node or the BS j: q = z0, z1 . . . zk.
Sensor i propagates the data to them. We can find the
ith hop sensor on each path and calculate the amount of
traffic that passes along on the paths within each round
of monitoring data collection (Td, d=1,2,. . . , n). Then, the
cost(ei) can be decomposed into the following four parts:

cost(ei) = eT + ecomp + esamp + eoh (5)
Here, i) eT is the maximum energy cost for data trans-

mission over a link between a transmitter and a receiver.
ii) ecomp is the energy cost for processing data locally,
e.g., computing equation (6). iii) esamp is the energy
required for a sampling cost of M data points [24], [33].
iv) eoh is the additional overhead for some causes, e.g.,
fault detection, signal reconstruction, copying data to a
local buffer, and network latency. See Appendix A for an
extended version of the energy cost model.

3.4 Problem Statement
Given: a set P of m sensors and a BS, which are

deployed over a physical structure and are involved in
monitoring structural health that is reported to the BS.

Find: a subset D (⊂ P ) of sensors that involves in
detecting structural damage event such that the sensors
in N(⊆ D) are non-faulty and the sensors in F = D−N
are faulty, subjected to the following constraints:

• Data delivery: ∀q = z0 . . . zk used for data delivery,
where q[j − 1]q[j] ≤ Rmax, j = 1 . . . k;

• Connectivity: ∀i = 1 . . .m, ∃q = z0 . . . zk, q[0] = li,
q[k] = l0;

• Structural modeling.
Objectives: minimize ∆(N,F ) and minimize cost(ei),
and maximize dependable mode shape computation.

4 DEPENDSHM FRAMEWORK
In this section, we present DependSHM, the dependable
WSN-based SHM framework. It is divided into three
stages: distributed framework for structural health event
detection (e.g., damage, crack, corrosion), faulty sensor
detection, and faulty reading reconstruction.

4.1 Basics of Structural Event Detection Algorithm
The central focus of SHM is the detection and localiza-
tion of events (considering damage) within various types
of structures. Generally speaking, SHM techniques rely
on measuring structural responses to ambient vibrations
or forced excitation. Ambient vibrations can be caused
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by earthquakes, wind, passing vehicles, or forced vibra-
tions, or can be delivered by hydraulic or piezoelectric
shakers. It can also caused by a damage occurrence.

A variety of sensors, e.g., accelerometers, strain
gauges, or displacement can be used to measure struc-
tural responses. SHM techniques infer the existence and
location of damage by detecting differences in local or
global structural responses before/after a damage oc-
curs. The responses are usually comprised of frequencies
in the tens of Hz, and can be sensed using relatively inex-
pensive low-noise MEMS-based accelerometers. Increas-
ingly, the ACSM communities are becoming interested
in active sensing techniques [5], which measure struc-
tural responses to forced excitations. In order to identify
the damage, two necessary structural characteristics are
important: mode shape (Φ) and natural frequency (f ).

4.2 Mode Shape Computation at Each Sensor
Each type of structure (aircraft, building, bridge, etc.)
has a tendency to vibrate with much larger amplitude
at some frequencies than others. f and Φ rely on struc-
tural material properties, geometry, and assembly of its
constituent members. We use state space model, which is
widely accepted by ACSM communities for capturing
structural dynamics to compute Φ [18], [5]. We mention
the process we use for Φ computation, which is the same
process is used for designing faulty signal reconstruction
(after fault detection). The state space matrices for a
finite-dimensional linear structural dynamic system can
be succinctly obtained by the linear differential equation:

Mẍ+Kx+ σ = F (x, t) (6)
Here, function F (x, t) is the response of the structure

over a period of interest at certain sensor locations,
where x is the structural response at time instant t. M
and K are the matrices of mass and stiffness coefficients
of the various elements of the structure, respectively3. σ
is the signal to noise. In (6), damping is neglected for an
advantage in detection (see Appendix C for details).

In traditional SHM algorithms, the state space model is
computed in a centralized/global fashion. We argue that
it could be quite costly for the resource-limited WSN.
Considering SHM as a big data application, to make
use of the WSN for SHM, we mitigate this problem by
allowing each sensor to work only with local structural
responses rather than the global. For this purpose, We
modify the model, considering the implementation of
the model for each sensor location. To reduce the system
order, a transformation of the state space into mode
coordinates is necessary. This transformation is derived
by determining a diagonal matrix, which contains a
certain number of Eigen frequencies covering the natural
frequency ranges of interest. By applying the mode
transformation, based on the mass normalization {ϕi},
the refined Φ is given by:

x = Φh (7)
where h is the mode participation factor. We have,

ḧi + δihi = Hi (8)

Sensor fault
 detection
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Structural 
damage
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StartForm a WSNStart sampling

Measured Signal

Damage 
identification results

Global Mode
 shape assembly

Final 
Mode Shape

Data aggregation

decision

(Yes)

(No)

Vibration Signal

Fig. 4. Providing the dependability in the WSN Frame-
work: the step by step process of sensor fault tolerance
and damage detection.

(7) implies the refined response of the structure that is
a sum of the responses in each mode. We can express it
more explicitly as follows:

x =

n∑
i=1

hiϕi (9)

where δi is the ith eigenvalue, and Hi = ϕT
i f is the

ith mode of responses under force or ambient excitation
input. The summation is given over all of the n modes of
the structure that are measured by the individual sensor.
Typically, only the lower modes are important because
the force excitation is concentrated in these modes. Each
sensor extracts its local Φ that can be used for both
faulty signals and damage event detection. The method
of extraction, including the difference between f and Φ
can be found in Appendix B.

Is it Possible to Compute Φ under Sensor Faults: In
practice, Φ is greatly affected by a faulty sensor signals
(see Appendix B for more detail), especially when a
sensor is placed at a optimal location [8], [11]. If a signal
is detected as faulty, the measured signal is reconstructed
directly for the actual mode shape, by collecting the
signals from the sensor location or reference signals. We
use neighboring sensor nodes’ signals for detecting a
faulty sensor and reconstruct its signal. In this work,
not all the sensors’ signals using (6) will be measured.
The measured output of a sensor i at time t, yti , can be
obtained by:

yti = Qx (10)

where Q is the measurement matrix.

4.3 General Overview of DependSHM
Fig. 4 summarizes the whole WSN framework for SHM.
Once the WSN starts operating, in each monitoring
round (Td), a number of signals is measured at each
sensor. Based on the measured signals, each sensor iden-
tifies faulty sensors by using MII. If any faulty sensor is
detected, the neighboring sensors reconstruct the signals,
while a faulty sensor itself can do the same task if it
still works. It is highly possible that a sensor exhibits
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faulty behavior temporarily in many cases. However, if
a sensor fails or it is missing from its location, we still
guarantee the signal reconstruction for the sensor. We do
not assume to isolate or deploy a new sensor as it is a
costly task doing so.

In addition, for the high-quality SHM, we must pro-
vide monitoring information of each sensor location,
since ACSM communities mostly deploy sensors at op-
timal locations [8], [11]. Each sensor locally computes
the final Φ and transmits to the BS directly, which is a
relatively small amount of data. The BS assembles all the
received final Φs and identifies the structural damage.
There is a high possibility that the BS does not receive
any of Φ caused by data packet-loss or others. If sensor
forwarding fails, the BS still has the final results received
through the neighboring sensor nodes. In addition, we
allow each sensor to keep the final results in the local
memory until a sensor receives an acknowledgment
from the BS. Each set of raw Φ is of a number of KBs
while each final result or Φ computed by a sensor is a
number of bytes. In this framework, each final Φ received
from the neighbors is not processed.

5 FAULTY SENSOR DETECTION
This section describes non-faulty sensor data collection
and faulty sensor detection algorithms, according to the
model described earlier.

5.1 Data Collection and Faulty Sensor Indication
We assume that sensors are likely to generate abnormal
signals. The signals are measured by the vibration, which
may be incorrect compared to the neighbors, previous
signals, or reference signals. We first show data collection
at every sensor in the WSN. A subset of sensors, say D of
sensors that are in a sensor’s Rmin, share their data with
each other, and participate in faulty sensor detection.

Algorithm 1 simply presents the data collection
method based on the neighborhood. While theoreti-
cally this procedure involves multi-hop communication,
consider the fact that for SHM application, the radio
communication range of current sensor nodes exceeds
the area in which sensors gather signals. We limit sensors
to communicate within the one-hop neighboring nodes.
We think that multi-hop communication is not mature
enough. The nodes that are one-hop away from the
BS will directly send the data; otherwise, the data is
sent through one or more intermediate nodes. In Step1
of Algorithm 1, every sensor acquires signals captured
from vibration responses of the structure, and buffer
them temporarily. Then, it transmits and receives the
measured signals. The sensors check if there are any
faulty sensors, i.e., a sensor with faulty signals via Step2.

Step3 executes Algorithm 2. When a remarkable
change appears in a sensor’s signals, there is a possibility
that a sensor is faulty. The MII is used to detect faults.
Let us consider the statistical dependency between the
two sensors’ signals quantified by MII. ω measures the
information about one sensor that is shared by another

 . Non-faulty Data Collection for Damage Detection
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        end for

Step1: 

sensor in the set of signals in D. It is seen that ω changes
as soon as a sensor fault occurs, because the faulty signal
is not present in the reference or other sensor signals.

We use a joint Gaussian distribution based correlation
model. Multivariate Gaussian distribution has been used
to accurately model the correlation of many types of
signals in literature [17]. Each signal is broadcast to
sensors in D, where ith sensor signal yti ∈ ytD and jth
sensor signal ytj ∈ ytD, i, j ∈ D and D ⊂ P . For simplicity,
yti as u and ytj as v are denoted hereafter.

Hence, it would be worth considering how to find joint
probability density between two signals. The statistical
dependency/independency between the two Gaussian
distributed time signals u and v can be expressed in the
form of the joint probability density p(u, v) of signals:

p(u, v) = 1
2πτuτv

√
1−ρuv

e− 1
2(1−ρ2

uv
)[(

u−µu

τ2
u

)2

− 2ρuv
(u−µu)(v−µv )

τuτv
+
(

v−µv

τ2
v

)2
]

(11)

where µu, µv, τu, and τv are the means and the standard
deviations of the signals u and v, respectively. ρuv is the
correlation coefficient between the two signals. It is given
by:

ρuv =
E {(u− µx)(v − µy)}

τuτv
(12)

The correlation coefficient can also sometimes be used
to determine if two signals are statistically independent.
On one hand, if |ρuv| = 1, there is a strong correlation
between the two signals. On the other hand, if |ρuv| = 0,
the two signals are not correlated. The correlation can be
interpreted as a weak form of statistical dependency. In
[15], it is shown that two random variables, which are
not correlated, can even so be statistically dependent.
This is why we take the statistical dependency or inde-
pendency. The product of the marginal densities ρu and
ρv of the signals u and v, respectively, is given by:

p(u, v) = p(u)p(v) (13)

If the expression in (11) is equal to the product of the
marginal densities in (13), the signals are completely
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independent. One possibility to quantify the statistical
dependency between two signals is to calculate the MII
of them, as follows:

ω(u, v, C) =

∫ ∫
p(u, v) log

p(u, v)

p(u)p(v)
du dv (14)

The base of the logarithm determines the units in which
information is measured. (14) shows that if u and v are
independent, ω becomes zero. A forward approach is
to divide the range of u and v into finite bins and to
count the number of sampled pairs of ho = (uo, vo), o =
1, 2, · · · , n, falling into these finite bins. This count allows
for approximately determining the probabilities, replac-
ing (15) by the finite sum:

ωbin(u, v, C) =
∑
a,b

puv(a, b) log
pu,v(a, b)

pu(a)pv(b)
(15)

where pu(a) ≈ nu(a)/n and pu(b) ≈ nu(b)/n are the
probabilities based on the number of points nu(a) and
nv(b) falling into the ath bin of u and the bth bin of v,
respectively. The joint probability is puv(a, b) ≈ n(a, b)/n
based on the number n(a, b) of points falling into box
nos. a, b. MII is non-negative and symmetric:

ω(u, v, C) = ω(v, u, C) ≥ 0 (16)

The MII for all possible combinations of sensor outputs
yr and ys (except r = s, i = 1, 2, · · · , r, j = 1, 2, · · · , s) is
computed, which leads to an ω-matrix for all combina-
tions of r and s. The basic idea is that the MII changes
when a sensor fault fr is present. Suppose that it is in
the rth channel or index:

ỹr = yr + fr (17)

This fault appears only in the rth channel. Thus, we
should expect that all combinations with index r should
show a reduction of ω. This allows us to localize the
faulty sensor. One or more faulty sensors can be simul-
taneously detected in the same way. One possibility to
visualize the faulty sensor is to use the relative change
as a sensor fault indicator λω

yr
:

λω
yr

=
|ωyr − ωref |

ωyr

(18)

where yr is an actual data set and the lower index ref is
one reference data set. The method based on MII is able
to detect sensor faults in different combinations of them.

5.2 Algorithm 2: Faulty Sensor Detection
Under centralized detection, the BS handles the damage
and faulty sensor detection process. In each decision
cycle, the BS makes a decision about the faulty sensors,
solely based on the k most recent signals received from
each sensor. The BS computes the MII for each signal,
and chooses the signal with the maximal independence
for fault detection. This detection is not suitable for
resource-constrained WSNs. For example, if each sensor
needs to send all its signals to the BS (where each
sequence of signals or raw natural frequencies can be
from X0kb to X000kb, X = 1, 2, . . .), the centralized
WSN may not be able to operate for a given period
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of time. In a large-scale WSN deployment, the situation
becomes serious. After capturing data at high frequency
in SHM, sensors should reduce data before transmission.

In contrast, the faulty sensor detection (see Algorithm
2) can execute in a distributed manner where each sensor
makes a decision on the collected signals locally, as
described earlier. In the algorithm, if the local decision
on a sensor’s signals, λω

yr
> 0.5, the sensor is faulty.

This means that MII is high on the sensor’s measured
signals. The distributed method only requires neighbors
to be synchronized. In addition, the detection is almost
immediate and online, since a sensor does not need to
wait for the signals from sensor nodes at more than one
hop away. Moreover, the detected faulty signal set is not
forwarded toward the BS; thus, the communication cost
is relatively low. The energy cost becomes lower.

MII does not rely on particular fault types. The algo-
rithm 2 based on MII is able to detect different kinds of
faults (as modeled before). However, it may fail to detect
a node missing or failing. We provide Appendix E for
handling the node failure or node missing.

6 FAULTY SIGNAL RECONSTRUCTION
In this section, we propose a Kalman Filter technique
(KF) for faulty wireless sensor’s signal reconstruction.
The KF has received extensive attention to describe
the recursive solutions of predicting state variables for
linear systems [34]. We consider it, as it can generate
the best estimation if the optimal filter is linear among
all the linear observers, because it minimizes the error
covariance. In ACMS engineering domains, the KF has
been studied for on-line damage detection [23]. Here, we
utilize it for faulty sensor signal detection.

6.1 Kalman Filter in State Space Representation
The description of KF is made with the help of the
state-space representation of the structural system, as
described in Section 4.2. One radical concept of the KF
is that the state estimation is recursively corrected by
the actual physical system outputs. Then, using (6), the
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Fig. 5. Sensor signal process flow under the KF.

equation of motion for time discrete and time invariant
cases are given as follows:

lt = Mt−1zt−1 +Kt−1ut + σt−1

mt = Mtzt +Ktut + σt
(19)

ut is the excitation at a specific frequency at time t. Mt

and Kt are transition matrices. The signals σt−1 and σt

represent the measurement noises, respectively (refer to
Fig. D in Appendix D for the state-space equation-based
KF). When measuring the responses of a dynamical
structural system by sensors, the actual signals produced
by the sensors are contaminated by noise due to internal
manufacturing defects, physical interference, or external
environmental effects. According to features of the KF,
we assume that every measurement from the wireless
sensors contains noise; thus, if the noise measurement is
zero, the KF collapses. Setting the mean of noise as zero
is a common practice: E[σt] = 0. Noises are assumed
to be independent of each other, and are normally dis-
tributed with covariance matrices, cv = [σσT ].

The underlying KF information is that KF is a recur-
sive algorithm consisting of a loop (see Fig. D ) which is
passed through for each time instant t. The estimation of
the system state for t is determined from the weighted
average of the actual measured value at time instant t and
the prediction of the system states for this time instant.
The weight factors of this average are determined from
estimated uncertainties in each loop, which are also
connected to the predicted system state and to the new
measured value. The lower the uncertainty, the higher is
the weight factor; i.e., Kalman gain (Kt). The uncertainty
is calculated with the help of covariance matrices [35].

We shortly describe the faulty signal reconstruction
process. At first a priori state estimate Pk for the state
vector lprt of the system are estimated [35]:

lprt = Mt−1zt−1 +Kt−1ut

Pk = Mt−1zt−1M
T
t−1

+ cv
(20)

After getting the measured value lprt , a posteriori state can
be estimated in the correction step, see (21). For the pos-
teriori estimation, the difference between the measured
and estimated signals are weighted by the Kalman gain
factor Kk.

lpostt = lpriot +Kt[mt−Mtl
prio
t −Ktut] = lpriot +Kk[mt−mprio

t ]
(21)

Kk = PkM
T
t [MtPkM

T
t + cv]

−1 (22)
The priori estimated error covariance Pk in the prediction
step is used to update the Kalman gain factor in (21)
whereas Pk itself is updated by the a posteriori estimated
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error covariance. The KF is used here based on the
Matlab implementation, which delivers the optimum
Kalman gain (Kk) together with the steady state error
covariance matrix (Pk).

For the system state estimation using the KF, the
process and the measurement noise covariance are deter-
mined. Since the system input is assumed to be unknown
and the model uncertainty is high, the process noise
covariates are set to high values. The values for the mea-
surement noise covariance matrix will be determined a
priori by the first estimation of the measurement error
mt − lpostt , as given in (21). The overall process flow of
the KF is illustrated in Fig. 5.

6.2 Sensor Signal Reconstruction Algorithm
If there is a sensor detected as faulty using Algorithm
2, the sensor signal reconstruction algorithm (see Algo-
rithm 3) is used by the neighboring sensor nodes. The ba-
sic idea of the signal reconstruction is as follows. When a
sensor signal does not correspond to the modeled system
(monitoring its location) and it was erroneously assumed
that this signal has a low measurements noise covari-
ance, then the signals from the other sensors cannot
be correctly reconstructed, and the difference between
the measured and estimated signals will be high. If the
value of the covariance for the faulty sensor signals is
set as high, then the KF will reconstruct all the signals,
including the incorrect signals, with the help of the other
signals and the model. In this manner, it is possible to
reconstruct more than one signal simultaneously. The
number of signals that can be reconstructed rely on the
number of neighboring nodes in case of the distributed
system, all of the nodes in the network in case of the
centralized system, and on the quality of the model. For
a better understanding of Algorithm 3, the procedure is
broken into several steps.

By means of Algorithm 3, when just one sensor node
does not work properly, it is possible to identify and
reconstruct it only with the help of KF. For this purpose,
Steps 2 to 5 are applied. Here, Steps 3 to 5 have to be
calculated several times. The number of loops over these
steps corresponds to the number of neighboring nodes
in the case of the distributed WSN or all of the nodes
in the case of the centralized WSN. In each loop, the
measurement variance of one sensor is set to be high.
In addition, we attempt to detect a missing sensor and
construct its signals that can be found in Appendix E.
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Fig. 6. Performance of different fault detection methods:
achieved MII under sensor faults.

7 PERFORMANCE EVALUATION
7.1 Simulation Studies
7.1.1 Methodology
We conduct comprehensive simulations using MATLAB
to evaluate DependSHM that includes the faulty sensor
detection methods and signal reconstruction algorithm.
We use real data sets collected by the SHM system
employed on the high-rise GNTVT [21] and a SHM
toolsuite [36]. We use the data sets for the 100-sensor case
in our simulations. We perform the WSN deployment
via our WSN-based deployment scheme suggested in
[8], which is supported by the ACSM engineering de-
ployment methods [11]. The simulation environment is
a 450×50 sensing field regarding structural environment,
e.g., bridge, building, aircraft.

The background data is simulated as vibration influ-
enced by the 100 sensor locations in the field. A random
Gaussian noise is added to all the data. The mean of
the noises is zero, and the standard deviation is 10%
of the real signals. From the data sets, a set of data
is used as reference data to train the joint distribution,
and another set of similar data is used for testing. The
noise is present in both the data sets. Thus, the trained
correlation model reflects the noises. In the distributed
detection method, each sensor makes a decision based on
signals received from neighboring nodes within Rmin.
After a sensor receives a decision, it recomputes its
MII and chooses to change its decision accordingly. The
energy cost and routing models described in Section 3
are used for evaluation.

For comparison, we implement other three schemes,
including SPEM [11] and NFMC [24]. We compare
their performance with DependSHM. We consider two
schemes for observing the performance of our fault
detection and tolerance methods: i) distributed fault
detection under localized data processing (DependSHM);
ii) centralized fault detection under localized data pro-
cessing (cSHM). SPEM is a WSN deployment method for
SHM that nicely explains CS requirements and is verified
on the GNTVT. It adjusts the quality of sensor locations
to better fit WSN requirements. It is a centralized data
processing method. We intend to verify its performance
under fault detection and tolerance support and compare
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Fig. 7. Performance of different fault detection methods:
the fault detection accuracy.

with DependSHM. NFMC is our preliminary fault detec-
tion and tolerance WSN-based SHM scheme, which is
based on the natural frequency extraction and matching.

Using simulation results, we compare DependSHM
with them in several aspects under the fault injections;:
i) fault detection accuracy; ii) dependability in terms
of detection ability and mode shape (Φ) recovery, etc.,
and iii) energy cost of the WSN. Here, the detection
ability is the rate that is calculated by the percentage of
successful faulty sensor detection to the percentage of the
amount of the sensor fault injection. This includes both
the false positive and false negative occurrences. Here,
false positive cases are recorded as an undamaged location
of the structure is identified as a damaged location, and
false negative cases are recorded as a damaged location of
the structure is identified as an undamaged location.

7.1.2 Results
In the first set of simulations, we implement all three
schemes under the sensor fault injection (through mod-
ifying a number of sensors’ signals randomly in the
data sets). A fraction of the sensor nodes is randomly
selected and the modified faulty signals are fed into
their acquisition modules. We vary the number of faulty
sensors from 15% to 25%. Each sensor node broadcasts
its readings towards the neighboring sensor nodes. Each
of the faulty readings is replaced by a random number
independently drawn from a uniform distribution in the
deployment field (0, 450). Fig. 6 shows MII achieved by
the four schemes. Out of them, DependSHM achieves
the smallest value, followed by cSHM method. SPEM
method performs poorly, since it requires centralized
data processing and shows a significant amount of data
packet loss during transmission. Due to heavy data
losses, its performance on the MII is low. Nevertheless,
NFMC still outperforms SPEM in many sensor fault
detection cases.

Fig. 7 depicts the fault detection accuracy, which is com-
puted as accuracy = (true positive + true negative)/all.
The detection accuracy in DependSHM is about 98%,
which outperforms others. In SPEM, the detection accu-
racy is poorer (less than 80%) than that of others, while
it is from 75% to 85% in NFMC. One major cause is
that peak natural frequency signals used in NFMC and
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DependSHM achieve higher MII. However, we experi-
ence that the fault detection accuracy rate becomes lower
in NFMC and SPEM than in DependSHM and cSHM, as
the number of faulty sensor nodes in the WSN increases.

Dependability Verification. We next observe the
structural health condition using WSNs in simulations.
We estimate mode shape (Φ) curvature under sensor
faults and the signal reconstruction of the faulty sensors.
We recover the first Φ (see Fig. 8) of the simulated struc-
ture with 100 locations, which cover up to 450 meters of
the structure. Φ is extracted, based on sensor collected
signals in DependSHM. We can see the impact on the
health status, in which the actual mode shape is distorted
under the sensor faults, which is successfully recovered
by the corresponding sensor signals’ reconstruction. This
implies that, if there is no appropriate faulty signal
detection and tolerance methods, having successful mon-
itoring operations will be difficult to achieve. Thus, a
WSN-based SHM system without having such methods
will not be dependable. More results and analysis of
the performance of WSN-based SHM system dependability
in different schemes can be found in Appendix F.

Energy Cost. We next observe the energy cost in
the first five rounds of monitoring seen in Fig. 9 for
DependSHM, cSHM, and SPEM schemes. We consider
two cases: the amount of energy cost in the case of
normal monitoring operation when there is no fault
injection in the WSN and the WSN needs to provide
health monitoring; the amount of energy cost in cases of
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monitoring operations when there are the fault injection
and recovery from the sensor faults through the signal
reconstruction. We calculate the energy cost for compu-
tation, transmission, and overhead under both localized
and centralized data processing. We did not consider the
energy cost for measurement, as we consider the same
amount of energy cost for the measurement in all the
schemes. We can see that the amount of energy cost
for communication in SPEM and cSHM is very large
compared to SPEM. The amount of energy cost in cSHM
is seen to be around 60% more than that of DependSHM,
while it is 90% more than that of DependSHM.

7.2 WSN Prototype System Implementation
7.2.1 Methodology and Wireless Sensor Platform
We validate our scheme by implementing a proof-of-
concept system using the TinyOS on Imote2 platforms
[37]. Our main objective is to verify i) the dependability
and ii) the energy-efficiency of the system. We target the
accuracy or successful Φ identification, because it can
provide us with the answer, whether or not a WSN-
based SHM system is dependable in terms of various
sensor faults. We employ 10 integrated Imote2s called
SHM motes on a test structure (refer to Fig. G1 and
Appendix G1 for more detail); an additional Imote2 is
located 15 meters away as the BS mote, and a PC as
a command center for the BS mote and data visualiza-
tion. The test structure has 10 floors; at each floor, a
mote is deployed to monitor the structure’s horizontal
accelerations. In the experiment, Rmin is adjusted by
the diameter of the structure, which is adjusted by
estimating the height of the test structure and each floor.

Fault Injection. To produce a sizable vibration response
of the test structure, we collected the original data by
vertically exciting the test structure using a magnetic
shaker. We inject the sensor faults in two cases: i)
debonding fault between the 5th sensor and the struc-
ture; ii) precision degradation fault during acceleration
signal capturing by the 10th sensor. The sensors are
expected to work properly but exhibit faulty acceleration
measurements or decisions.

7.2.2 Experiment Results
In the first set of experiments, we compute mode shapes
(Φ) in the base-line structural system, when there are no
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damage events and no sensor faults. These are computed
by sensor initial identified natural frequency (presented
in detail in Appendix G2). Fig. 10 demonstrates two
mode shapes of the structure, captured by using the
identified frequencies in both SPEM and DependSHM
schemes. The results compare the exact mode shapes
obtained by centralized WSN where the motes transmit
their measured signals to the BS. On the other hand, in
DependSHM, the final mode shapes provided by the each
mote are combined at the BS. The errors between two
processes are analyzed. The accuracy of mode shapes
identification in SPEM is at least 13% lower than the
accuracy in DependSHM. It is found that DependSHM has
around 16% better accuracy than that of SPEM under
topology 2 (as shown in Fig. 3). The global mode shape
computed at the BS assembles all of the sensors’ final
results. Note that in the mode shape assembling, mode
shapes from different motes correspond to the slight
difference in the set of natural frequencies.

Fig. 11a shows experimental fault detection results. Re-
markable changes in signals of the 5th and 10th sensors
and some of their neighboring nodes are detected. The
MII changes in both of the sensor fault cases can be
seen in Fig. 11b. Some of the neighboring nodes, e.g.,
4th, 6th, 9th, and so on have also provided an extent of
change in their MII. This is because their signals have
also been partially affected by the fault injection. The
corrupted/faulty signals of a sensor (e.g., the 5th) are
reconstructed (details performance analysis on the signal
reconstruction can be found in Appendix G3).

The energy cost analysis of the experimental WSN
is provided in Appendices G4. We find that, in the
case of faulty sensor detection and signal reconstruction,
DependSHM consumes a small amount of energy in
computation with a slight overhead, which is 5% to 8%
of the total energy cost in each round, Meanwhile, it
saves a significant amount of energy for communication
(which is at least three times when compared to its
counterparts).

Dependability verification: Identification of what
exactly happened in the structure. When computing
the mode shapes, we should notice that the signals of
the faulty sensors contribute to the global mode shape
computation. Thus, the mode shape values correspond-
ing to the failed sensors are changed drastically. If there
is a missing sensor, the mode shape result is affected.
Considering faulty signals, missing signals (in the case
of sensor missing), or irregular signals (may be due to
the damage), the mode shapes will be affected. But we
need to know exactly what happened in a WSN-based
SHM system so that we can realize whether WSN-based
SHM is dependable or not.

Now, we identify exactly what happened in the struc-
ture. Recall that there is a possibility of both sensor fault
and damage occurrence at the same location. If there is a
change in the signals with a single sensor only, the sensor
may be faulty. If the change is present with multiple
sensors, there is possibly damage. However, if there is
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Fig. 12. The mode shape’s curvature under sensor faults
and recovery from the faults.

damage, it cannot be identified before the faulty sensor
detection. As the fault injected, the 5th sensor should be
faulty at a different time. As shown in Fig. 12a, during
the SHM operation, at Td =5, the 5th sensor is detected
as faulty, and at Td=20, the 10th sensor is detected as
faulty. The changes in the mode shape are computed at
those time intervals.

We inject structural physical damage through remov-
ing the plates on the 5th and 10th floors, since sensors
located at these floors are faulty. They are not able to
provide appropriate damaged information. We can see
in Fig. 12b that the neighbors (4th, 6th, and 9th ) are
able to detect an extent of changes (i.e., the presence of
a damage) in the structure, where the slightly affected
mode shapes clearly appeared.

Under the same experiment and excitation setting, we
further conduct experiments in which a faulty sensor
signal is reconstructed by using our algorithm. The mode
shape’s curvature is recovered significantly at the 10th
sensor location, as shown in Fig. 12c. This means that
there is possibly a damage, since the mode shape is still
slightly affected. However, the changes in mode shape
at the 5th sensor still remains and is slightly recovered at
the neighbors. It provides the correctness of DependSHM
and the dependability in WSN-based monitoring. If there
was no recovery solution, the damage would not be
identified and the changes at the sensor near the faulty
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sensor would not be discovered, which is the exact
opposite of the 5th sensor cases.

Further proof of the damage detection can be seen in
Fig. 12d. Here, we replace the plate on the same floors.
When the sensors wakeup and start monitoring, that
time Td=42. In Fig. 12d, no remarkable change appears at
the 10th sensor location. Distorted mode shape informa-
tion at the neighbor locations is completely recovered.
We can say that no MII appeared. In contrast, at the 5th
location, mode shape remains unrecovered but there is
no remarkable mode shape curvatures at the neighbor
sensors’ location. It proves that the 5th sensor is surely
faulty, while there was damage at the 10th sensor at this
period of monitoring (but which is not clearly detected
as the prior damage).

Through an analysis, the quality of the faulty sensor
signal reconstruction is about 92% compared to the base-
line results under the fault-free condition (as shown in
Fig. 10, and TABLE G1 in Appendix G). The inference
can be drawn from the above analysis that, in the
presence of sensor faults, a damage can be successfully
detected in DependSHM.

8 CONCLUSION

In this paper, we proposed a dependable WSN-based
SHM scheme, DependSHM, by making the best use of
resource-constrained WSNs for SHM and incorporating
requirements of both engineering and computer science
domains. DependSHM includes two complementary al-
gorithms for sensor fault detection and faulty sensor’s
signal reconstruction. It is able to provide the quality
of SHM in the presence of sensor faults automatically,
which does not need any network maintenance for the
fault detection and recovery, and does not consume sig-
nificant WSN resources for the recovery. In the future, we
plan to study decentralized computing architectures in
WSNs, which can be integrated by the computing system
issues and structural engineering system techniques in
conjunction. Such an architecture is highly expected to
reduce data traffic for data-intensive SHM and energy
cost in WSNs.
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