

Trustworthy and Protected Data Collection for Event Detection Using Networked Sensing Systems

Authors:

Md Zakirul Alam Bhuiyan and Jie Wu

The 37th IEEE Sarnoff Symposium, September 19 -21, 2016, Newark, NJ, USA

Outline

- Motivation
- Existing Work
- Proposed Framework
- Trustworthy Data Collection
- Protected Data for Aggregation
- Conclusion & Future Work

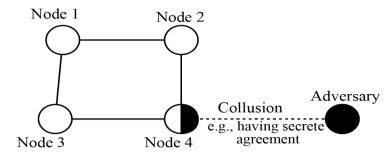
Motivation

Wireless Networked Sensing Systems

- Various applications
 - Crowd sensing, structural health monitoring (SHM) or damage event detection

Requirements

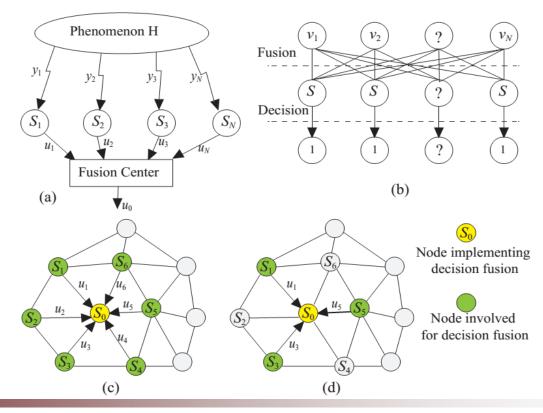
- The quality of the data or the quality of the monitoring and timely detection of an event
 - E.g., Structural damage or fire



Motivation

Challenges with the Quality of the Monitoring

- Untrustworthy data
 - Security attack
 - Collusion attack and the malicious attack
 - Some sensors constantly provide truthful data while others may generate biased, compromised, or even fake data
 - Fault occurrence

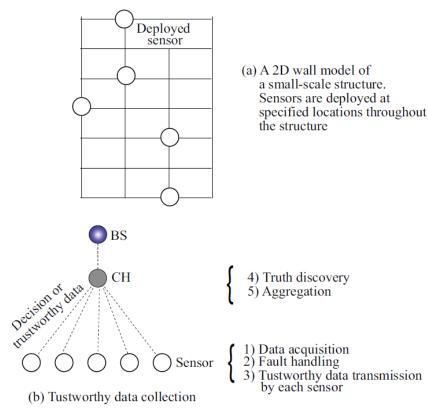

Motivation

- Challenges with the Quality of the Monitoring
 - Unprotected data
 - Data alteration
 - During transmission
 - After transmission, and
 - Before aggregation

Existing Work

- Existing Work
 - Security related work
 - Decision-making related work

- Trustworthy and Protected Data Collection
 - Identify whether the acquired data is trustworthy or not, and finally transmit the trustworthy data.
 - Identify whether the received data is protected or not before aggregation
- Two Solutions
 - Trustworthy data acquisition
 - We use 'mutual information independence (MII)' as an indirect signal measurement, assuming that a prior correlation model presents
 - Protected data collection
 - We use a truth discovery approach


A Hierarchical WNSS

- A set of energy-constrained sensors
 - Organized into CHs connecting a BS
 - A CH forwards a final decision of an event or aggregated data to the BS
- Target application: SHM, smart city applications
- Event detection and attack/fault detection
 - A minimum communication range, sensors are allowed to share their signals with their neighbors

- Monitoring the Health of Civil Structures
 - e.g., building, bridge, aircraft.

Models

- Security attacks
 - Sensors may produce abnormal signals from security attacks
 - Collusion attack
 - Malicious attack

Sensor faults

- **Debonding fault** sensor node may slightly or completely detach from the host structure, which affects in vibration capturing
- Signal fault—this is caused by precision degradation, breakage, etc., especially in vibration capturing,
- Faults in offset, bias, or amplification gain factors
- Noise faults

Trustworthy Data Collection

- Signal Comparison
 - A sensor compares its acquired signal with a reference signal set and get a correlation value
 - The sensor exchanges its correlation value with its neighbors in each sampling instant so that any discrepancy in signals can be discovered
- Signal Correlation Analysis
 - Given signals, MII is a function, defined by the quantify how much the measurement correlation between the sensor signals, and then between sensor nodes

Trustworthy Data Collection

- Decision-making
 - If the MII value of a signal is larger than a given correlation value (calculated from a set of reference signals), the signal is considered to be compromised by an attack or there is a fault
 - Otherwise, the signal is considered trustworthy

Protected Data for Aggregation

- Once a sensor has trustworthy data, it may be altered at the sensor or intermediate sensor before/after transmission
 - i.e., a CH may receive unprotected (or altered) data for aggregation.
- To discover a unreliable sensor or unprotected data at the CH, we use the truth discovery approach

- It is used in many domains in order to resolve conflicts with multiple noisy data sensors
 - The medias provide billions of pieces of information, unfortunately, not all are reliable, relevant accurate, unbiased, or up-to-date
 - Before being used, the information are evaluated for truth.

- Key idea
 - Evaluating 'true information' and its 'source reliability'
- Principle
 - Infer both truth and source reliability from the data

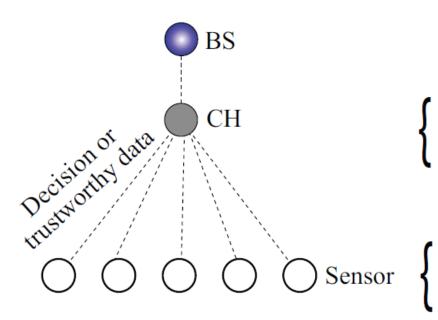
A source is reliable if it provides many piece of true information

A piece of information is like to be true if it provided by many reliable sources

Example 1

 The top search results returned by Google for the query-the height of Mount Everest

Source	Height	Vote
Source 1	29.035	5
Source 2	29.002	6
Source 3	29.129	3
Wikipedia	29.029	5


- Example 2
 - The birth place

	George	Abraham	Mahatma	John	Barack	Franklin
	Washington	Lincoln	Gandhi	Kennedy	Obama	Roosevelt
Source 1	Virginia	Illinois	Delhi	Texas	Kenya	Georgia
Source 2	Virginia	Kentucky	Porbandar	Massachusetts	Hawaii	New York
Source 3	Maryland	Kentucky	Mumbai	Massachusetts	Kenya	New York
Majority Voting	Virginia	Kentucky	Delhi	Massachusetts	Kenya	New York
Truth Discovery	Virginia	Kentucky	Porbandar	Massachusetts	Hawaii	New York

Conflicting multi-source information

Truth Discovery Instead of Voting Scheme

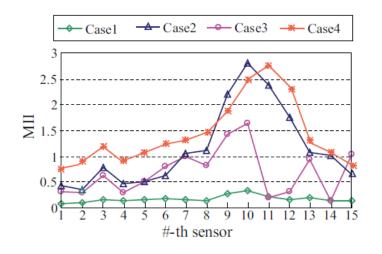
(b) Tustworthy data collection

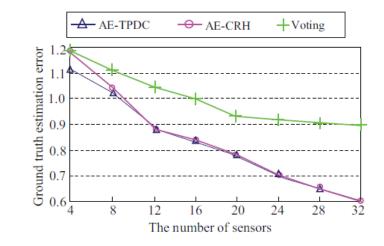
- 4) Truth discovery5) Aggregation

- Data acquisition
 Fault handling
 Tustworthy data transmission by each sensor
- +The amount of truth value provided by sensor
- + the reliability of the sensor

Truth Discovery Instead of Voting Scheme

- A sensor's status value is given a high value if the sensor transmitted trustworthy data is close to the estimated ground truths (or given MII values).
- A truth discovery algorithm
 - Begins with a random guess of ground truths
 - Iteratively conducts status value updates and truth updates until convergence.




Performance Evaluation

- MATLAB
- Real data of from 800 sensors collected from GNTVT
- We use the data sets for the 100-sensor case in our simulations.
- A SHM toolsuite
- Attack and fault injection:
 - Added additional noise
 - Change some sensor data

Performance Results

Conclusions and Future Work

• Conclusion:

• o/1 based decision-making or fault-tolerant approaches are not suitable for detecting security attacks and faults

Future work

- Noise vs. security attack
- Noise vs. sensor fault
- Noise vs. event occurrence
- Security attack vs. sensor fault

Q & A

Contact

Email: mbhuiyan3@fordham.edu, zakirulalam@gmail.com
https://sites.google.com/site/zakirulalam/