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Abstract

We propose a new tracking framework by organizing
nodes into a polygonal spatial neighborhood in order to de-
tect and track unauthorized traversals in surveillance wire-
less sensor networks. During a tracking, the neighborhood
is further constructed ahead of the target traversal, and this
features a timely forwarding with guaranteed delivery prop-
erty. Instead of estimating future movement and position
separately in a polygon, we find an original target track-
ing path in a graph, and create a brink on the graph called
“critical region” by introducing a brink detection algorithm
to know a target’s route, and to also achieve reliable inter-
node communications. In addition to the basic design, an
optimal sensor selection algorithm was developed to select
which sensors to query, and dynamically guide the target
information to a sink. Simulation results validated that the
proposed approach has better tracking accuracy, reduced
localization error, and is robust to strong environment noise,
while using a minimum number of sensors.

Index Terms - Brink construction, polygonal neighbor-
hood, sensor selection, target localization, target tracking

1. Introduction

Wireless sensor networks (WSNs) have gained much at-
tention in both public and research communities because
they are expected to bring the interaction between humans,
environments, and machines to a new paradigm. Despite
being a fascinating topic, with a number of visions of a
more intelligent world, there still exists a huge gap in the
realizations of WSNs. The WSN was originally developed
for military purposes in the battle field, however, the devel-
opment of such networks has encouraged its use in health-
care, environmental industries, and monitoring, including
event/target detection, localization, and tracking [10].

The objective of this paper is to design a target track-

ing application in WSNs. This application is able to de-
tect and track a target, and report information about the
target to the sink. Many protocols for different environ-
ments have been proposed in the literature for target track-
ing [21], [2], [18], [15], [20], [17].

Research about target tracking can be roughly di-
vided into three categories: (1) tree-based scheme [20],
(2) cluster-based scheme [17], and (3) prediction-based
scheme [2], [18]. In addition to these three schemes, we
are proposing a polygon-based target tracking framework
in surveillance wireless sensor networks (PTT), which is to
the best of our knowledge, the first of its kind. The concept
of the scheme is inspired by geographic routing [8], [12],
and face routing [11], in particular.

The idea of this tracking framework comes from a delib-
erate attempt to eliminate some of the drawbacks of existing
tracking systems. In recent years, the use of computational
and convex geometry for the application of network design
has enormously increased. The concept of a planarized
graph, such as the Voronoi diagram and the Delaunay tri-
angulation, is mostly used in the network domain [13]. In
case of the planarized graph, the partitioning of a plane with
p points into polygonal regions such that each polygon con-
tains some generated points, and all points inside a given
polygon are connected. Those points are closer to each
other, and every two points share a common edge.

The two points becomecouple nodes, from among all
the points (neighbor nodes), through a rigorous selection
process in the spatial neighborhood known as aface, in face
routing [11]. The face could be of a different size and shape.
For working with the shapes, it is simply called,polygon, in
this paper. Although a node is enough to detect and generate
target information in the polygonal region, we consider the
couple nodes for reliability concern.

One of the main goals in this idea is to find edges in a
polygon. When the target passes through an edge, the tar-
get is observed. For the sake of simplicity, we reconstruct
the polygon conceptually, that is, when a target traverses the



polygon, it is momentarily considered as a “critical region”.
The edge of the polygon is called abrink. During the target
movement, the brink between the couple nodes is a way of
making a space around the target as it moves toward a given
node. The space could be called a “follow spot,” as it moves
with a musician in a stage show. It is easy to think about the
moving spotlight from the “space + time” point of view,
where points of space, and instants of time, are distinct and
absolutely present, but keep changing along the series of
times from earlier times to later times. We assume the area
of the follow spots is produced by the brinks. For the pur-
pose of localizing the target in a timely fashion, we further
consider two kinds of follow spots, namely, the square and
rectangular. The square one can be produced at the time the
target is first detected by the couple nodes. The rectangular
one can be produced at the time the target is about to cross
a brink, and the couple nodes relay a joint-message about
the target to the next polygon. Thus, organizing the sensor
nodes in the polygonal form is to prepare in advance, and
track the target on time.

The major challenge in the system is to select appro-
priate sensor nodes as couple nodes closest to the target,
which is due to numerous reasons: irregular signal patterns
emitted from the target, environment noise, and irregulari-
ties, especially when a neighborhood size is too large or too
small. By applying the optimal sensor selection algorithm
obtained from the maximum information utility [4], which
is important for a tracking system, we demonstrate that PTT
has a lower detection error, and a better tracking accuracy.

In summary, the main contributions of this paper include
the following: (1) we introduce a polygon sequence based
target tracking method, inspired by the planarized algo-
rithm, that does not rely on any global topology; (2) we de-
velop a brink detection algorithm, which works well against
the target missing, and allows the system to work timely.
Besides, we tackle the localization error using a covariance
bound; (3) In order to keep the number of working sensors
to a minimum, we formulate an optimal sensor selection
mechanism to choose the appropriate sensor near the target;
(4) we evaluate the performance of the PTT, and compare
the tracking accuracy with the existing literature.

The rest of the paper is structured as follows: In Section
2, we give our proposed system model. Section 3 illustrates
the proposed polygon-based target tracking approach. Sec-
tion 4 evaluates the design with extensive simulation. Sec-
tion 5 concludes the paper.

2. System model

2.1. Network model

We consider a WSN composed ofN nodes in a 2D
square planar field, and sensor nodes are able to tune
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Figure 1. (a) GG and (b) RNG planar graph
showing a witness w, which must not fall
within the shaded circle

their range up to communication rangerc. Let N(u) =
{v||uv| ≤ rc} be the set of physical neighbors (withinrc)
of nodeu, andSbe a sink or actor in the network. Conse-
quently, allu ∈ V , and v ∈ V together define a unitdisk
graph (UDG), which has an edgeuv if and only if the Eu-
clidean distance||uv|| ≤ 1 (one unit). In order to track the
target route, extracting planar graphs from graphs is needed
to guarantee the information delivery before the target ar-
rives at a region [5]. RNG and GG are examples of algo-
rithms that create a planar graph [8], [13]. The main idea
of both algorithms is that two nodesu andv from a planar
graph, as shown in Figure 1, are within each other’s com-
munication range, if there is no other neighborw called wit-
ness within their common area. We can obtain a connected
planar subgraphG′ = (V,E′) that maintains connectivity
with fewer edges in both graphs. The planar subgraph is an
closedpolygon. Thus, a polygon in the plane, denoted by
Pi, contains at least three nodes.

Note that the planarized algorithm assumes that all static
wireless nodes have distinctive identities, and locally acces-
sible information about their neighbors . By one-hop broad-
casting, a node gathers the location information of all nodes
within the transmission range, and its corresponding region
in which the target is. Otherwise, it communicates with the
other nodes through multihop wireless links by using inter-
mediate nodes [16].

2.2. Distributed observation model

We model our sensor measurement problem using a stan-
dard estimation theory [9], [14]. In a certain polygon, suc-
cess of detecting a target with the help of a sensor network,
shows how efficiently the tracking task can be performed.
There are many ways of target signal processing, for exam-
ple, acoustic, seismic, and electromagnetic signals. In this
tracking framework, we assume that all sensors are acous-
tic, measuring only the amplitude of the sound signal, such
that the vector̄x is the unknown target position. The acous-
tic signal received at theith sensor, wherei = 1, 2, ...N ,



can be represented as:

Si(t) = si(t) + βi(t) (1)

where the time interval is denoted byt, and the acoustic
intensity measured at theith sensor due to a single vehicle
is expressed as:

si(t) = ςi
∑ a(t− τi)

dij
(2)

The Euclidean distance between theith sensor and the tar-
getj is denoted bydij =‖ x̄ (t− τi)− xi) ‖. βi(t) carries a
zero-mean additive white Gaussian (AWGN) noise random
variable with a variance of the intensity of the vehicleσ2

i .
τi is the propagation delay of the acoustic signal from the
target vehicle to theith sensor.xi is a givenp × 1 vector,
denoting the position vector of theith stationary sensor.ςi
is the sensor gain factor of theithacoustic sensor.T is the
period between two consecutive discovery signals of the tar-
get. Let the time-dependent average energy measurements
be denoted byes(t) over the time interval, then we can make
the following observation:

es(t) = Si(t) + εi(t) (3)

whereSi(t), andεi(t) are the signal, and noise energy, re-
spectively. The background noiseβi(t) has aχ2 distribu-
tion, with the mean equals toσ2

i , and the variance equals
to 2σ2

i /M . M can be larger, for example, 40. Hence,
the energy measured at theith sensor,εi(t) can be ap-
proximately well with a Gaussian distribution, for example,

εi(t) ∼ N(σ2

i
,

2σ4

i

M ).

2.3. Localization error

In a real scenario, observations of acoustic signal pro-
cesses are disturbed due to obstacles and noise. Naturally,
we seek to find estimates of location with the smallest error
cv. When a node has location uncertainty, we character-
ize localization accuracy using a covariance bound that is
similar to the formulation of theCramer-rao lower bound
(CRLB) of the variance [7]. To estimate the target posi-
tion, it is necessary to define a measure of information util-
ity, denoted byφ(·). CRLB is defined as the inverse of the
Fisher information matrix(FIM) [4], [7]. We can derive the
utility based on the covariancecv of the distribution. The
determinant,det(cv), is proportional to the volume of the
region [4]. Hence, the information utility function for this
approximation can be chosen asφ(·) = −det(cv). The
FIM for target detection is calculated as:

J = −E{[ d
dx̄ ( d

dx̄ ln es(t)|x̄])
T }

= E{[ d
dx̄ (es(t)|x̄][

d
dx̄ (es(t)|x̄]

T }
(4)

whereE is the expected value. According to target location
coordinates, we have
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Figure 2. An example of the sensor network,
demonstrating a polygon shaped neighbor-
hood

J =

N∑

i=1

1

2
E{[

d

dx̄
(es(t)|x̄][

d

dx̄
(es(t)|x̄]

T } (5)

J−1 is the estimation error covariance matrix, which defines
CRLB of the target localization error. The lower bound
of the variance of the target location estimates can be ex-
pressed as:

cv ≥ J−1 (6)

3. Polygon-based target tracking (PTT)

3.1. Localized polygon

In order to describe the polygonal traversal problem in
the proposed PTT scheme, we can see an example of the
polygon construction shown in Figure 2, with respect to
Figure 1. We use polygons to describe the target moving
path. The polygon is not necessarily a convex, but it must
not be self-overlapping. Let a set of nodes in a polygon be
Np = (v1, v2, ..., vp), wherep ≥ 3. We illustrate with an
example. Suppose a target is presently inP2, thenP2 is
calledactive polygon(Pc), andv5 is anactive nodein P2.
In Figure 2,P1 is a triangle,P2 is a pentagon, andP7 is a
tetragon. Nodev5 in P2 is aware of i) its own position, ii)
the position of its active polygon neighborsv6, v1, v3, and
v4, iii) the position of its adjacent neighborsv4, v11, v7, and
v6, and iv) the position of the neighbors in adjacentP2, P3,
P4, andP7 after deployment through intermediate nodes.
Thus, v5 stores information about 4 polygons that are
adjacent to it inG-{v5, v4, v17, v11},{v5, v11, v19, v8, v7},
{v5, v7, v6}, and{v5, v6, v1, v3, v4}. Suppose the target is
moving toward polygonP7, then it is called aforward poly-
gon(Pf ). v5’s adjacent neighbors corresponding to the ac-
tive polygon, with respect to the target position, are called
immediate neighbors. Thus, nodev5 can have only two im-
mediate neighbors that arev4 andv6 from the four adjacent
neighbors inG. Eitherv4 or v6 becomes active as the target
crosses edgev5v4, or edgev5v6. Suppose the target travels
toward polygonP7, it crossesv5v4, thus, we callv5 andv4
ascouple nodes(Nc). The process of selecting the couple
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Figure 3. A simple scenario of the brink construction process

nodes is described in the later section. All thev5’s neighbor
nodes inP2, are calledpolygon neighborsNa. The working
area ofv5 covers all the edges between the adjacent neigh-
bors, and itself. Thus, a node corresponds to a number of
polygons(Pi). The size of a polygon is defined by the num-
ber of edges surrounding the polygon. The average size of
a polygon isP̄ ≤ 2vi/(vi − ei + 2), wherevi andei are
the numbers of nodes and edges of a polygon, respectively.
The relation between nodes, edges, and polygons is given as
pi+vi−ei = 2, wherepi is the number of polygons, accord-
ing to Euler’s formula [1]. This suggests that our scheme
has cells for a planar graph, with as many edges as possible.

We need to mention an underlying issue of the polygonal
region: When a target crosses over a polygon, not only the
closed polygon is covered, but an extended area is also cov-
ered by the region according to each sensor’s working area.
In the example, the number of sensors is the same. The ex-
tended area can be effectively used if a target missing event
has occurred. If any sensor node corresponding to the poly-
gon can detect the target in the outside of the polygons, the
polygon in the outside becomes the active polygon, and the
sensor sends a message to the previous polygon. One of the
main reasons or advantages of considering couple nodes in
the polygonsPc andPf , is to minimize the number of par-
ticipating sensors in target tracking. For example,v5 has
4 adjacent polygons with 9 neighbor nodes, and nodev4
has 4 adjacent polygons with 12 neighbor nodes. But, edge
e(v5v4) between the couple nodes has only 2 polygons with
5 neighbors. Thus, the number of sensor nodes can be min-
imized.

3.2. Brink construction

In this section, we introduce an edge construction algo-
rithm, which is used to draw another conceptual polygon as
acritical regionby connecting an edge called abrink to the
active polygonPc. Now, the PTT problem turns into a crit-
ical region problem. Our goal is to find the brink, while the
target is moving between the couple nodes in the network,
that confirms the target leaving one polygon to another,
which could work well against the target missing, and allow
the system to work timely. We assume that some nodes may

be damaged, or faulty in the network. Recently, Zhong et
al [21] proposed a tracking method that converts the track-
ing problem into finding the shortest path in a graph, which
is equivalent to optimal path matching (PM). However, the
PM is based on node sequences through geographic face
traversal, while the PTT is directly based on a dynamic
moving path through a polygon sequence/traversal. Al-
though we do not convert the tracking path into an optimal
path, we reconstruct the polygon by using a brink; the track-
ing path should be created through the brink. The brink is
constructed by the couple nodes that makes the polygon se-
quences. Nonetheless, the polygon sequence could be more
effective in this tracking framework in terms of node fail-
ure/damage.

The couple nodes relay a joint-message toPf that a tar-
get is approaching. However, the brink is an intersection of
the two polygons. Before the target crosses over the brink,
all the nodes inPf receive the message in advance, and pre-
pare to detect the target.

According to the properties of the localized polygon, af-
ter receiving the target discovery message in the forward
polygonPf , the edge of the forward polygon is mapped by
the brink before the target arrives in thePf . Thus, the target
is in currentPc, meaning it is focused in the “follow spot”.
Each brink in thePf has to be identified during the target’s
crossing over, as shown in Figure 3. When the target en-
ters the spot, the couple nodes are aware of it. The spot
is divided into a two-phase detection spot, namely, square
spot, and rectangular spot. Here, we consider the brink to
be mapped over theX-axis, as shown in Figure 4. LetD
be the length of the brink, andi andk be the couple nodes,
respectively. We supposeD ∝ dik and D

2
≤ rs. D is

achieved from(−D/2) to (D/2). D ≤ 2rs, is a length of
both square and rectangular spots.A = D2 is for the total
square spot, andA = D

2
× D is for the total rectangular

spot. We suppose the target is traveling through the square
spot. Thus, when it touches the rectangular spot, a joint-
message is broadcast toPf . When the target leaves forPf ,
Pf becomes the new activePc, and the previous one be-
comes as inactive as normal polygonPi. Besides, when the
target moves away from the rectangular spot inPf , all the
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brinks in the previousPc should be removed. Variability of
different parameters of the brink, such as brink length, local
mean length, and local standard deviation, allow the couple
nodes to identify the brink easier.

Let ρ andρ
′

be the detection probability for the 2 phases,
respectively, by a closest sensor that is a couple node to the
target. These can be expressed as:

ρ = 1

A

D/2∫

−D/2

es(Nc, j)dx
D/2∫

−D/2

dy

ρ
′

= 1

A

D/2∫

−D/2

es(Nc, j)dx
D/4∫

−D/4

dy

(7)

Note that the values ofρ and ρ
′

completely rely on the
length of the brink.

3.3. Optimal node selection algorithm (No)

The tracking of the target requires an optimal number of
sensors in the network to aggregate data among the nodes.
However, among the available sensors in the network, not
all sensors provide useful information that improves the es-
timation. Furthermore, some information might be useful,
but redundant. In this PTT scheme, we offer an optimal
selection mechanism to choose the appropriate sensors.

After the brink is formed, using our observation model
(Section 2.1) between the couple nodes, the nodes query
and send a message to all the neighbors(Na) correspond-
ing to the forward polygon. The message contains the es-
timation of the target, and its own information. While re-
ceiving the message, eachNa combines its own measures
of the target with the couple nodes’ estimation, to compute
its weight, whether it is about to be one of the new cou-
ple nodes using an optimal selection function, and then re-
sponds to the previous couple nodes by a bid [(e.g., ID,dij ,
etc.)]. When a node detects the target, it sends the bid to
its immediate neighbors. It also receives a similar bid from
the neighbors if both of its immediate neighbors detect the
target, which then evaluates the received bids, and ranks
them according to the weight of the bids. Then, it compares
the weight of the bids with its own bid, and ranks them. It
locally decides whether it should join in tracking the tar-
get, or withdraw itself from the tracking. If it is with the
best weight, it can easily determine its couple node from

the rank. In this way, we can select the best nodes closest
to the target as the couple nodes with the best data. We use
the optimal selection function as a mixture of both informa-
tion usefulness, and energy cost [4]. Suppose the number of
optimal nodes isNo(No ∈ Np). The selection function is
represented as:

ψ(δ(x̄|Na, Nc)) = α ∗ λuse(δ(x̄|Na, Nc))
− (1 − α) ∗ γcost(Na, Nc)

(8)

We describe the function as follows:
1. δ(x |Na, Nc) is the estimate of the target, formed by

each node and polygon neighbors.

2. λuse(δ(x |Nd, Na)) is the information usefulness mea-
sure function given as:

λuse(δ(x|Nd, Na)) = λuse(xi, x̄)
= (xi − x)T cv

(9)

3. γcos t(Na, Nc) is a function that refers the energy cost
of communications betweenNa, and previousNc,
thus, the geometric measure of the function is given
as:

γcost(Na, Nc) = (xi − xc)
T (xi − xc) (10)

4. α is the relative weight of the usefulness and cost.
Finally, the selection function (9) can be reduced by substi-
tuting (10) and (11) as follows:

ψ(δ(xc, xi, x̄) = α ∗ (xi − x)T cv − (1 − α)
∗(xi − xc)

T (xi − xc)
(11)

A sensor node becomes one of the optimal nodes, based
on the weight denoted by thresholdNth of the selection
function. If Nth < 1, all the bids are chosen. However,
we acceptNo = 2 for this tracking framework, where
No = mod(Nth), i.e., selectingNc. It is expected that the
optimal node number should be chosen to be no more than
the number ofNp. According to the different tracking tasks,
the number ofNo can be changed through the sink broad-
casting a message containingNo, to the sensor networks.
Although, the optimal number can be more, depending on
the system demand(No ≤ Np). Nevertheless, the optimal
selection is very important, which not only impacts the ac-
curacy of the tracking, but also the energy efficiency of the
system, thus it impacts the lifetime of the whole network.

3.4. Tracking with polygon sequence

This section discusses the tracking process in the PTT
scheme. The process is illustrated in Figure 4. In this poly-
gon based framework for target tracking, a node has full
polygon information after the network initialization, mod-
eled in Section 3.1, and can estimate the cost of communi-
cation to the neighbor nodes. Initially, all the nodes in the
sensor network are in the power-saving mode, waking up
at a predefined period, and carrying out the sensing for a
short time. However, in this framework, we presume a sen-
sor node has three different states of operation, i.e.,active,
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awaking, andinactive[2]. We consider that a sensor should
be kept awake, so long as its participation is needed in a
given task [3].

Once some nodes detect the target in a polygonPi, the
Pi becomes the active polygonPc. At first, the sensor nodes
that detect the target are required to broadcast this informa-
tion. Whenever the couple nodesNc are selected using the
optimal selection algorithm, the detection probabilityρ, or
ρ

′

, confirms that the target is about to cross the square or the
rectangle phase. A join-request message is sent at the mo-
ment the couple nodes touch the rectangular phase toPf , to
join in target tracking. Before the target leaves the rectan-
gular phase, the forward polygon is named byPf . All the
neighboring nodes inPf receive the request message, and
change their state to theawakingstate, and then start sens-
ing. When the target crosses the brink, another join-request
message is sent to the neighbors in the previous polygon.
After receiving the message, all the neighbors, except the
previous couple nodes, return to theinactivestate.

The couple nodes measure the difference in distancedij

between two consecutive sensing results. All the results are
measured by reducing CRLB covariance to achieve less er-
ror localization. Since the target travels across the square
spot, and then the rectangular spot, accordingly, the dis-
tance is decreased, and the nodes are aware of it. If the
target is moving away, the nodes are also aware that the
distance is increased. If the target leaves the square spot
for the samePc, the couple nodes broadcast a message in-
stantly in its route in the polygonPc. Figure 5 illustrates
the target moving path in the sensor network. The target
is initially detected by sensorv1 andv6 (black shaded in-
dicating the active nodes) in the polygonP15, the rest of
the corresponding nodes (grey shaded ) inP15 are in the
awakingstate, and the rest of the nodes in the sensor net-
work are in theinactive state when the target is inP15.
The target travels through the polygons. A sequence can
beP15 → P2 → P7 → P6 → P11, and so on.

4. Simulation studies

We evaluated the performance of the PTT scheme via
simulation. We have implemented it on the OMNet++
v3.3p1 simulation environment using Castalia simulator
(http://castalia.npc.nicta.com.au/index.php). Our goals in
conducting the simulation are as follows: (1) Studying
the localization errors in different parameter settings, while
considering the polygonal region, comparing the tracking
accuracy of the PTT with existing protocols, while consid-
ering a noisy environment, (2) evaluating the observation
model, (3) examining the brink construction probability, (4)
finding the effect of the sensing noise, and finally (5) ob-
serving the performance when the number of sensor nodes
is increased.

4.1. Simulation settings

The simulation has been performed within a400m ×
400m square surveillance field in an area of interest (AoI).
For simplicity, the position of theN (200) sensors is ran-
domly uniform in a 2D square planar field hereafter. Thus,
the sensor density should be large enough so that for any
arbitrary sensing region, there are at least 2 sensors, which
can monitor the region at a time. Throughout the simula-
tion, any two sensor nodes can directly communicate via
bi-directional wireless links, and their Euclidean distance is
not greater than the communication range(dik < rc), and a
target’s position in the plane can be perfectly monitored by
a sensor node if their Euclidean distance is also not greater
than the sensing range(dij < rs).

Instead of considering all the possible combinations ofrc
andrs, we focus on the case ofrc ≥ 2rs in the simulation.
This specification ofrc andrs holds for most commercially
available sensors, such as, Berkeley Motes and Pyroelectric
infrared sensors [19]. At the beginning of the simulation,
the target shows up at a random position of the sensing area
with the maximum accelerationamin= 5 m/s, and the maxi-
mum velocityvmax = 25 m/s.

4.2. Simulation results

1. Study of the localization error: We have per-
formed the simulation to examine the target localization er-
ror. There is one sensor approximately in every20 × 20m2

sensor field. The predefined target locations are further per-
turbed randomly during the simulation over a square meter
area. The background noise parameter isσ = 0.5. Four
different sensor densities, i.e., 8, 12, 15, and 18 have been
used. The mean and variance are computed. From sim-
ulation results, as shown in Figure 6(a), we observed that
the mean values of these methods do not show any statisti-
cally significant bias, and hence, yield unbiased estimates.
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The histograms of the magnitudes of the localization error
are plotted in Figure 6(a). Since the histogram can be re-
garded as an approximation of the probability density func-
tion (pdf), the mean and standard deviation of the magni-
tude of the localization errors are calculated.

2. Study of the sensor measurements: Figure 6(b)
shows a plot of the number of sensors incorporated(Np)
versus the logarithm of the determinant of the error covari-
ance(cv) of the measurement model, and with the linear
measurement model. Indeed, the error volume (covariance)
under sensor selection criterion, using the logarithmic mea-
surement model, is less than the error volume under the se-
lection of the linear measurement model for the same num-
ber of sensors, except during the initial phase, or after all
the sensors have been accounted for. The logarithmic mea-
surement model shows a good level of accuracy.

3. Study of the sensing noise: We compare the tracking
performance of the proposed PTT based on the dynamic
moving path, with the optimal path matching (PM). The
mean tracking error rate is defined in the PTT as an aver-
aged error rate of all the nodes in the polygon, which is
gathered from 100 simulation runs. The tracking accuracy
is enhanced with an increasing number of sensor nodes.
Figure 7(a) depicts the performance of differentσi for the
linear noise (Equation 3). It illustrates that the noise brings
in some tracking error. PTT relatively decreases the noise
compared to PM.

4. Study of the number of sensor nodes: We compare
the PTT with PM under a different number of sensor nodes.
Figure 7(b) shows that when the number of sensor nodes in
a polygonal area increases, the tracking errors are lessened,
and the polygon based tracking path has better performance
compared to ML.

5. Study of the brink construction: In this set of simu-
lation runs, we study the number of sensors in a polygon
neighborhood, designed by the proposed tracking frame-
work considering neighborhood size and brink length. Fig-
ure 8 (a) shows the divergence of the value ofD andrs as
time goes on. The value ofD relies on the value ofrs. Fig-
ure 8 (b) depicts the average length of all the brinks, and the
average length of the brink in a polygon neighborhood. It is
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Figure 7. The effect of sensing noise to track-
ing errors

clearly seen that the length can be different on the basis of
sensors deployment.

An observation is made in Figure 8(c) about the proba-
bility of the brink construction vs. polygonal area length,
covered by the square and rectangular spot. In case of the
target detection, the spot size can be a variant value. From
the results, as shown in Figures 8, we can easily understand
the probabilistic improvement, or degradation of detecting
any target over a brink. The active polygon is only active
upon theX-axis, so it totally depends on the length of the
brink, with some specified parameters. The simulation re-
sults indicated that the target tracking greatly depends on
the probability of the producing area.

5. Conclusion

We proposed a novel approach for mobile target track-
ing through polygonal neighborhood in wireless sensor net-
works. Tracking was modeled as a polygonal traversal
problem in a graph. Besides the basic design, non-linear
sensor measurements, and brink construction method were
proposed for further enhancement of the system’s accuracy.
Meanwhile, we accomplished the sensor node selection that
chooses a number of sensors optimally, without degrading
the performance of the system. Evaluation results demon-
strated that this tracking framework remarkably estimatesa
target’s positioning area, and tolerates the bounded location
errors. In addition, this work provided a general idea of how
to follow an entity by creating a special area like “follow
spot” when the entity enters or leaves a surveillance. Inves-
tigating the impact of target missing when there is a node
failure, achieving a good trade-off between energy conser-
vation and tracking quality in the proposed scheme, are our
future work.
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