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Abstract—With the explosive proliferation of smartphones,
many mobile cloud computing applications have emerged in
recent years. These applications generally involve many data
transmissions between mobile users and the cloud side. In order
to reduce the monetary cost of these data transmissions, an
effective approach is to offload partial data traffic from cellular
networks to WiFi networks, when mobile users pass by some
WiFi Access Points (APs). In this paper, we focus on the problem
of offloading many deadline-sensitive data items to some WiFi
APs with capacity constraints; that is, how to schedule each data
item to the WiFi APs, so that we can offload as many data items
before their deadlines as possible, while taking the constraints of
transmission capacity into consideration. This problem involves
a probabilistic combination of multiple 0-1 knapsack constraints,
which differs from existing problems. To solve this problem, we
propose a greedy oFfline Data Offloading (FDO) algorithm, and
prove that this algorithm can achieve an approximation ratio
of 2. Moreover, we extend our data offloading strategy to the
online decision case, and propose an oNline Data Offloading
(NDO) algorithm, which has a competitive ratio of 2. Finally,
we demonstrate the significant performances of our algorithms
through extensive simulations.

Index Terms—Mobile data offloading, deadline-sensitive, op-
portunistic offloading, offline and online algorithms.

I. INTRODUCTION

With the explosive growth of user population and their

demands for bandwidth-eager multimedia content in recent

years, a big challenge is raised regarding the cellular network.

The Cisco VNI report [2] predicts that the number of mobile

users will grow from 3.7 billion in 2011 to 4.5 billion by 2016.

Furthermore, mobile data traffic is expected to reach 10.8

exabytes per month by 2016, an 18-fold increase over 2011.

To cope with the unprecedented traffic load, mobile network

operators need to increase their cellular network capacities

significantly. However, this is expensive and inefficient. One

promising solution to this problem is to offload part of traffic

to other coexisting networks, while leaving the capacities of

cellular networks unchanged. Some recent research efforts

have been focused on offloading cellular traffic to other forms

of networks, such as WiFi networks [3, 4, 7–9, 15, 19] and

Delay Tolerant Networks (DTNs) [5, 11, 16, 17, 20].

In this paper, we focus on the mobile data offloading based

on WiFi networks in mobile cloud computing [6]. Consider the

scenario in which a mobile user is performing some mobile

cloud computing applications and needs to upload some data

items to the cloud side. In order to ensure the quality of the

mobile cloud computing applications, each data item needs to

be uploaded before a deadline. On the other hand, when the
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Fig. 1. Data offloading scenario: the mobile user uploads data items onto
the cloud side through WiFi networks when it encounters WiFi APs during
Time-To-Lives (TTLs) of data items, or via cellular networks when the TTLs
of data items expire, respectively.

user conducts the mobile cloud computing applications, it can

access cellular networks at any time, anywhere. Meanwhile,

the user also might pass by some WiFi APs. Hence, the user

can transmit the data items through cellular networks directly,

or offload some data to WiFi networks, when it visits a WiFi

AP, as shown in Fig. 1. In general, the data transmission via

cellular networks has the advantage of instantaneity, but it will

lead to a large monetary cost. In contrast, data being offloaded

to WiFi networks can save a significant monetary cost, but the

instantaneity cannot be ensured. There is a trade-off between

the two transmission modes, especially when the transmission

capacity of WiFi APs is taken into consideration. Our concern

is how to schedule data items between the two transmission

modes, so that we can minimize the total monetary cost, while

ensuring that each data item be uploaded before its deadline.

The proposed data offloading is different from existing

offloading problems [1, 18, 20]. These works in [5, 11, 16, 17]

mainly focus on offloading data from cellular networks to

DTNs, which is formulated as a target-set selection problem.

In addition, the works in [4, 9] study the economic benefits

and load balance problem of traffic offloading between cellular

networks and WiFi networks from the perspective of Network

Services Providers (NSPs). In contrast, we consider the data

offloading problem from the user’s side. Moreover, our prob-

lem can be deduced as an optimization problem with multiple

0-1 knapsack constraints, in which each knapsack is related

to a WiFi AP. Adding a data item into a knapsack means

offloading this data item via the corresponding WiFi AP. Since

the accessibility of each WiFi AP is uncertain, it is a proba-

bilistic event to add a data item into a knapsack. Furthermore,

each data item is allowed to be added into multiple knapsacks.

Hence, these data items share a combinatorially probabilistic

optimization objective. Meanwhile, each data item also needs



to be subject to a different deadline constraint. It is because of

these features that our problem differs from the existing trivial

Multiple Knapsack Problems (MKP) [14].

To this end, we design a special utility function. Further-

more, we propose a greedy offline data offloading algorithm

and an online algorithm to solve the aforementioned problem,

respectively. The offline algorithm indicates that the mobile

user makes the data offloading decisions before it encounters

any WiFi AP, while the online algorithm means that the mobile

user dynamically makes the immediate data offloading deci-

sions at each time when it visits a WiFi AP. More specifically,

our major contributions are summarized as follows:

• We introduce a problem of offloading many deadline-

sensitive data items to some WiFi APs with capacity

constraints. Then, we formalize it as an optimization

problem with multiple 0-1 knapsack constraints, sharing

a combinatorially probabilistic optimization objective.

Moreover, we prove the NP-hardness of this problem.

• We propose an offline data offloading algorithm, i.e.,

FDO, to solve the above problem. A greedy strategy

is adopted in this algorithm. We prove that this greedy

strategy can achieve the approximation ratio of 2.

• We also propose an online data offloading algorithm, i.e.,

NDO. It is composed of a series of greedy offloading

decisions, each of which is made when the mobile user

visits a WiFi AP. Moreover, we derive that this algorithm

has the competitive ratio of 2.

• We conduct extensive simulations to evaluate the per-

formances of the proposed algorithms. The results show

that they can achieve better performances, compared with

other algorithms.

The remainder of the paper is organized as follows. We

describe the network model, and formulate the optimization

problem in Section II. The offline and online algorithms are

proposed in Sections III and IV, respectively. In Section V, we

evaluate the performances of our algorithms through extensive

simulations. After reviewing related work in Section VI, we

conclude the paper in Section VII.

II. MODEL & PROBLEM FORMULATION

In this section, we first present our data offloading model,

and then formally formulate the problem.

A. Offloading Model
We consider that a mobile user is conducting some mobile

cloud computing applications, in which the user needs to

upload some data to the cloud side. The data can be denoted

by a set D = {d1, · · · , di, · · · , dn}, where di = 〈si, ti〉
(1 ≤ i ≤ n), in which si and ti denote the size and Time-To-

Live (TTL) of the i-th data item, respectively. Without loss of

generality, we assume that these data items are organized in

the ascending order of their TTLs, that is, t1 ≤ t2 ≤ . . . ≤ tn.

At the same time, each data item is assumed to be indivisible.

Moreover, the data item needs to be uploaded successfully

before the time when its TTL expires, called the transmission

deadline of this data item.

On the other hand, the mobile user is assumed to move

around in an urban area, so that it can upload these data

items to the cloud side, by using cellular networks at any time,

anywhere. However, if the user transmits all of these data items

through cellular networks, it generally needs to pay many fees

for these data transmissions. In this paper, we assume that there

are many WiFi APs distributed in the urban area, and the NSP

is willing to provide the WiFi-based offloading service, so as

to alleviate the load of cellular networks. Hence, in order to

reduce the monetary costs, the mobile user can offload some

data items via WiFi networks. Since most WiFi APs cannot

be accessed for free, the traffic offloading will also produce

some costs, but they will be much lower than the transmission

cost via cellular networks. In this paper, we use C and c to

denote the transmission costs per unit data traffic via cellular

networks and WiFi networks, respectively.

In real scenarios, not all WiFi APs can provide the of-

floading service. It is subject to many factors, such as when

the mobile user enters the communication range of a WiFi

AP, whether the WiFi AP is accessible, and so on. Moreover,

since the time that the user stays in the communication range

of one WiFi AP is restricted, the data items that the user

can transmit via this WiFi AP are generally limited. That

is to say, the transmission capacity is also limited. To this

end, we use a triple w = 〈τ, p, q〉 to describe the offloading
opportunity from a WiFi AP, where τ (> 0) is the time of

the user visiting the WiFi AP, p (∈ (0, 1]) is the probability

of the WiFi AP providing the offloading service, and q (>0)

is the transmission capacity of this WiFi AP. In this paper,

we assume that NSP has recorded the historical offloading

transactions, including the offloading time, transmission rate,

and so on. This is reasonable since all offloading operations

are conducted via NSP. Based on these historical offloading

records and the mobile behavior, each mobile user can derive

the offloading opportunity w = 〈τ, p, q〉 (from NSP) for

each given WiFi AP. More specifically, the probability p can

be estimated by the corresponding frequency of historical

offloading transactions. The transmission capacity q can be

calculated by using the transmission rate and the time that the

user stays in the communication range of each WiFi AP.

In addition, we use W = {w1, w2, · · · , wm} to denote all

offloading opportunities, where wj = 〈τj , pj , qj〉 (1≤ j ≤m),

and τ1 < τ2 < · · · < τm. Here, if the user visits a WiFi AP

more than one time, it can offload data items multiple times,

each of which is seen as an offloading opportunity in W .

B. Problem Formulation

In this paper, we focus on the data items scheduling problem

in the above offloading model, that is, how to schedule the

data items in D to the offloading opportunities in W , so as

to minimize the total transmission cost, while ensuring that

each data item to be uploaded before its deadline.

Before the problem formulation, we define two terms, for

the simplicity of the following description:

Definition 1: [Data Offloading Operation] A data offloading

operation, denoted by (di, wj), indicates that the i-th data item
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Fig. 2. Data items might be offloaded to multiple WiFi APs.

di will be offloaded to the j-th offloading opportunity wj .

Definition 2: [Data Offloading Strategy] A data offloading

strategy, denoted by Φ, is defined as a set of data offloading

operations, i.e.,

Φ={(di, wj)|(di, wj)∈D×W }. (1)

In light of the uncertainty of each offloading opportunity,

it is important to note that we allow each data item to be

scheduled to multiple offloading opportunities, as shown in

Fig. 2, so as to improve the probabilities of being offloaded.

If the data item still fails to be uploaded after these offloading

opportunities, it will have to be transmitted by using cellular

networks, to ensure it be uploaded to the cloud side before its

deadline.

For a given data offloading strategy Φ, we can derive the

successful probability of a data item di being offloaded to

WiFi networks. It is the probability of the data item di being

offloaded via any one offloading opportunity in Φ, which is

defined as follows:

Definition 3: [Successful Offloading Probability] For a

given data offloading strategy Φ, the successful offloading

probability of data item di, denoted by ρi(Φ), satisfies:

ρi(Φ)=1−
∏

j:(di,wj)∈Φ

(1− pj). (2)

Then, according to the probabilities, we can derive the total

expected transmission cost of all data items being uploaded,

defined as follows:

Definition 4: [Total Expected Cost] The total expected

transmission cost is the sum of the expected costs of all

data items in D being uploaded for a given data scheduling

strategy, denoted by fcost(Φ), which satisfies:

fcost(Φ)=
n∑

i=1

si
(
cρi(Φ)+C(1−ρi(Φ))

)
. (3)

Now, we can formalize our problem as follows:

Minimize : fcost(Φ)

Subject to :
∑

i:(di,wj)∈Φ

si ≤ qj , 1≤j≤m; (P1)

ti≥τj , for ∀(di, wj) ∈ Φ⊆D×W .

Here,
∑

i:(di,wj)∈Φ si ≤ qj , called the capacity constraint,
means that the total size of data items that are offloaded to

the j-th WiFi AP should be no larger than the capacity of the

WiFi AP; and, ti≥τj , called the deadline constraint, indicates

that each data item di can be offloaded via the offloading

opportunity wj , only when the TTL of this data item is no

less than the time of the offloading opportunity wj .

TABLE I
DESCRIPTION OF MAJOR NOTATIONS.

Variable Description
n, m the numbers of data items and WiFi APs, respec-

tively.
i, j the indexes for data items and offloading oppor-

tunities, respectively .
D,W the sets of data items and offloading opportuni-

ties, respectively.
〈si, ti〉 the size and TTL of i-th data item, respectively.
〈τj , pj , qj〉 the time, probability and capacity of j-th offload-

ing opportunity, respectively.
C, c transmission cost per unit data traffic via cellular

networks and WiFi networks, respectively.
(di, wj) a data offloading operation (Definition 1).
Φ a data offloading strategy (Definition 2).
ρi(Φ) the successful offloading probability of di for a

given strategy Φ (Definition 3).
Ω universal set of deadline-satisfying data offload-

ing operations (Definition 6).

By analyzing Eq. (3), we can obtain an equivalent expres-

sion as follows:

fcost(Φ)=C
n∑

i=1

si − (C − c)
n∑

i=1

siρi(Φ). (4)

where C
∑n

i=1 si and (C − c) are known fixed values. Then,

we define an offloading utility function as follows:

Definition 5: [Offloading Utility Function] The offloading

utility function of a data offloading strategy Φ, denoted by

U(Φ), is the expected total size of data items that will be

offloaded to WiFi networks under this data offloading strategy.

Then, U(Φ) satisfies:

U(Φ)=

n∑

i=1

siρi(Φ). (5)

Since fcost(Φ)=C
∑n

i=1 si−(C−c)U(Φ), the optimization

problem (P1) can be equivalently re-formalized as follows:

Maximize : U(Φ)

Subject to :
∑

i:(di,wj)∈Φ

si ≤ qj , 1≤j≤m; (P2)

ti≥τj , for ∀(di, wj) ∈ Φ⊆D×W .

Unlike existing MKP [14], (P2) is an optimization problem

with multiple 0-1 knapsack constraints, where each data item

might be added into multiple knapsacks, and these data items

in all knapsacks must share a combinatorially probabilistic op-

timization objective. For the ease of reference, we summarize

the commonly used notations throughout the paper in Table I.

III. OFFLINE DATA OFFLOADING

In this section, we analyze the hardness of our problem, and

then, propose an offline data offloading algorithm, followed by

the performance analysis.

A. Problem Hardness Analysis
First, we prove that Problem (P2) cannot be solved in

polynomial time unless P = NP . More specifically, we have

the following theorem:

Theorem 1: Problem (P2) is NP-hard.



Proof : To prove the NP-hardness of Problem (P2), we first

consider the following special 0-1 knapsack problem.

Maximize : s1x1 + s2x2 + · · ·+ snxn

Subject to : s1x1 + s2x2 + · · ·+ snxn ≤ S, (P3)

x1, x2, · · · , xn ∈ {0, 1}.
where si is the size of the i-th item, S is the size of the

knapsack, and xi is a valuable which indicates whether the i-
th item is added into the knapsack. The special 0-1 knapsack

problem (P3) is NP-hard [12].

Second, we consider a special case of Problem (P2), in

which there is only one WiFi AP, i.e., W = {〈τ1, p1, q1〉},

and τ1≤ t1. Such a data offloading problem can be expressed

as follows:

Maximize :
∑

i:(di,w1)∈Φ

si (P4)

Subject to :
∑

i:(di,w1)∈Φ

si ≤ q1.

Mapping S in Problem (P3) to q1 in Problem (P4), we can

get the two problems to be equivalent. That is, the special case

of Problem (P2), is a special 0-1 knapsack problem, which is

NP-hard. Thus, Problem (P2) is also NP-hard. �
B. The Basic Solution

Since Problem (P2) has both deadline constraints and ca-

pacity constraints, we divide our solution into two phases. In

the first phase, we take the deadline constraints into account,

and determine a set of all data offloading operations that

satisfy the deadline constraints, denoted by Ω. This set can

be derived with the polynomial time complexity. When we let

all data offloading operations in Φ be selected only from Ω,

the data offloading strategy Φ will be deadline-satisfying, and

will not miss any feasible data offloading operations. In this

way, we have removed the deadline constraints from Problem

(P2). Then, in the second phase, we focus on the optimization

problem only with the capacity constraints. Since the problem

is NP-hard due to the capacity constraints, we adopt a greedy

strategy to approximately solve the problem. We select the data

offloading operations from Ω one by one. In each step, the data

offloading operation, which can increase the offloading utility

function value most quickly, while ensuring the constraints

of transmission capacity, is selected. More specifically, our

solution is presented as follows:

First, in order to remove the deadline constraints from

Problem (P2), we define and derive the universal set of

deadline-satisfying data offloading operations as follows:

Definition 6: [Universal Set of Deadline-satisfying Of-
floading Operations] The universal set of deadline-satisfying

offloading operations, i.e, Ω, is a set, including each possible

data offloading operation (di, wj) in D×W that satisfies the

deadline constraint, i.e., ti ≥ τj . That is:

Ω={(di, wj) | ∀(di, wj)∈D×W : ti ≥ τj}. (6)

According to Definition 6, we can derive the set Ω, by a

linearly scanning over the set D×W and adding the data

offloading operations in D ×W that satisfy the deadline

Algorithm 1 The FDO Algorithm

Require: D,W .

Ensure: Φ.

1: Initialize Φ = φ and Ω = φ;

2: for τj from τ1 to τm do
3: for ti from t1 to tn do
4: if τj ≤ ti then
5: Ω = Ω ∪ {(di, wj)};

6: while (∃ (di, wj) ∈ Ω) and (si ≤ qj) do
7: {(dimax , wjmax)}=argmax

(di,wj)∈Ω
∧

si≤qj

U(Φ∪{(di,wj)})−U(Φ)
si

;

8: (di∗max
, wj∗max

)= max
si∗max

>simax

{(dimax
, wjmax

)};

9: Φ = Φ∪{(di∗max
, wj∗max

)};

10: Ω = Ω−{(di∗max
, w∗

jmax
)};

11: qj = qj−si∗max
, where si∗max

is the size of di∗max
;

12: return Φ;

constraints into the set Ω. This can be conducted in the

polynomial time complexity O(mn).
Second, after we have derived the set Ω, we greedily select

the data offloading operations from Ω, and add them into

the data offloading strategy Φ. The greedy criterion in each

round of selection is that the data offloading operation should

increase the offloading utility function value most quickly,

while ensuring the constraints of transmission capacity. Based

on this criterion, we repeatedly select the data offloading

operations from Ω, until the capacity constraints will be

broken. The criterion in each round can be formulated as

follows:

{(dimax , wjmax)}=argmax
(di,wj)∈Ω

∧
si≤qj

U(Φ∪{(di, wj)})−U(Φ)

si
. (7)

(di∗max
, wj∗max

)= max
si∗max

>simax

{(dimax , wjmax)}. (8)

Here, in each round, Φ is the data offloading strategy,

only including the data offloading operations that have been

previously determined, and the capacity qj is the remaining

allowed transmission capacity. If Eq. 7 produces multiple

offloading operations, we will select the offloading operation,

whose data item has the largest data size, as shown in Eq. 8.

C. The Detailed Algorithm
Based on the above solution, we design the greedy algorithm

to approximately solve the optimization problem (P2), as

shown in Algorithm 1. In Step 1, the data offloading strategy Φ
and the universal set of deadline-satisfying offloading strategy

Ω are initialized to be empty. Then, from Step 2 to Step

5, we add all deadline-satisfying data offloading operations

into the set Ω. Next, in Steps 7-8, we choose each data

offloading operation from Ω, which can increase the offloading

utility function per unit data size most quickly, while ensuring

the capacity constraints. Then, we add this data offloading

operation into the set Φ and remove this data offloading

operation from the set Ω in Steps 9 and 10, respectively.

After determining a data offloading operation, the remaining

capacity of each offloading opportunity is updated in Step 11.
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(b) Select (d4, w2)
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(c) Select (d1, w1)
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(d) Select (d2, w1)

Fig. 3. Example: greedily schedule the data items d1, d2, d3, d4 to offloading opportunities w1, w2 , and the obtained data offloading strategy is Φ =
{(d4, w2), (d1, w1), (d2, w1)}. The dashed lines and solid lines indicate the selected offloading operations according to the greedy criterion max ΔU

si
=

U(Φ∪{(di,wj)})−U(Φ)

si
and max si, respectively.

At last, when not existing (di, wj) in the set Ω satisfies the

capacity constraints, the algorithm terminates and outputs the

data offloading strategy Φ, in Step 12.

By analyzing Algorithm 1, we show that the algorithmic

procedures are all pseudo-polynomial-time. More specifically,

we can straightforwardly demonstrate correctness of the algo-

rithm in the following theorem:

Theorem 2: Algorithm 1 is correct. It will terminate for

sure, and will produce a feasible data offloading strategy.

Proof : Since each data offloading operation is selected

from the universal set of deadline-satisfying data offloading

operations, a limited set, the algorithm will terminate for

sure, and the results will satisfy the deadline constraints. On

the other hand, at each round of selection in Algorithm 1,

the capacity constraints are ensured. Thus, the produced data

offloading strategy must be feasible. �
In addition, the computational overhead of Algorithm 1 is

dominated by Step 7, which is O(m2n2).

D. Examples
To better understand Algorithm 1, we present an example to

show the data offloading procedure, in which the mobile user

has the four data items D = {di = 〈si, ti〉|1≤ i≤ 4}, where

s1 = 8, t1 = 11, s2 = 6, t2 = 13, s3 = 5, t3 = 17, s4 = 10, t4 =
18, and it wishes to offload the data items to two WiFi APs

w1 = 〈τ1, p1, q1〉 and w2 = 〈τ2, p2, q2〉, where τ1 = 10, p1 =
0.6, q1 = 15, τ2 = 15, p2 = 0.9, q2 = 10. Since the deadline

constraints τ1 < t1 < t2 < τ2 < t3 < t4 are satisfied, the Ω
is first determined in Fig. 3(a). Then, Algorithm 1 greedily

selects offloading operations as follows:

First round, Φ = φ. Algorithm 1 computes the increased

offloading utility values per unit data size for each data

offloading operation (di, wj) in Ω. The results are as follows:

U(Φ∪{(d1, w1)})−U(Φ)

s1
=0.6,

U(Φ∪{(d2, w1)})−U(Φ)

s2
=0.6,

U(Φ∪{(d3, w1)})−U(Φ)

s3
=0.6,

U(Φ∪{(d4, w1)})−U(Φ)

s4
=0.6,

U(Φ∪{(d3, w2)})−U(Φ)

s3
=0.9,

U(Φ∪{(d4, w2)})−U(Φ)

s4
=0.9.

According to the results, we select two data offloading

operations: {(d3, w2), (d4, w2)}. Next, due to s4 > s3, the

offloading operation (d4, w2) is selected finally, i.e., Φ =
{(d4, w2)}, and it is removed from Ω. Accordingly, the data

item d4 will be offloaded via w2, and the remaining capacity

of w2 is 0, as shown in Fig. 3(b).
Second round, Φ = {(d4, w2)}, and we have:

U(Φ∪{(d1, w1)})−U(Φ)

s1
=0.6,

U(Φ∪{(d2, w1)})−U(Φ)

s2
=0.6,

U(Φ∪{(d3, w1)})−U(Φ)

s3
=0.6,

U(Φ∪{(d4, w1)})−U(Φ)

s4
=0.06.

Similarly, we will select three data offloading operations

from Ω: {(d1, w1), (d2, w1), (d3, w1)}. Since s1 > s2 > s3,

(d1, w1) is selected finally. Then, Φ = {(d4, w2), (d1, w1)},

and (d1, w1) is removed from Ω, as shown in Fig. 3(c). Now,

due to the capacity constraints of w1, only the remaining data

offloading operations {(d2, w1) and (d3, w1)} can be executed.
Third round, we continue to compute

U(Φ∪{(d2, w1)})−U(Φ)

s2
=0.6,

U(Φ∪{(d3, w1)})−U(Φ)

s3
=0.6.

Then, Φ = {(d4, w2), (d1, w1), (d2, w1)} after selecting

(d2, w1), as shown in Fig. 3(d). Due to the capacity constraints,

the algorithm terminates after this round of selection, and

Φ={(d4, w2), (d1, w1), (d2, w1)} is the final result.

E. Performance Analysis
In this subsection, we analyze the approximation ratio of

Algorithm 1. First, we use optF to denote the optimal offline

offloading strategy of optimization problem (P2). Then, we

have the following theorem:

Theorem 3: Algorithm 1 has an approximation ratio of 2.

That is, U(optF )
U(Φ)

< 2. (9)

Proof : First, we consider a special solution. For this so-

lution, we assume that all data items can be divided, and

let each data item di = 〈si, ti〉 be divided as di1= 〈1, ti〉,
· · · , disi = 〈1, ti〉. Then, we conduct our Algorithm 1 to

get a solution, denoted by opt∗F . When all data items are

divisible, the greedy strategy in Algorithm 1 can achieve the

optimal result. This is because the problem has the property of

optimal substructure, the best offloading operation is selected

in each round, and the transmission capacity of each offloading

opportunity is fully utilized. Additionally, optF is the optimal

strategy where data items are indivisible. Due to the indivisible

data items, optF cannot fully utilize the transmission capacity

of each offloading opportunity in most cases. Hence, we have:

U(opt∗F ) ≥ U(optF ). (10)

Second, we consider the greedy criterion Eq. 7, used in

Algorithm 1. According to Definitions 3 and 5, we have:

U(Φ∪{(di, wj)})−U(Φ)

si
=pj(1−ρi(Φ)). (11)



This shows that the offloading operation selection based on

Eq. 7 at each round in Algorithm 1 is irrelative to the size

of the data item. This means that, when we do not consider

the capacity constraints, Algorithm 1 uses the same greedy

criterion and produces the same result, regardless if data items

are divisible or indivisible. Here, we consider another special

solution for the case where data items are indivisible, i.e., a

result produced by Algorithm 1 while the capacity constraint

of each offloading opportunity can be broken once. Denote this

solution as opt+F . Note that opt+F and opt∗F are produced by

using the same greedy criterion, while opt+F can offload data

items beyond each capacity constraint once. Thus, we have:

U(opt+F ) ≥ U(opt∗F ). (12)

Now, we compare opt+F and Φ. Without loss of generality,

we assume that there are totally g data offloading operations

in Ω, which correspond to the j-th offloading opportunity

wj , denoted as {(di1 , wj), · · · , (dik , wj), · · · , (dig , wj)}, in

which dik = 〈sik , tik〉. Moreover, we assume that these data

offloading operations are organized in descending order of

their data sizes, that is, si1 ≥ si2 ≥ · · · ≥ sig . According

to Algorithm 1, for a given offloading opportunity wj , the

data item with the largest size will be selected first. Without

loss of generality, we assume that h (1 ≤ h ≤ g) data

offloading operations in Ω are selected and added into Φ
by Algorithm 1. Then, (di1 , wj), · · · , (dih , wj) ∈ Φ, and

(di1 , wj), · · · , (dih+1
, wj)∈opt+F , according to the definition

of opt+F . Since sih+1
≤sih ≤· · ·≤si1 , we have:

2

h∑

k=1

sik >

h∑

k=1

sik+sih+1
> qj , for ∀j∈ [1,m]. (13)

Moreover, (di1 , wj), · · · , (dih , wj) are selected by opt+F
and Φ with the same strategy. Thus, we can get:

2U(Φ) > U(opt+F ). (14)

Based on Eqs. 10, 12, and 14, we can get that the theorem

is correct. �
IV. ONLINE DATA OFFLOADING

In this section, we propose the online data offloading

algorithm, in which the data offloading decision is made only

when the mobile user encounters the WiFi APs.

A. The Basic Idea
The basic idea of online algorithm is that the mobile user

makes the data offloading decisions only when it encounters

the offloading opportunities. The detailed solution is present-

ed as follows. When the mobile user encounters the j-th

WiFi AP, the probability of the j-th offloading opportunity

becomes 1 from pj . Then, we replace the probability pj by 1,

and conduct the same greedy strategy as that in the offline

case to produce an offloading strategy. According to each

offloading operation (di, wj) in this offloading strategy, that

corresponds to wj , the user makes the decision to offload

di to wj , while ignoring other offloading operations. Once

the user makes this online offloading decision, the selected

data items will be offloaded to wj for sure. The data items

will not be considered in future offloading decisions, and will

Algorithm 2 The NDO Algorithm

Require: D, W .

Ensure: Φ∗.

1: for each wj from j = 1 to m do
2: Initialize Ω = φ;

3: if the user meets wj then
4: pj = 1;

5: else
6: pj = 0;

7: for τ from τj to τm do
8: for ti from t1 to tn do
9: if τ ≤ ti then

10: Ω = Ω ∪ {(di, wj)};

11: Initialize Φ = φ;

12: while (∃ (di, wj) ∈ Ω) and (si ≤ qj) do

13: {(dimax
, wjmax

)}=argmax
(di,wj)∈Ω

∧
si≤qj

(
U(Φ∪{(di,wj)})−U(Φ)

)

si
;

14: (di∗max
, wj∗max

) = max
si∗max

>simax

{(dimax , wjmax)};

15: Φ = Φ∪{(di∗max
, wj∗max

)};

16: Ω = Ω−{(di∗max
, wj∗max

)};

17: qj = qj−si∗max
, where si∗max

is the size of di∗max
;

18: Φj=∪j−1
h=1{(di, wh)|(di, wh)∈Φh}∪Φ;

19: return Φ∗ = Φm;

be removed from Ω. For simplicity of description, we say

these selected offloading operations final results. Since those

ignored offloading operations might be updated when the user

encounters the next WiFi AP, they are called temporary results.

Hence, all offloading operations, which correspond to wj or to

the offloading opportunity before wj , are final results, while

others are temporary results. Particularly, when j = m, all

offloading operations will be final results.

B. The Detailed Algorithm
The detailed algorithm is presented in Algorithm 2. First, the

universal set of deadline-satisfying offloading operations, i.e.,

Ω, is initialized to be empty in Step 2. Then, for all offloading

opportunities in W , if the mobile user encounters the j-th

offloading opportunity wj , the accessing probability of j-th

offloading opportunity pj is replaced by 1, otherwise pj =0,

in Steps 3-6. Next, Algorithm 2 performs the same steps as

Algorithm 1, to determine Ω according to the deadline con-

straints in Steps 7-10. Moreover, the data offloading strategy

Φ is initialized to be empty in Step 11. In Steps 13-14, we

perform the same operations as those in Algorithm 1, to select

the data offloading operations which increase the offloading

utility function per unit data size most. At the same time, we

add the selected data offloading operation into Φ and remove

it from Ω in Steps 15 and 16, respectively. After determining

a data offloading operation, the remaining capacity of each

offloading opportunity is updated in Step 17.

In Algorithm 2, we use Φj to denote the current data of-

floading strategy, which includes the data offloading operations

selected before wj , and the data offloading operations deter-

mined when the user meets the j-th WiFi AP. Among them,



the data offloading operations ∪j−1
h=1{(di, wh)|(di, wh) ∈ Φh}

are final results that have been determined before wj . Φ
includes the data offloading operations that are determined

in the current round of decision. In Φ, only data offloading

operations that correspond to wj are final results, while the

others are temporary results. Along with the increase of j,

the final results will expand. Finally, when j = m, all data

offloading operations in Φ are final results, denoted by Φ∗.

That is, Φ∗ = Φm, as shown in Step 19.

In addition, the computational overhead of Algorithm 2 is

dominated by Step 13, which is O(m3n2).

C. Performance Analysis
In this subsection, we analyze the competitive ratio of

our online algorithm. Assume that there is a god, who can

foresee whether the mobile user will encounter each offloading

opportunity. Based on this knowledge, the god can give an

optimal offloading strategy, denoted by optN . Note that, we

have discussed an optimal strategy optF in the last section,

which is actually the best offline offloading strategy based

on the expected offloading opportunities. In contrast, optN is

the best strategy based on the knowledge that each offloading

opportunity can be foresaw definitely. Hence, optN is even

better than optF . Here, the competitive ratio is defined as the

ratio of optN and our solution. Then, we have:

Theorem 4: The competitive ratio of NDO satisfies
U(optN )

U(Φ∗)
< 2. (15)

Proof : First, we consider a special solution. That is, we

assume that the god not only knows whether the mobile user

will encounter each offloading opportunity, but also can divide

each data item. Then, it can produce an online data offloading

strategy for this case, denoted by opt∗N . Since opt∗N not only

includes all optimal offloading decisions, but

U(opt∗N ) ≥ U(optN ). (16)

Second, we compare the utility values of the two offloading

strategies: opt∗N and Φ∗. Note that, in the online algorithms,

pj = 1 or pj = 0. This implies that each data item either will

be offloaded with the probability of 1, or will not be offloaded.

Hence, the utility value of an online algorithm actually equals

to the total size of all data items that are offloaded by this

algorithm. Then, according to the definition of opt∗N , we have:

U(opt∗N ) =

m∑

j=1

qj . (17)

Next, we focus on U(Φ∗). Without loss of generali-

ty, we consider that the mobile user encounters an arbi-

trary offloading opportunity wj , and we assume that there

are g data offloading operations via wj in Ω, denoted

as {(di1 , wj), · · · , (dik , wj), · · · , (dig , wj)}, in which dik =
〈sik , tik〉 and si1 ≥ si2 ≥ · · · ≥ sig . Based on Algorithm 2,

the offloading operation whose data item with the largest size

will be selected first. Without loss of generality, we assume

that h(1 ≤ h ≤ g) data offloading operations in Ω, i.e.,

{(di1 , wj), · · · , (dih , wj)} are selected and added into Φ∗ by

Algorithm 2. Then, we have:

h∑

k=1

sik + sih+1
> qj . (18)

It needs to be pointed out that Eq. 18 must be correct;

otherwise, the (h+1)-th data offloading operation will be added

into Φ∗ by Algorithm 2. Since sih+1
≤sih ≤· · ·≤si1 , we have:

2
h∑

k=1

sik >
h∑

k=1

sik + sih+1
> qj . (19)

Consider each wj from j = 1 to m. Then, we can get:

2U(Φ∗)=2

m∑

j=1

∑

ik:(dik
,wj)∈Φ∗

sik >

m∑

j=1

qj=U(opt∗N ). (20)

Comparing Eqs. 16 and 20, we can get that the theorem

holds. �
V. EVALUATION

We conduct extensive simulations to evaluate the perfor-

mances of our algorithms. The compared algorithms, the

simulation settings, and the results are presented as follows.

A. Compared Algorithms
In order to evaluate the performances of our algorithms, we

implement two other scheduling algorithms for comparison:

RS (Random Selection) and SA (Sequential Allocation). As

we discussed in Section I, our problem is different from

the existing works. Previous offloading algorithms cannot be

applied in our problem directly. Hence, we carefully design

RS and SA. In the RS algorithm, all data offloading operations

are randomly selected from Ω, while satisfying capacity con-

straints of offloading opportunities. In the SA algorithm, each

data offloading operation in the set Ω is selected sequentially,

until the total size of selected data items exceeds the capacity

of the corresponding offloading opportunity.

B. Simulation Settings and Metrics
We begin by introducing the simulation settings, and let the

transmission costs per unit data traffic via cellular networks

and WiFi networks be C = 0.1 and c = 0.001, respectively.

In order to evaluate the performances of our algorithms

with different numbers of data items and WiFi APs, we let

the numbers of data items and WiFi APs be selected from

{50, 100, · · · , 250} and {5, 10, · · · , 25}, respectively.

Then, we take the four attributes of data items and WiFi

APs into consideration as follows. The sizes and TTLs of

these data items are randomly produced in [0, 2l] and [0, 2t],
where l and t are the average size and TTL of data items,

respectively. In the simulations, l and t are selected from

the sets {100, 200, · · · , 500} and {50, 100, · · · , 250}, respec-

tively. Since the time that WiFi APs can be accessed is

generally close to the TTLs of data items, we also let them be

randomly generated in [0, 2t]. The capacities of WiFi APs are

randomly and uniformly generated in [0, 2L], where L is the

average capacity. Additionally, the L is selected from the set

{1000, 2000, · · · , 5000}. The probabilities of contacting WiFi

networks are produced in [0, 2p] randomly, and p is selected

from the set {0.1, 0.15, · · · , 0.3}, which is used to generate

contact events.
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(a) Cost vs. Number of Data Items
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(b) Ratio vs. Number of Data Items
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(c) Cost vs. Number of WiFi APs
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(d) Ratio vs. Number of WiFi APs

Fig. 4. Performance comparisons: total transmission cost and offloading ratio vs. the number of data items (the number of WiFi APs m = 10) and the
number of WiFi APs (the number of data items n = 150).

In a generic WiFi-based offloading model, the most im-

portant performance metrics include the amount of offloaded

data and the offloading delay. However, in our mobile data

offloading model, the offloading delay is used as the deadline

constraints. Since our primitive optimization problem is to

minimize the total data transmission cost, the total transmis-

sion cost of all data items is used as a most leading metric in

our simulation. In addition to the total transmission cost, we

also evaluated the data offloading ratio (OR) which is defined

as Eq. (21):

OR =

∑n
i=1 siρi(Φ)∑n

i=1 si
(21)

C. Evaluation Results
In this subsection, we present the simulation results of the

four algorithms. First, we evaluate the performances of the four

algorithms with different numbers of data items and WiFi APs.

In the first group of simulations, we conduct these algorithms

by changing the number of data items, while keeping the

number of WiFi APs fixed. The results of total transmission

cost and offloading ratio are shown in Figs. 4(a) and 4(b).

FDO and NDO achieve about 22.8% and 70.5% smaller

total transmission costs than the two compared algorithms,

respectively. Additionally, NDO has a better performance than

FDO. In contrast, NDO has the biggest offloading ratio, and

FDO follows. Their offloading ratio are about 145% and

43.0% larger than the compared algorithms, respectively. In

the second group of simulations, we evaluate the performances

of the four algorithms by changing the number of WiFi APs,

while keeping the number of data items fixed. The results of

the total transmission cost and offloading ratio are shown in

Figs. 4(c) and 4(d). As we expected, NDO achieves the best

performance, and FDO follows. The total transmission costs

of FDO and NDO are about 13.5% and 44.0% smaller than

those of the compared algorithms, respectively. The offloading

ratio of NDO achieves the best result; the FDO and the

two compared algorithms decrease stepwise. Moreover, when

the number of data items increases, the total transmission

costs of all algorithms increase, and the offloading ratios

decrease; when the number of WiFi APs increases, the total

transmission costs decrease, and the offloading ratios increase.

These simulations validate our theoretical analysis results.

Then, we evaluate the performances of four algorithms,

taking the sizes and TTLs of all data items, the capacity,

the accessible probability and time of each WiFi AP into

consideration. Additionally, when we change one of the pa-

rameters for evaluation, we keep the other parameters fixed.

The results are shown in Figs. 5 and 6. The results also

demonstrate that FDO and NDO achieve better performances

than RS and SA, and NDO has the best performance among

the four algorithms. In addition, along with the increase of

the average TTL of data items, the average capacity of WiFi

APs and average probability of mobile user visiting WiFi

APs, the total transmission costs decrease. The offloading

ratios of all algorithms increase simultaneously. However,

along with the increase of the average size of data items,

the total transmission costs increase, while the offloading

ratios decrease. These simulations remain consistent with our

theoretical analysis results.

VI. RELATED WORK

In this paper, we focus on the data transmission cost

problem in mobile cloud computing applications, in which

these offloading data items must share a combinatorially

probabilistic optimization objective. By far, there has been

much research on the data offloading problem, such as [4, 5, 9–

11, 13, 16, 17, 20]. In a broad sense, offloading cellular traffic

can be mainly classified into two categories: offloading to WiFi

networks [4, 9, 10, 13] and offloading to DTNs [11, 20].

Without loss of generality, data offloading through third-

party WiFi APs or femtocell APs requires the cooperation

and agreement of both the mobile cellular network operators

(MNOs) and AP owners (APOs). Gao et al. [4] developed a

model to analyze the interaction among one MNO and multiple

APOs by using Nash bargaining theory. Moreover, Lee et al.
[9] studied the economic benefits generated due to delayed

WiFi offloading, by analyzing the traffic load balance between

cellular networks and WiFi networks. In the work [7], the het-

erogeneous network is responsible for collecting the network

information, and decides the specific portion of traffic to be

transmitted via WiFi, to maximize the per-user throughput.

Different from the aforementioned work, our purpose is to

minimize the total transmission cost from the perspective of

mobile users. Additionally, we take the deadline constraints

and the capacity constraints into consideration simultaneously.

Furthermore, our work is also different from the offloading

using DTNs. For example, Zhuo et al. [20] mainly investigated

the tradeoff between the amount of traffic being offloaded and

the users’ satisfaction. Then, they proposed a novel incentive

offloading target where users with large offloading potential

will be prioritized for traffic offloading. Additionally, the

work [5] exploited the DTNs to facilitate the information

dissemination, and investigated the target-set selection prob-

lem for information delivery to minimize the cellular data

traffic. Different from the existing problems, we formulate

the objective of achieving the minimum of data transmission

cost from a mobile device to the cloud side. Then, we deduce
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(a) Cost vs. TTL
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(b) Cost vs. Data Size
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(c) Cost vs. Capacity
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(d) Cost vs. Accessing Probability

Fig. 5. Performance comparisons on the total transmission cost with the different average TTLs of data items, average sizes of data items, average capacities
of WiFi APs, or average probabilities of accessing WiFi APs.
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(b) Ratio vs. Data Size
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(c) Ratio vs. Capacity
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(d) Ratio vs. Accessing Probability

Fig. 6. Performance comparisons on the offloading ratio with the different average TTLs of data items, average sizes of data items, average capacities of
WiFi APs, or average probabilities of accessing WiFi APs.

the problem as an optimization problem with a probabilistic

combination of multiple 0-1 knapsack constraints, which also

differs from the existing MKP [14].

VII. CONCLUSION

We have studied the problem of how to offload multiple

mobile data items from cellular networks to WiFi networks,

to minimize the total expected data transmission cost from the

perspective of mobile users. Additionally, these data items are

heterogeneous in data sizes and TTLs, and the capacities of

WiFi networks are limited. We first prove the NP-hardness

of our data offloading problem. Then, we propose a greedy

strategy to maximize the data offloading utility at each step,

satisfying the deadline constraints and capacity constraints

simultaneously. Based on this greedy strategy, we design the

offline algorithm FDO and the online algorithm NDO to solve

our optimization problem. We prove that FDO achieves the

approximation ratio of 2, and NDO achieves the competitive

ratio of 2. At last, extensive simulations are conducted to verify

the significant performances of our algorithms.
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