
1

Ferry-Based Linear Wireless Sensor Networks
Imad Jawhar1, Mostafa Ammar2, Sheng Zhang3, Jie Wu4 and Nader Mohamed1

1College of Information Technology, UAE University, Alain, UAE
2School of Computer Science, Georgia Institute of Technology, Atlanta, Georgia, USA
3State Key Laboratory for Novel Software Technology, Nanjing University, P. R. China

4Department of Computer and Information Sciences, Temple University, Philadelphia, Pennsylvania, USA

Abstract— Many environmental, commercial, military, and
structural monitoring applications of wireless sensor networks
(WSNs) involve lining up the sensors in a linear form, and
making a special class of these networks; we defined these in a
previous paper as Linear Sensor Networks (LSNs), and provided
a classification of the different types of LSNs. A multihop
approach to routing the data from the individual sensor nodes
to the sink can be used in an LSN. However, this can result
in a rapid depletion of the sensor energy, due to the frequent
transmissions performed by the sensors to transmit their own,
as well as other sensor data. In addition, in many applications,
the distance between the sensors deployed to monitor the linear
structure might be much greater than the communication
range leading to a disconnected network where the multihop
approach cannot be used. This paper presents a framework
for monitoring linear infrastructures using ferry-based LSNs
(FLSNs). The data that is collected by the sensors is assumed to
be delay-tolerant. In such a system, a moving robot, vehicle, or
any other mobile node (named a ferry), can move back and forth
along the linear network, and collect data from the individual
sensors when it comes within their communication range; The
ferry can deliver the collected sensor data when it reaches
the sink. It can also perform other functions, such as data
processing, and aggregation, and can also transport messages
from the sink to the sensor nodes (SNs). Four different ferry
movement approaches are presented, simulated, and analyzed.

Index Terms— Wireless sensor networks (WSNs), mobile ad
hoc networks (MANETs), routing, ferry, monitoring, delay-
tolerant networks (DTNs).

I. INTRODUCTION

Constant and important advancements in wireless sensor
technology have led to the design of small, inexpensive devices
which are increasingly capable of more accurate sensing,
storage, processing, and communication functions. This sig-
nificant technological evolution is making it possible to use
wireless sensor networks (WSNs) in numerous environmental,
health, military, inter-vehicular, and infrastructure monitoring
applications. In a considerable number of these applications,
the linear nature of the structure that is monitored imposes
deployment of the sensors in a linear form [1] [2][3]. Such
alignment of the sensing devices can form a "thin" or "thick"
line, consisting of a cross section containing one or more

This work was supported in part by UAEU Research grant 01-03-9-
12/07, and College graduate research and innovation project of Jiangsu Grant
(No. CXZZ12_0055), Program A for outstanding PhD candidate of Nanjing
University (No. 201301A08).

sensors, respectively. In addition, the sensors may be placed at
regular fixed distances, or deployed in a more random fashion,
like deploying them by throwing them from a low-flying
airplane along the linear structure or area which is monitored.
In a previous paper [4], we provided various multihop routing
protocols for data communication from the sensor nodes in
a linear sensor network (LSN) to the network control center
(NCC). In another paper, [1], we introduced a classification
of LSNs from hierarchical and topological points of view.
The paper provides some potential applications for LSNs.
Such applications include: (1) Oil, gas, and water pipeline
monitoring; (2) Railroad/subway monitoring; (3) Monitoring
of AC powerlines; (4) A driver-alert network on long roads; (5)
Border monitoring, as well as other applications. In addition,
the paper provides several reasons why new frameworks and
architectures are needed for different categories of LSNs. Such
reasons include: (1) Increased routing efficiency; (2) Increased
network robustness and reliability; (3) Improved location man-
agement algorithms; (4) Increased network security.

In this paper, we present a framework for ferry-based LSNs
(FLSNs), where a mobile node (named a ferry) is used to
collect data from the sensor nodes (SNs). The collected data
is assumed to be delay-tolerant. The FLSN system provides
added flexibility in the design of the network to satisfy
application requirements; it does this by not requiring the
distance between each of two consecutive SNs to be smaller
than the communication range of the SNs. This is the case,
since the classic multihop approach to provide SN-to-sink
connectivity is not used. This flexibility allows the transmis-
sion range of the SNs to be reduced to a minimal value,
resulting in considerable sensor energy savings, elimination
of transmission interference, hidden terminal problems, and
an increased network lifetime. In addition to eliminating the
multihop overhead, the use of a ferry also solves the problem
of the disproportionate use of nodes near the sink. Since
sensors do not need to form a connected network, and can use
a reduced transmission range, designers only have to worry
about the sensing aspect of the network during deployment,
eliminating the need to add nodes just to keep the data transfer
feasible.

Several routing protocols have been proposed for WSNs;
however, most of these protocols are designed for multi-
dimensional topologies, and address a number of issues in
different areas of research [5]. On the other hand, in [6], Shah
et al. provide an architecture to provide connectivity of sparse

2

WSNs using existing mobile entities in the environment named
MULEs.

In [7], Zhao et al. introduce a message ferrying scheme,
which uses a ferry to provide communication between nodes in
a highly-partitioned ad hoc network. In [8], the authors present
an extension of the ferry scheme, with task-oriented, and
message-oriented ferry mobility models. In [9], the message
ferrying and the concept of a dominating set [10] were
combined to provide a framework for delay-tolerant network
(DTN) routing in mobile ad hoc networks (MANETs). In [11],
Sheng, Wu, and Lu studied the use of ferries to charge static
sensors as well as ferries in LSNs.

A. The Difference Between our Strategy and the Existing WSN
and DTN Routing Algorithms

Our architecture is different from existing ones, since it is
designed for data collection in sensor networks with linear
topologies. The following are some of the specific areas that
distinguish our model:

• In some of the DTN works, the ferry must communicate
with the SNs in order to determine its route, as well as
perform substantial calculations in order to determine the
route. This added communication and processing over-
head is considerably large in networks that extend over
large geographic areas, such as thousands of kilometers.
In our model, this communication and processing prior
to route determination is not necessary.

• In our model, the placement of the sinks can be done
in a controlled fashion which optimizes the routing of
the ferry and the end-to-end delay that is required by the
application. This type of important and precise control
over such design parameters is not possible in routing
protocols for multi-dimensional delay-tolerant WSNs.

• The number of ferries that can be used to cover a
relatively long LSN, which might extend for thousands of
kilometers, is very difficult to determine in the existing
multi-dimensional models. However, it is possible in our
model to determine the number of the ferries based on
the required end-to-end delay, possible available ferry
technology and speed, as well as the number of SNs and
the length of the size of the network.

• The number and buffering capacity of the SN nodes are
also parameters that are able to be controlled, and are
subject to network and application requirements in our
LSN model. Such a design strategy can be very difficult,
and not very scalable, in the multi-dimensional case.

B. Motivation and Applications of FLSNs

In most of the LSN applications, a ferry can be used to
collect data from the sensors which are aligned in a thin LSN
or a thick LSN [1]. The ferry nodes take the form of many
actual physical devices such as: (1) a moving robot sliding on
a rail along a pipeline (outside or inside the pipeline). The
robot is used in some cases to scan the wall of the pipeline
to detect damage. (2) a moving vehicle used to collect data
from sensors placed along the borders of a region that is being
protected. (3) an unmanned aerial vehicle (UAV) that can be

Fig. 1: The network model.

flying above an LSN which collects data from the sensors
as it comes within their transmission range. (4) A mobile
underwater vehicle that is used to collect data from underwater
sensors that are monitoring an underwater pipeline or border
region, and so on.

In all of these applications, the speed of the ferry node can
vary from in orders of magnitude from a very slowly moving
robot (e.g. 0.01 to 1 m/s), to a fast-moving robot or UAV
(e.g. 1 to 100 m/s). While communication with a fast-moving
object can introduce more issues at the physical layer such
as Doppler effects, we do not focus on this in our paper, and
we assume that the lower layers (e.g. physical and data link)
of the corresponding SN and ferry devices will handle such
issues. In addition, the range of speed that is used by the ferry
in our simulation does not include all possibilities that can
arise in real applications. However, we use this range only
to illustrate the operation of the algorithms and study their
relative performance and effect over various parameters under
different network and SN traffic conditions.

II. NETWORK MODEL

Fig. 1 shows an illustration of a ferry-assisted thin one-level
LSN. We define the following parameters, which are used in
the analysis in this paper:

• n: This is the number of sensor nodes that are used to
cover the entire network.

• d: This the physical distance between each of two con-
secutive sensor nodes.

• L: The length of data which is exchanged with the ferry
(in bytes).

• R: The bit rate for the communication between the SN
and the ferry.

• Rs: This is the sensing range of a sensor node.
• Rc: The communication range of an SN. In our model,

we assume a unit disk communication range in order to
simplify the analysis without loss of generality. This is
the case, since we mainly focus on the operation of the
various algorithms and their relative performances.

• M : The message generation rate of the the SNs.

In our model, two types of data traffic are considered: (1)
Homogeneous data, where all of the data generated by an SN
is of the same type, which is assumed to be best effort (BE)
traffic. (2) Heterogeneous data, where the data generated by
an SN is assumed be of two different types, depending on the
nature and criticality of the related event or parameter.

3

Fig. 2: Exchange of data when the ferry is within range of the
sensor node.

Fig. 3: The Variable Speed Ferry (VSF) model.

A. Constant Speed Ferry (CSF)

In our basic model, which is illustrated in Fig. 1, there is
one ferry in a segment that consists of n sensor nodes between
two sinks, which are placed at the two edges of the segment.
The ferry moves periodically at a constant speed between the
sinks, collecting data from the SNs and delivering it to each
of the sinks.

For the CSF model with n SNs between the sinks, and
a ferry speed s, the maximum message delay for CSF is:
TCSF
max = (n+1)d

s . On the other hand, the minimum message
delay is 0. Consequently, the average delay for CSF is:
TCSF
avg = (n+1)d

2s . In order to not have any dropped messages
due to delay, we have: nd

s ≤ T . Therefore, s ≥ nd
T .

We develop a formula governing the exchange of data
between the ferry and the node. This is illustrated in Fig. 2.
Let tfp be the time of passing of the ferry within range of the
SN. Then, this time is: tfp = 2Rc

s . However, in order for the
data that is needed to be exchanged with the ferry to actually
be communicated during the time tfp, we must: L ≤ tfpR

8 .
Substituting for tfp, we get: L ≤ RcR

4s . Consequently, if L is
already determined as a requirement, and we need to derive
the resulting minimal ferry speed for L bytes to be exchanged,
we get the following relationship:

s ≤ RcR

4L
(1)

In order to not have any dropped messages due to buffer
overflow at the ferry, the minimum requirement for the size of
the ferry buffer (in bytes) is: BCSF

f = nL. So, combining this
with the previously derived expression for L, we get: BCSF

f =
nRcR
4s .

B. Variable Speed Ferry (VSF)

In this variation of our model, which is illustrated in Fig. 3,
the ferry moves in the same pattern as the constant speed ferry,

but with the following two different speeds: (1) Ferry speed
while in communication (sc); and (2) Ferry speed while no
communication is taking place (snc). This speed is usually the
faster of the two speeds. In order to reduce the end-to-end de-
lay, the ferry should move as fast as possible in order to reach
the communication range of the next SN. The acceleration and
deceleration time periods are assumed to be negligible in our
analysis. However, such periods might need to be considered
in some applications and specific physical implementations of
the ferry. Consequently, in our case, the maximum delay of
the message, tV SF

max , is: tV SF
max = (n− 1)((d−2Rc)

snc
+ 2Rc

sc
).

A similar analysis to the CSF case provides the following
calculation for the size of the ferry buffer for the VSF case:
BV SF

f = nRcR
4sc

.

C. Adaptable Speed Ferry (ASF)

Another model that we consider is the one where the
message arrival rate at the SNs is variable. This kind of
assumption would be valid for certain types of applications,
where the rate of collection of information at the SNs can
be related to certain external factors, such as an emergency
or abnormal situation in the area that is monitored by the
SN. For example, some SNs might have special audio/video
capabilities which would not normally be turned ON, due to
power considerations. However, such audio/video collection
and transmission might be required in response to certain
events, such as the detection of an intruder in a monitored
area, high temperature, pressure, or vibration in a pipeline,
or detecting any predefined specific or abnormal situation.
Consequently, an increase in the quantity, quality, and nature
of the collected information might be required. For this model,
we propose an Adaptable Speed Ferry with Delay Allocation
(ASF-DA), which is illustrated in Fig. 4, and described in
Algorithms 1, 2, and 3.

Algorithm 1 ASF-DA Algorithm - Delay Quota Initialization

/* Set total delay quota for node i according to its position. Tq is
a basic quantum (or unit) delay parameter that is set depending
on the application.*/
for i = 1 to n do

if dir = forward then
Dt

i = i * Tq

else
Dt

i = (n− i+ 1) * Tq

end if
end for

In the two previous cases of the CSF and VSF algorithms,
the end-to-end delay incurred by the data to the sink is
bounded. However, in the ASF case, this delay is un-bounded,
while, the no-communication speed of the ferry is constant,
and therefore contributes with a deterministic amount to the
overall delay. The ferry speed while in communication is
determined by the amount of data in the buffer of the SN that
is being visited. This can be so large as to cause a significant
slow down of the ferry, resulting in unacceptable overall end-
to-end delay. In order to place a bound on the delay, a delay
allocation strategy is used. Upon network initialization, as well

4

Fig. 4: Delay allocation in the ASF-DA algorithm.

Algorithm 2 ASF-DA Algorithm - Ferry/SN Data Exchange

if (Dt
i*R) ≥ Bt

i then
/* Allocated delay quota is more than the time required to
download the buffer of SN i. So calculate the actual delay
time to download the current buffer of node i */
Da

i = Bt
i / R

/* Set the ferry speed to download all data at SN i */
sci = 2*Rc / Da

i

/* Calculate the remaining delay */
Dr

i = Dt
i - Da

i

/* Distribute the remaining delay quota to the rest of the SNs
between this SN and the destination sink */
distributeRemainingDelay(dir, i, Dr

i)
else

/* Allocated delay quota is less than or equal to the time
required to download all. So set ferry speed according to delay
quota. */
sci = 2*Rc / Dt

i

/* Set the actual delay equal to the total delay quota */
Da

i = Dt
i

end if
/* Download the data using the calculated actual delay */
downloadDataFromCurNode(i, Da

i , λ)

as each time the ferry reaches a sink where it changes direction
in order to go to the opposite sink, the delay quota initialization
algorithm presented in Algorithm 1 (and illustrated in Fig. 4)
is used. If the ferry is about to go in the forward direction,
then the total delay quota for each node i is allocated in an
inversely proportional manner to its proximity from the sink
where the ferry is leaving. This is done in order to reduce the
amount of data that is downloaded from the early SNs in the
ferry trip, which will experience the most end-to-end delay.
Consequently, more data will be collected from the nodes that
are closer to the opposite sink, which will experience the least
delay. Therefore, the average end-to-end delay experience by
the downloaded data will be lower. When the ferry goes back

Algorithm 3 Download While Ferry is in Communication
Range Function: downloadDataFromCurNode(i, delay, λ)

/* Total downloadable priority traffic size at SN i (in bytes): */
Bp

i = R * Delay * λ/8
Download Bp

i bytes from priority data buffer of i.
/* Total downloadable BE traffic size at SN i (in bytes): */
Bb

i = R * Delay * (1-λ)/8
Download Bb

i bytes from BE data buffer of i.

in the opposite direction, the delay quota allocation is changed
again to give the SNs at the beginning of the new trip less
delay quota, and the SNs on the opposite side more, thereby
balancing the delay quota allocation in both directions. The
delay allocation in our case is independent of the message
arrival rate. However, for some applications where the arrival
rate is highly variable between SNs, the rate of each one
can be included in the delay allocation in addition to the SN
position. Furthermore, the ASF-DA Ferry/SN data exchange
algorithm is presented in Algorithm 2, and the pseudocode for
the function downloadDataFromCurNode(i, Da

i , λ) is shown
in Algorithm 3.

Algorithm 4 ARF Algorithm - Initialization When Ferry Starts
in the Direction of the Opposite Sink

/* Initialization of Ftip flag */
if blackNodeCounter = n then

for (i=1; i ≤ n; i++) do
blackNodeCounter = 0
F i
tip = WHITE

end for
end if
/* Current node variable initialization */
if (networkStartup = TRUE) OR (dir = FORWARD)
then
cn = 1

else
cn = n

end if
ferryMode = NORMAL_MODE
ferrySpeed = NORMAL_SPEED

Algorithm 5 ARF Algorithm - Ferry Algorithm at an Inter-
mediate SN

Let i be the ID of the current node
Let F i

sit be serviced-in-this-pass flag. F i
sit is set to BLACK

when node i is serviced in the current pass and set to WHITE
otherwise.
/* calculate the total download time for node i */
Dt

i = 2*Rc/ferrySpeed
downloadDataFromCurNode(i, Dt

i , λ)
if F i

sit = WHITE then
if curFerryBufferSize ≥ ρ then

dir = getDirToNearestSink()
ferrySpeed = FERRY _MAX_SPEED
ferryMode = GO_FAST_TO_NEAREST_SINK

end if
/* Indicate that this node has been serviced in the current pass
*/
F i
sit = BLACK

blackNodeCounter = blackNodeCounter + 1
end if
i = getNextNodeInDir(i, dir)
Go to i node at the current ferrySpeed

D. Adaptive Routing Ferry (ARF)

In this algorithm, which is illustrated in Fig. 5, the ferry
starts at the primary sink, and moves in the forward direction
towards the secondary sink, using a constant speed NOR-
MAL_SPEED. This is the initial mode of operation named

5

Fig. 5: Illustration of the ARF algorithm.

NORMAL_MODE. In this mode of operation, as the ferry
comes within communication range of an SN, it downloads
data from that SN. It continues to do so until the ferry
buffer reaches a critical threshold ρ. In that case, the ferry
switches to a mode of operation in which it goes as fast
as possible to the nearest sink. This mode is called the
GO_FAST_TO_NEAREST_SINK mode, which causes the ferry
to set the direction towards the nearest sink, and set the
speed to FERRY_MAX_SPEED. This is done in order to
minimize the average end-to-end delay of the data traffic by
making the ferry deliver the data as soon as possible once the
data size grows to a certain predetermined threshold ρ. The
latter threshold is a parameter which is set by the network
administrator, and is application-dependent. When the ferry
reaches the sink and turns around to make a new trip, it will go
quickly past the segment of the network where the SNs were
already serviced in the last trip, until it reaches SNs which have
not been serviced yet. When this happens, the ferry switches
back to NORMAL_SPEED and proceeds by servicing the
unserviced SNs. This is done in order to provide fairness in
servicing all of the SNs in the segment, as well as to prevent
SN starvation. In order to keep track of the service status of
the SNs, each node i has a serviced-in-this-trip flag, F i

sit. The
operation of the ARF algorithm is presented in Algorithms 4
and 5.

The node contains two buffers, one for BE and another for
priority traffic. When the ferry arrives, the majority of the
download delay quota can be shared by the two types of traffic,
according to the variable λ. Here, we use λ = 0.8, which
indicates that 80% of the quota is used for priority traffic, and
the remaining portion is used by the BE traffic.

III. SIMULATION

A. Simulation Setup

This section evaluates the performance of the proposed
algorithms. The default values of the input parameters are
set as follows: n = 50, d = 150 meters, Rc = 50 meters,
R = 2, 000 bps, the buffer size of each SN B = 8, 000
bytes, for CSF and VSF s = 10 m/s, for VSF sc = 10 m/s,
for VSF and ASF snc = 20 m/s, the delay quota in ASF
Tq = 0.5 s, the NORMAL_SPEED in ARF is 10m/s, the
FERRY_MAX_SPEED is 50 m/s, the message time-out value
T = 1, 500 s, and ρ = 10, 000 bytes. It is worth noting that, in
our simulation, we mainly focus on the relative performance
of the algorithms, and we do not emphasise issues related to
the physical layer, which are outside the scope of our work in
this paper.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 3000 4000 5000 6000 7000 8000 9000 10000

D
e

liv
e

ry
 r

a
ti
o

 o
f

C
S

F

The buffer size of each sensor node

n= 25

n= 50

n= 75

n=100

(a) Buffer size vs. delivery ratio

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 4 6 8 10 12 14 16

D
e

liv
e

ry
 r

a
ti
o

 o
f

C
S

F

The ferry speed

n= 25

n= 50

n= 75

n=100

(b) Ferry speed vs. delivery ratio

 400

 500

 600

 700

 800

 900

 1000

 3000 4000 5000 6000 7000 8000 9000 10000

A
v
e

ra
g

e
 d

e
la

y
 o

f
C

S
F

The buffer size of each sensor node

n= 25

n= 50

n= 75

n=100

(c) Buffer size vs. average delay

 100

 200

 300

 400

 500

 600

 700

 800

 900

 4 6 8 10 12 14 16

A
v
e

ra
g

e
 d

e
la

y
 o

f
C

S
F

The ferry speed

n= 25

n= 50

n= 75

n=100

(d) Ferry speed vs. average delay
Fig. 6: Performance comparison results of CSF.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 3000 4000 5000 6000 7000 8000 9000 10000

D
e

liv
e

ry
 r

a
ti
o

 o
f

V
S

F

The buffer size of each sensor node

n= 25

n= 50

n= 75

n=100

(a) Buffer size vs. delivery ratio

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 10 15 20 25 30 35 40

D
e

liv
e

ry
 r

a
ti
o

 o
f

V
S

F

The non-com ferry speed

n= 25

n= 50

n= 75

n=100

(b) Non-com Ferry speed vs. delivery
ratio

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 3000 4000 5000 6000 7000 8000 9000 10000

A
v
e

ra
g

e
 d

e
la

y
 o

f
V

S
F

The buffer size of each sensor node

n= 25

n= 50

n= 75

n=100

(c) Buffer size vs. average delay

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 10 15 20 25 30 35 40

A
v
e

ra
g

e
 d

e
la

y
 o

f
V

S
F

The non-com ferry speed

n= 25

n= 50

n= 75

n=100

(d) Non-com Ferry speed vs. average
delay

Fig. 7: Performance comparison results of VSF.

In all four algorithms, the BE and priority traffic are
generated based on exponential distributions with an average
arrival rate that is uniformly generated from an interval. In
our experiments, the average BE traffic in bytes per second
is uniformly generated between 1 and 3; the average priority
traffic in bytes per second is uniformly generated between 8
and 16. The lambda in our evaluations is always set to 0.8. The
performance metrics used in our evaluations are the delivery
ratio and the average delay. The delivery ratio is the ratio of
the successful packets received by two sinks to the overall
packets generated by all sensor nodes. The average delay is
the average delay experienced by the successful packets.

B. Summary of Simulation Results
The simulation results are presented in Figs. 6, 7, 8, and 9.

Due to space limitations, we summarize the key observations
as follows:

6

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 3000 4000 5000 6000 7000 8000 9000 10000

D
e

liv
e

ry
 r

a
ti
o

 o
f

A
S

F

The buffer size of each sensor node

n= 25

n= 50

n= 75

n=100

(a) Buffer size vs. delivery ratio

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

D
e

liv
e

ry
 r

a
ti
o

 o
f

A
S

F

Delay quota

n= 25

n= 50

n= 75

n=100

(b) Delay quota vs. delivery ratio

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 3000 4000 5000 6000 7000 8000 9000 10000

A
v
e

ra
g

e
 d

e
la

y
 o

f
A

S
F

The buffer size of each sensor node

n= 25

n= 50

n= 75

n=100

(c) Buffer size vs. average delay

 0

 200

 400

 600

 800

 1000

 1200

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A
v
e

ra
g

e
 d

e
la

y
 o

f
A

S
F

Delay quota

n= 25

n= 50

n= 75

n=100

(d) Delay quota vs. average delay
Fig. 8: Performance comparison results of ASF.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 3000 4000 5000 6000 7000 8000 9000 10000

D
e

liv
e

ry
 r

a
ti
o

 o
f

A
R

F

The buffer size of each sensor node

n= 25

n= 50

n= 75

n=100

(a) Buffer size vs. delivery ratio

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 10000 15000 20000 25000 30000 35000 40000

D
e

liv
e

ry
 r

a
ti
o

 o
f

A
R

F

Threshold

n= 25

n= 50

n= 75

n=100

(b) Buffer threshold vs. delivery ratio

 450

 500

 550

 600

 650

 700

 750

 800

 850

 900

 950

 1000

 3000 4000 5000 6000 7000 8000 9000 10000

A
v
e

ra
g

e
 d

e
la

y
 o

f
A

R
F

The buffer size of each sensor node

n= 25

n= 50

n= 75

n=100

(c) Buffer size vs. average delay

 600

 650

 700

 750

 800

 850

 900

 950

 1000

 10000 15000 20000 25000 30000 35000 40000

A
v
e

ra
g

e
 d

e
la

y
 o

f
A

R
F

Threshold

n= 25

n= 50

n= 75

n=100

(d) Buffer threshold vs. average delay
Fig. 9: Performance comparison results of ARF.

• When the buffer size of each sensor node increases, all
of the proposed algorithms can deliver more packets
to sinks. However, as the generated packets in each
sensor node are stored in a sorted queue, based on their
generation time, and the ferry gives high priority to
packets with small generation time in our implementation,
the average delay of the proposed algorithm goes up when
the buffer size increases.

• The ferry speed, the non-com ferry speed in VSF, the de-
lay quota in ASF, and the buffer threshold in ARF should
be chosen carefully, and it may take some time to find
the optimal values for a particular network environment.

• Additional simulation results, which could not be in-
cluded in this paper due to size limitations, show that
when the time-out value increases, all of the proposed
algorithms perform better in terms of delivery ratio, and
the average delay increases. Moreover, there may exist
some critical time-out values, which correspond to the

length of the time required for a ferry to travel from one
sink to another.

• We admit that some challenges remain. However, the
thesis of this paper is the introduction of the FLSN
framework along with various strategies for data col-
lection. While preliminary, our results indicate that the
proposed algorithms perform well in a variety of network
environments. We hope that our simulation provides
some guidelines for future delay-tolerant data collecting
systems.

IV. CONCLUSION

In this paper, FLSNs, which constitute a new type of
LSNs, were introduced where a mobile node (acting as a
ferry) moves along the LSN and collects/delivers information
from/to the SNs from one or multiple sinks. The paper
provided motivations for the design of FLSNs, and offered four
approaches based on the ferry movement strategy. Simulation
experiments were performed to study the effect of different
design parameters, such as ferry speed, data rate, number of
sensors, and transmission range on the performance of the
network, with respect to important metrics, such as end-to-end
data delivery delay, and buffer size requirements. We believe
that the FLSN framework presented in this paper forms a good
foundation for future work. We plan to expand the design
and analysis further by studying different aspects, such as the
effect of using multiple ferries per segment, and also provide
algorithms for designing efficient ferry routes and movement
synchronization given certain variable network conditions, as
well as data traffic distributions.

REFERENCES

[1] I. Jawhar, N. Mohamed, and D. P. Agrawal. Linear wireless sensor
networks: Classification and applications. Elsevier Journal of Network
and Computer Applications (JNCA), 34:1671–1682, 2011.

[2] Z. Sun, P. Wang, M. C. Vuran, M. A. Al-Rodhaan, A. M. Al-Dhelaan,
and I. F. Akyildiz. MISE-PIPE: Magnetic induction-based wireless
sensor networks for underground pipeline monitoring. Elsevier Ad Hoc
Networks Journal, 9, 2011.

[3] Y. Guo, F. Kong, D. Zhu, A. Tosun, and Q. Deng. Sensor placement for
lifetime maximization in monitoring oil pipelines. The 1st ACM/IEEE
Int’l Conf. on Cyber-Physical Systems, 2010.

[4] I. Jawhar, N. Mohamed, K. Shuaib, and N. Kesserwan. An efficient
framework and networking protocol for linear wireless sensor networks.

[5] K. Akkaya and M. Younis. A survey of routing protocols in wireless
sensor networks. Elsevier Ad Hoc Networks, 3(3):325–349, 2005.

[6] R. C. Shah, S. Roy, S. Jain, and W. Brunette. Data MULEs: modeling
a three-tier architecture for sparse sensor networks. IEEE SNPA, 2003.

[7] W. Zhao and M. Ammar. Message ferrying: Proactive routing in highly-
partitioned wireless ad hoc networks. In Proc. IEEE Workshop on Future
Trends in Distributed Computing Systems, May 2003.

[8] W. Zhao, M. Ammar, and E. Zegura. A message ferrying approach for
data delivery in sparse mobile ad hoc networks. ACM Mobihoc, 2004.

[9] B. Polat, P. Sachdeva, M. Ammar, and E. Zegura. Message ferries
as generalized dominating sets in intermittently connected mobile net-
works. Elsevier pervasive and mobile computing journal, 2011.

[10] J. Wu, F. Dai, M. Gao, and I. Stojmenovic. On calculating power-
aware connected dominating sets for efficient routing in ad hoc wireless
networks. IEEE/KICS Journal of Communications and Networks, 2002.

[11] S. Zhang, J. Wu, and S. Lu. Collaborative mobile charging for sensor
networks. Proc. of the 9th IEEE International Conference on Mobile
Ad-hoc and Sensor Systems (IEEE MASS 2012), October 2012.

