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Abstract—During the past decade, various novel Data Center Network (DCN) architectures have been proposed to meet various
requirements of large scale data centers. In existing works that consider server-centric DCN architectures, the lengths of a server-to-
server-direct hop and a server-to-server-via-a-switch hop are assumed to be equal. We propose the concept of Normalized Switch
Delay (NSD) to distinguish a server-to-server-direct hop and a server-to-server-via-a-switch hop, to unify the design and analysis of
server-centric DCN architectures for interconnecting servers with two network interface cards. In [1], the authors claim that BCN is
the largest known architecture to interconnect dual-port servers, with diameter 7, given a switch port number. We notice that the
existing DPillar [2] architecture accommodates more servers than BCN does under the same configurations. Motivated by this fact,
we consider a fundamental problem: maximizing the number of dual-port servers, given network diameter and switch port number;
and give an upper bound on this maximum number. Then, we propose three novel architectures that try to achieve this upper bound:
SWCube, SWKautz, and SWdBruijn, based on the generalized hypercube, Kautz graph, and de Bruijn graph, respectively. The number
of servers that SWCube can accommodate is comparable to that of DPillar. The number of servers that SWKautz and SWdBruijn can
accommodate is generally greater than that of DPillar. Compared with three existing architectures, the three proposed architectures,
SWCube, SWKautz and SWdBruijn demonstrate various advantages. Analysis and simulations on the newly proposed architectures
also show that they have nice properties for DCNs, such as low diameter, high bisection width, good fault-tolerance, and the capability
of efficiently handling network congestion.

Index Terms—Data center networks (DCNs), dual-port servers, generalized hypercubes, Kautz graphs, de Bruijn graphs.
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1 INTRODUCTION

Data centers provide various internet-based/online ser-
vices, such as search engines, email, online video, social
networking, online gaming, and large-scale computa-
tions, etc.. Data centers also provide the infrastructure
services such as GFS, Bigtable, MapReduce and Dryad
[3]–[6]. As the increasing of the service demand will
never end, the number of servers in modern and future
data centers is required to be very large, for example,
hundreds of thousands or millions.

A great challenge in data centers is how to design
network architectures to interconnect large numbers of
servers. Traditional tree-based architectures have been
shown to be difficult in meeting the requirements of
Data Center Networks (DCNs). During the past decade,
various novel DCN architectures have been proposed.
Considering whether the interconnection intelligence is
put on the switches or on the servers, these architectures
fall into two categories, namely, switch-centric designs
and server-centric designs [7]. In switch-centric designs,
such as Fat-Tree [8], VL2 [9], HyperX [10], and Flattened
Butterfly [11], switch functionality is extended to meet
the interconnection need, while servers do not need to be
modified for interconnection purposes. Thus, high-end
switches may be needed, which significantly increases
the interconnection cost. In server-centric designs, such
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as DCell [12], BCube [13], FiConn [14], HCN & BCN
[1], DPillar [2] and MCube [15], switches are only used
as cross-bars while servers act as both computing nodes
and packet relay nodes. Server-centric designs have the
advantage of using only low-end layer-2 switches, thus
reducing the cost; also, by putting the interconnection
intelligence on servers, they provide a higher degree of
programmability. However, an important disadvantage
of server-centric designs is that servers usually have
much larger processing delays than switches; also, by us-
ing servers for forwarding packets, the overhead and/or
workload on servers may be increased. While switch-
centric architectures are still the main stream; server-
centric architectures are also becoming available com-
mercially. Thus, our work on sever-centric architectures
will definitely contribute to modern and future DCN
designs.

Three basic connections may exist in a data cen-
ter: server-switch (or switch-server) connections, switch-
switch connections and server-server connections, as
shown in Fig. 1. In switch-centric-designs, servers usual-
ly only connect to a local switch; then, switches connects
to other switches to enable remote communications. In
other words, only sever-switch and switch-switch con-
nections can exist in a switch-centric design, and server-
server connections are usually not allowed. In server-
centric designs, servers may have multiple NIC ports;
there may exist server-server connections and server-
switch connections; and switch-switch connections are
usually not allowed.

Considering the number of NIC ports used on servers,
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Fig. 1. Basic connections in data center networks.

architectures that belong to server-centric designs, can
be further classified into two sub-categories. In the first
sub-category, servers can have more than 2 ports, such
as DCell and BCube; in the second sub-category, servers
have no more than 2 ports, such as FiConn, HCN &
BCN, DPillar, and MCube. Since Commodity-off-the-
Shelf (COTS) servers in data centers often only have 2
NIC ports [1], [2], [14], restricting the server degree in a
DCN to be no more than 2, the time and human power
needed to upgrade hundreds of thousands of servers
can be avoided; also, the packet relay overhead on the
servers can be reduced, compared to the case in which
more than 2 ports are used on servers.

In this paper, we consider server-centric DCN architec-
ture designs, where servers only have 2 NIC ports, and
where only low-end layer-2 switches are used. Obvious-
ly, to design DCN architectures, various aspects should
be considered, such as the number of servers that an
architecture can accommodate, network diameter, bisec-
tion width, interconnection cost, and fault-tolerance, etc..
Our goal of designing DCNs is to scale-out the network
(increase the number of servers) and maintain or im-
prove the network performance. Our main contributions
are as follows:

• First, we notice that in existing works [1], [2], [12]–
[14], the lengths of a server-to-server-direct hop and
a server-to-server-via-a-switch hop are assumed to
be equal. We call this assumption the HOmogeneous
Hop (HOH) assumption. However, as servers’ pack-
et forwarding capabilities will increase significantly
in future DCNs, it may not be suitable to neglect
the processing delay at switches [16]. Thus, design
and comparison based on this assumption may be
inappropriate. For example, in FiConn and BCN,
there exist server-to-server-direct hops, while in D-

Pillar, any two servers are not directly connected.
In this paper, we propose the concept of Normal-
ized Switch Delay (NSD), which is defined as the
switch’s packet forwarding delay divided by the
server’s forwarding delay (when they have no other
load), to distinguish these two kinds of sever-to-
server hops to unify the design and analysis of
server-centric DCN architectures for interconnect-
ing dual-port servers. Specifically, we assume that
the length of a server-to-server-via-a-switch hop is
counted as 1 + c, where c is the NSD, (0 ≤ c ≤ 1),
and a server-to-server-direct hop is still counted as
1; thus, we have the HEterogeneous Hop (HEH)
assumption. Correspondingly, we can calculate the
diameter of the network architecture under this new
assumption.

• Second, we ask the following fundamental ques-
tion: what is the maximum number of dual-port
servers that any architecture can accommodate at
most, given network diameter d, and switch port
number n? Motivated by the Moore Bound [17],
which provides the upper bound on the number
of nodes in a graph given the maximum graph
diameter and node degree, we give an upper bound
on the maximum number of dual-port servers in a
DCN, given network diameter d and switch port
number n. In [1], the authors claimed that BCN is
the largest known architecture to interconnect dual-
port servers, with diameter 7, given a switch port
number. We notice that the existing DPillar archi-
tecture accommodates more servers than does BCN
under the same configurations. Besides, BCN and
DPillar still show big gaps between the numbers of
dual-port servers that they can accommodate, and
the upper bound number.

• Third, we propose three novel DCN architectures
which try to approximate the upper bound. The
first one is called SWCube, which is based on the
generalized hypercube [18]. SWCube accommodates
a comparable number of servers to that of DPil-
lar. Specifically, SWCube accommodates less servers
than DPillar when the switch port number is small
and the network diameter is large, and accommo-
dates more servers than DPillar when the switch
port number is large and the network diameter is
small. The other two are SWKautz and SWdBruijn,
which are based on the Kautz graph [19], [20] and
the de Bruijn graph [21], respectively. They always
accommodate more servers than DPillar. Then, we
compare various DCN architectures on several as-
pects, namely, the design flexibility, the number
of servers given a network diameter, the bisection
width, the hardware interconnection cost per server,
and the influences of c (NSD) on different archi-
tectures under the HEH assumption. Analysis and
simulations on the newly proposed architectures
reveal that they also have nice properties for DCNs
such as high degree of regularity, high bisection
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width, good fault-tolerance, and efficient handling
of network congestion.

The remaining of the paper is organized as follows.
Some basic definitions are given in Section 2. In Section 3,
we provide the upper bound of the maximum number of
dual-port servers that any architecture can accommodate
at most, given network diameter d, and switch port
number n. We then design three novel architectures that
try to approximate this upper bound, which are de-
fined in Sections 4, 5, and 6, respectively. Three existing
architectures are reviewed in Section 7. In Section 8,
we compare our proposed architectures with the three
existing ones in various aspects. Section 9 evaluates our
proposed architectures in detail. Conclusions and future
work are sketched in Section 10.

2 PRELIMINARIES

In our considerations, all switches are low-end COTS
ones. We assume that all servers only have two NIC
ports. To construct large DCNs, we assume that the
switch port number, n is at least 4. We focus on server-
centric designs; thus, switch-to-switch-direct connections
are not considered in our design and analysis. Since there
are two kinds of nodes, namely, servers and switches in a
DCN, some concepts should be made clear as compared
to those in a traditional graph. Before further discussion,
we give some definitions.

We define that a hop is a path, from one node to
another node of the same kind, which consists of no
other nodes of the same kind. Thus, we have switch-to-
switch hops and server-to-server hops. According to our
assumption, there does not exist switch-to-switch-direct
hops. Server-to-server hops consist of server-to-server-
direct hops and server-to-server-via-a-switch hops. The
length of a path between two servers is the number of
server-to-server-direct hop(s), plus 1 + c times the num-
ber of server-to-server-via-a-switch hop(s) in the path.
Again, c can be regarded as the Normalized Switch Delay
(NSD), which is the switch’s packet forwarding delay
divided by the server’s forwarding delay. We explicitly
consider c because switch’s forwarding delay may not
be neglected in modern and future DCNs. Besides, c is
assumed to be less than or equal to 1, because we predict
that servers’ packet forwarding ability will not increase
to the extent of outperforming switches. The distance of
two servers is the length of the shortest path between
the two servers. The diameter of a DCN architecture
is the maximum distance among all pairs of servers.
The distance between servers and network diameter are
critical factors on the communication delay/latency in
DCN, which is an important metric for DCN design. The
bisection width of a DCN architecture is the minimum
number of links that must be removed to partition the
network into two equal halves. The bisection width
of a DCN provides key information on the potential
throughput that the network can have, and thus, has
great influences on the performances of the network

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.2

1.4

1.6

1.8

2.0

d/
lo
gN

c

 FiConn
 BCN
 DPillar

Fig. 2. Scaled diameter of FiConn, BCN, and DPillar for
different c values.

itself and the applications that are hosted in the data
center.

To give a preview of the influence of NSD, we com-
pare the diameter of three existing architectures, name-
ly, FiConn, BCN, and DPillar, when different values
are chosen for c, given the same switch port number
n = 48, server degree 2, and approximately equal
numbers of servers. Readers may refer to Section 7 for
details on FiConn, BCN, and DPillar. We use approx-
imately equal numbers of servers because it is almost
impossible for these architectures to have exactly the
same number of servers under any configurations. We
choose: FiConn(48, 2) with 361,200 servers and diameter
7, BCN(32, 16, 1, 1) with 787,968 servers and diameter 7,
and DPillar(48, 4) with 1,327,104 servers and diameter
6. The initial diameter values are calculated assuming
c = 0. As we can see, the numbers of servers that
the three architectures have still differ from each other
significantly. Thus, we calculate the scaled diameter, which
is the diameter divided by the logarithm of the number
of servers of an architecture, when c chooses different
values. As shown in Fig. 2, under the HOH assumption,
DPillar has the lowest scaled diameter; as c increases,
the scaled diameter of BCN tends to be comparable
with, or even lower than, that of DPillar. This tendency
is intuitively correct because, in DPillar, all server-to-
server hops are server-to-server-via-a-switch hops, while
in BCN, lots of server-to-server-direct hops exist. As
c increases, server-to-server-via-a-switch hops will con-
tribute more to the diameter.

3 MAXIMIZING THE NUMBER OF SERVER-
S GIVEN NETWORK DIAMETER AND SWITCH
PORT NUMBER

A basic idea of designing DCN architectures is to scale-
out the network (increase the number of servers) and
maintain or improve the network performance at the
same time. Although the latter (the network perfor-
mance) itself includes many aspects and is not easy
to express explicitly, traditional graph theory can be
applied to address the former (increase the number of
servers). This aspect motivates us to ask the following
fundamental question: what is the maximum number of
dual-port servers that an architecture can accommodate,
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Fig. 3. The architecture greedily constructed to maximize
the number of servers has a diameter d = 2(1 + c)l, l = 2.

given network diameter d, and switch port number n?
A similar problem in traditional graph theory is the
degree/diameter problem: find graphs with a maximal
number of nodes with given constraints of maximum
degree δ and diameter d. Compared to the traditional
graph model (where only one kind of node exists), in a
DCN, two kinds of nodes exist. Given the server degree
2, some related work in the traditional graph theory can
be applied for analyzing DCNs. The Moore Bound gives
an upper bound for the degree/diameter problem.

Moore Bound: The maximum number of nodes in a
graph, given diameter constraint d and node degree δ
is

N ≤ 1 + δ + δ(δ − 1) + · · ·+ δ(δ − 1)d−1

= 1 + δ

d−1∑
i=0

(δ − 1)i. [17] (1)

Illustration: Any node can reach at most δ other nodes
within distance 1. Each of the δ nodes can reach another
δ − 1 nodes within distance 2, because one degree has
already been used for connecting to the original node.
Extending to distance d, the upper bound on the maxi-
mum number can be calculated.

Reverting to our DCN architecture scenario, we start
with the situation when c = 0, which is the HOH
assumption that all existing works adopted.

Theorem 1: For c = 0, given switch port number n,
(n ≥ 4), the maximum number of dual-port servers that
any DCN architecture, with diameter less than or equal
to d (d is a positive integer), can accommodate is

Nv ≤ Nub
v =

2(n− 1)d+1 − n
n− 2

. (2)

For the HEH assumption, where 0 ≤ c ≤ 1, we have:
Theorem 2: Given switch port number n, (n ≥ 4), the

maximum number of dual-port servers that any DCN
architecture, with diameter less than or equal to d (d is
an arbitrary positive number), can accommodate is

Nv ≤ Nub
v =

2(n− 1)d
d

1+c e+1 − n
n− 2

. (3)

The proofs for Theorems 1 and 2 can be found in the
Supplemental Material.

However, like the Moore Bound, the upper bound may
not be achievable. Consider a graph greedily constructed
to maximize the network order within l server-to-server-
via-a-switch hops, as shown in Fig. 3. Notice that we
consistently use rectangles to represent switches, and
circles to represent servers in all DCN architectures.
The network in Fig. 3 accommodates at most Nv =
(2(n− 1)l+1−n)/(n− 2) servers. However, this network
actually has a diameter d = 2(1+c)l. In terms of d and n,
Nv ≤ (2(n− 1)dd/(2(1+c))e+1 − n)/(n− 2), which is much
less than the upper bound.

As we can notice, when c = 0, the upper bound is
approximately 2nd. The numbers of servers that three ex-
isting architectures for interconnecting dual-port servers,
namely, FiConn, BCN, and DPillar can accommodate
show big gaps between the upper bound. In traditional
graphs, a d-dimensional r-ary generalized hypercube has
diameter d and network order (the number of nodes in
a network) rd; a Kautz graph with r + 1 symbols and
diameter d has network order rd+rd−1; a d-dimensional
r-ary de Bruijn graph has diameter d and network order
rd. These facts motivate us to design larger order DCN
architectures, based on the generalized hypercube, the
Kautz graph, and the de Bruijn graph. The following
three sections present our three novel DCN architectures:
SWCube, SWKautz, and SWdBruijn. When calculating
the diameter of SWCube, SWKautz, SWdBruijn, we as-
sume c = 0. Since server-to-server hops are all server-
to-server-via-a-switch hops in SWCube, SWKautz, and
SWdBruijn, the actual diameter is 1+c times the diameter
calculated assuming c = 0.

4 SWCUBE

4.1 The Generalized Hypercube and SWCube Con-
struction
We denote a k-dimensional generalized hypercube [18]
by Hk

r1×r2×···×rk . The ith dimension is with radix ri, ∀i =
1, 2, · · · , k. A node W is represented by a k-tuple: W =
w1w2 · · ·wk, where 0 ≤ wi ≤ ri − 1, ∀i = 1, 2, · · · , k. Two
nodes are connected directly by an edge if and only if
their addresses differ at one bit. We consider that a set
of nodes are along the same dimension i, if all of their
addresses differ only at the ith bit. We can see that nodes
along the same dimension form a complete graph.

We design a novel DCN architecture for interconnect-
ing dual-port servers based on the generalized hyper-
cube. The new architecture can be constructed logically
as follows: 1.) replace the nodes in the original gen-
eralized hypercube with switches; 2.) insert one server
into each edge that connects two switches. We denote
the resulting DCN architecture by SWCube(r1 × r2 ×
· · · × rk, k) because the SWitches form a generalized
hyperCube, Hk

r1×r2×···×rk . Fig. 4(a) and Fig. 4(b) show
a 1-dimensional and a 2-dimensional SWCube, respec-
tively, where r1(= r2) = 4. Note that in Fig. 4(b), the
interconnections of switches and servers along the 2nd,
3rd, and 4th columns are represented by dotted lines.
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Fig. 4. SWCube.

Since we replace nodes in the original hypercube
with switches, switches in SWCube can adopt the same
addressing scheme for nodes in the original generalized
hypercube. In SWCube, each server is uniquely iden-
tified by the two switches that it directly connects to.
Thus, we represent a server by V = (V 1, V 2), where
V 1 = v11v

1
2 · · · v1k and V 2 = v21v

2
2 · · · v2k represent the two

switches that the server directly connects to. Since, in the
original generalized hypercube formed by the switches,
two switches are adjacent if and only if they differ at one
bit, for each server, there exists only one i ∈ {1, 2, · · · , k}
such that v1i 6= v2i .

4.2 Properties of SWCube
The number of switches in an SWCube(r1 × r2 × · · · ×
rk, k) is Nw =

∏k
i=1 ri. Since switches along the same

dimension form a complete graph, each switch connects
to the other ri − 1 switches via a server along the ith
dimension. Thus, the number of ports that are used in
each switch is: n =

∑k
i=1(ri − 1). The number of servers

in an SWCube is actually the number of edges in the
original generalized hypercube, which can be calculated
as the number of switches Nw, times the switch port
number n, divided by 2: Nv = (

∏k
i=1 ri)(

∑k
i=1(ri−1)/2).

Theorem 3: The bisection width of SWCube(r1 × r2 ×
· · · × rk, k) is minkm=1(1/4)rm

∏k
i=1 ri.

Proof: We borrow the idea from [10] and prove the
theorem as follows. The bisection width of SWCube(r1×
r2 × · · · × rk, k) is realized by cutting one of its di-
mensions in half. If dimension m is cut, we consider
the number of switches of the SWCube without ex-
tending in dimension m, which is

∏k
i=1,i6=m ri. Cutting

a complete graph with rm nodes requires removing
(rm/2)(rm/2) edges. Cutting SWCube(r1×r2×· · ·×rk, k)

in dimension m requires cutting
∏k
i=1,i6=m ri complete

graphs with rm nodes. Thus, the bisection of such a
cut is (rm/2)(rm/2)

∏k
i=1,i6=m ri = (1/4)rm

∏k
i=1 ri. If

(1/4)rm
∏k
i=1 ri is the smallest among all the dimensions

of SWCube(r1 × r2 × · · · × rk, k), then, (1/4)rm
∏k
i=1 ri

determines the bisection width of SWCube(r1×r2×· · ·×

rk, k). Thus, this theorem holds. Notice that, we do not
consider the case when rm is indivisible by 2, since this
only incurs some rounding(s) on rm/2.

For symmetry and regularity, we can choose r1 = r2 =
· · · = rk = r. We denote the constructed architecture
by SWCube(r, k). According to Theorem 3, the bisection
width of SWCube(r, k) is rk+1/4. When the number of
ports used in a switch is n = 8, we can choose r =
5, k = 2. SWCube(5, 2) can accommodate a total of 100
servers. When the number of ports used is n = 16, we
can choose r = 5, k = 4. SWCube(5, 4) can accommodate
a total of 5000 servers. Fig. 4(a) and Fig. 4(b) represent
an SWCube(4, 1) and an SWCube(4, 2), respectively; the
numbers of ports used in each switch are 3 and 6,
respectively.

We say that two servers S = (S1, S2) and D =
(D1, D2) are along the same dimension if and only if
the four switches, which the two servers connect to, S1,
S2, D1 and D2, differ at most one bit.

Lemma 1: The distance of two servers that are along
the same dimension is at most 2.

Proof: As the SWCube is constructed, if two servers
S = (S1, S2) and D = (D1, D2) are along the same
dimension, the four switches they connect to, S1, S2,
D1 and D2 are also along the same dimension. Since
all switches along the same dimension form a complete
graph (disregarding the servers), S1 can reach D1 via
one intermediate server; or S1 and D1 are the same
switch. Thus, the shortest path between S and D is no
greater than S → S1 → (S1, D1) → D1 → D, where S1

and D1 represent switches, and (S1, D1) represents the
intermediate server, if it exists. Thus the shortest path
contains at most 3 servers, and the distance between S
and D is at most 2.

Lemma 2: The distance of two servers that are not
along the same dimension is at most k + 1.

Proof: Consider servers S = (S1, S2) and D =
(D1, D2) again. Since all switches form a generalized
hypercube, each switch, say S1, can reach another, say
D1, at most k hops by correcting one bit via each switch-
to-switch-via-server hop. The total number of servers in
such a path from S1 to D1 is at most k. Including S and
D themselves in a path from S to D, there are at most
k+ 2 servers in the path from S to D. Thus, the distance
between two servers is at most k + 1.

Theorem 4: The diameter of an SWCube(r, k) is d =
k + 1.

Proof: The theorem directly follows from Lemma 1
and Lemma 2.

Theorem 5: In terms of network diameter and switch
port number, the number of servers in an SWCube(r, k)
is

Nv =
krk(r − 1)

2
=
n( n

d−1 + 1)d−1

2
. (4)

Proof: The number of switches in an SWCube(r, k)
is Nw = rk. The number of ports that are used on each
switch is n = k(r− 1). Since d = k+ 1, r = n/(d− 1) + 1.
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The number of servers in SWCube(r, k) is Nv = krk(r−
1)/2 = n(n/(d− 1) + 1)d−1/2.

Given a switch port number n, for a regular SWCube,
n = k(r − 1), where k and r − 1 are positive integers.
For n = 16, k can be 1, 2, 4, 8 and 16. Table 1 shows
the choices of k and corresponding other values, given
switch port number n = 16. Notice that a huge gap on
the total number of servers exists between the k = 8
column and the k = 16 column. This gap results from the
assumption that all ri’s are equal; in practical designs,
this assumption is not necessary, and ri’s and k can
choose more flexible values to accommodate the desired
number of servers and to meet other requirements.

TABLE 1
Choices of k given n = 16

k 1 2 4 8 16
r 17 9 5 3 2
d 2 3 5 9 17
Nw 17 81 625 6561 65536
Nv 136 648 5000 52488 524288

5 SWKAUTZ

5.1 The Kautz Graph and SWKautz Construction
A k-dimensional Kautz directed graph [19], [20] with
r + 1 symbols is denoted by KA(r, k). The node set
of KA(r, k) is given by all possible strings of length k
where each symbol of the string is from the set Z =
{0, 1, 2, · · · , r} with the restriction that two consecutive
symbols of the string are always different. In other word-
s, a string w1w2 · · ·wk can represent a node in a KA(r, k)
if wi ∈ Z,∀1 ≤ i ≤ k and wi 6= wi+1 ∀1 ≤ i ≤ k − 1.
There exists a directed edge from node W 1 = w1

1w
1
2 · · ·w1

k

to node W 2 = w2
1w

2
2 · · ·w2

k if and only if W 2 is a left-
shifted version of W 1, i.e., w1

2w
1
3 · · ·w1

k = w2
1w

2
2 · · ·w2

k−1,
and w2

k 6= w2
k−1. A 3-dimensional Kautz graph with 3

symbols is illustrated in Fig. 5(a).
The total number of nodes in a KA(r, k) graph is (r+

1)rk−1 = rk + rk−1 because the first symbol of a string
representing a node has r + 1 choices, while the other
(k−1)symbols have r choices in order to make sure two
consecutive symbols of every string are not equal. The
network diameter of KA(r, k) is k. Each node is with an
indegree r and an outdegree that is also r.

We construct a DCN architecture for interconnecting
dual-port servers based on a k-dimensional Kautz graph
with n/2 + 1 symbols; in other words, r = n/2, where
n is the switch port number. The new architecture can
be constructed logically as follows: 1.) replace each node
in the original KA(n/2, k) graph with an n-port switch;
2.) remove the direction of all the edges and insert a
server into each edge. The architecture constructed as
such is named SWKautz(n/2, k) because the SWitch-
es form a Kautz graph, KA(n/2, k). Fig. 5(b) shows
a SWKautz(2, 3), whose base Kautz graph is KA(2, 3)
shown in Fig. 5(a). In SWKautz(2, 3), the switch port
number is 4.

210
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121
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120

201
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102

020

202 212

(a) KA(2, 3). (b) SWKautz(2, 3).

Fig. 5. The Kautz graph and SWKautz.

Since the SWKautz architecture is constructed by re-
placing each node in the Kautz graph with an n-port
switch, the addressing or labeling scheme of the switches
can be identical to that of the nodes in the original Kautz
graph. That is to say, each switch is represented by a k-
digit string w1w2 · · ·wk, where, wi ∈ {0, 1, · · · , n/2},∀1 ≤
i ≤ k and wi 6= wi+1,∀1 ≤ i ≤ k−1. Note that there may
be two servers connecting two same switches W 1 and
W 2, since in the original Kautz graph, there may exist a
directed edge from W 1 to W 2 and a directed edge from
W 2 to W 1 at the same time. Thus, we use an ordered pair
(W 1,W 2) to represent a server, W ; i.e., W = (W 1,W 2).
W 1 and W 2 are the server W ’s left switch and right
switch, respectively. We also say that the left switch, W 1,
of W is W ’s home switch. Note that (W 2,W 1) represents
a different server than does (W 1,W 2).

5.2 Properties of SWKautz
The bisection width of a k-dimensional Kautz graph with
r + 1 symbols is Θ(rk+1/k) [22]. The following theorem
directly follows from this fact.

Theorem 6: The bisection width of an SWKautz(n/2, k)
is Θ((n/2)k+1/k).

Theorem 7: The diameter of an SWKautz(n/2, k) is d =
k + 1.

Proof: Consider two servers S = (S1, S2) and D =
(D1, D2), where S1 and S2 are the switches that server S
connects to, and D1 and D2 are the switches that server
D connects to. Since all switches form a k-dimensional
Kautz graph, while a k-dimensional Kautz graph has
diameter k, the longest path from any switch, say S1, to
another, say D1, is at most k switch-to-switch-via-server
hops. Thus the longest path from S to D includes at most
k+ 2 servers. The network diameter of SWKautz(n/2, k)
is d = k + 1.

Theorem 8: In terms of network diameter and
switch port number, the number of servers in an
SWKautz(n/2, k) is

Nv = (
n

2
)d + (

n

2
)d−1. (5)
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Proof: The number of switches in an
SWKautz(n/2, k) is equal to the number of nodes
in the original Kautz graph, and can be calculated as:
Nw = (n/2)k + (n/2)k−1. The number of servers in an
SWKautz(n/2, k) is equivalent to the number of edges
in the original Kautz graph, which can be calculated
as: Nv = n((n/2)k + (n/2)k−1)/2 = (n/2)k+1 + (n/2)k =
(n/2)d + (n/2)d−1.

6 SWDBRUIJN

6.1 de Bruijn Graph and SWdBruijn Construction
An k-dimensional r-ary de Bruijn graph [21] consists of
rk nodes. Each node is represented by a k-digit string,
w1w2 · · ·wk, where 0 ≤ wi ≤ r−1, ∀i = 1, 2, · · · , k. There
exists a directed edge from node W 1 = w1

1w
1
2 · · ·w1

k to
node W 2 = w2

1w
2
2 · · ·w2

k if and only if W 2 is a left-shifted
version of W 1, i.e., w1

2 · · ·w1
k = w2

1w
2
2 · · ·w2

k−1; under this
condition, if W 2 is identical to W 1, we say this node (W 2

or W 1) has a directed self circle. A 2-dimensional 3-ary
de Bruijn graph is illustrated in Fig. 6(a). We can notice
that node 00 has a directed self circle. Actually, for all of
the nodes w1w2 · · ·wr, where w1 = w2 = · · · = wr, there
exists such a directed self circle.

The k-dimensional r-ary de Bruijn graph has diameter
d = k. Each node is with indegree r and outdegree r, as
well. The number of edges is (2r)rk/2 = rk+1.

We construct a novel DCN architecture based on a k-
dimensional n/2-ary de Bruijn graph; in other words,
r = n/2, where n is the switch port number. The new
architecture can be constructed logically as follows: 1.)
replace each node in the original k-dimensional n/2-ary
de Bruijn graph with an n-port switch; 2.) remove the
direction of all the edges and insert a server into each
edge. By doing these, the nodes with a self circle in the
original de Bruijn graph will connect to n − 1 servers,
with 2 ports connecting to the same server and the other
n−2 ports connecting to n−2 other servers. Of course, we
can remove one edge that the switch uses to connect the
same server and connect another server using the left-
over port. By doing this, the network can support an
additional n servers; compared to (n/2)k, this number
is negligible. Thus, we do not choose to add these n
servers in order to keep the regularity of the addressing
scheme. The structure constructed as such is denoted
by SWdBruijn(n/2, k) because the SWitches form a k-
dimensional n/2-ary de Bruijn graph. Fig. 6(b) shows an
SWdBruijn(3, 2).

Since the SWdBruijn architecture is constructed by re-
placing each node in the de Bruijn graph with an n-port
switch, the addressing or labeling scheme of the switches
can be identical to that of the nodes in the original
de Bruijn graph. Thus, each switch is represented by
a k-digit string w1w2 · · ·wk, where 0 ≤ wi ≤ n/2 − 1,
∀1 ≤ i ≤ k. Note that there may be two servers
connecting the two same switches W 1 and W 2, since in
the original de Bruijn graph, there may exist a directed
edge from W 1 to W 2 and a directed edge from W 2 to W 1

10

00

01

02

12

11

20

22

21

(a) de Bruijn (r = 3, k = 2). (b) SWdBruijn(3, 2).

Fig. 6. The de Bruijn graph and SWdBruijn.

at the same time. Thus, we use an ordered pair (W 1,W 2)
to represent a server, W ; i.e., W = (W 1,W 2). W 1 and W 2

are server W ’s left switch and right switch, respectively.
Note that (W 2,W 1) represents a different server than
does (W 1,W 2).

6.2 Properties of SWdBruijn
As readers may have already noticed, the definitions
for Kautz graph and de Bruijn graph are similar. The
constructions of SWKautz and SWdBruijn are also simi-
lar. Thus, SWKautz and SWdBruijn share many similar
characteristics and properties. In this subsection, we
just list some important characteristics of SWdBruijn,
omitting the explanations and proofs.
• The bisection width of an SWdBruijn(n/2, k) is

Θ((n/2)k+1/k).
• The diameter of an SWdBruijn(n/2, k) is d = k + 1.
• In terms of network diameter, d, and switch

port number, n, the number of servers in an
SWdBruijn(n/2, k) is Nv = (n/2)d.

7 RELATED EXISTING WORKS

In this section, we review three main DCN architectures
that also consider interconnecting dual-port servers. No-
tice that MCube [15] only uses 6-port switches; thus,
its application is very limited. Besides, the number of
servers that an MCube can accommodate is much less
than those of FiConn, BCN and DPillar; thus, we do not
consider MCube in our paper. As we have mentioned,
all existing works adopt the HOH assumption, in other
words, c = 0.

7.1 FiConn
FiConn [14] is a recursively defined architecture.
FiConn(n, 0) is the basic construction unit, which con-
sists of n servers and an n-port switch connecting them.
If there are a total of b servers with one port remain-
ing in a FiConn(n, k − 1) (k > 0), the number of
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Fig. 7. FiConn(4, 2).

HCN(4,0) HCN(4,1)

(a) HCN. (b) BCN.

Fig. 8. HCN and BCN.

FiConn(n, k − 1)’s in a FiConn(n, k) is equal to b/2 + 1.
In each FiConn(n, k− 1), b/2 servers out of the b servers
with one port remaining are selected to connect the other
b/2 FiConn(n, k− 1)’s using their second ports, each for
one FiConn(n, k− 1). Fig. 7 shows a FiConn(4, 2), which
consists of four FiConn(4, 1)’s.

The diameter of a FiConn(n, k) is d = 2k+1 − 1. The
number of servers in a FiConn(n, k) is Nv ≥ 2k+2(n/4)2

k

,
which, in terms of d and n, can be represented as follows:

Nv ≥ 2log2(d+1)+1(n/4)(d+1)/2 = 2(d+ 1)(n/4)(d+1)/2.

The number of switches in a FiConn(n, k) is Nw = Nv/n.
The average server degree in FiConn(n, k) is 2 − 1/2k.
Table 2 provides some feasible k and d values for FiConn.

TABLE 2
k, d values for FiConn

k 0 1 2 3 4
d 1 3 7 15 31

7.2 HCN & BCN
HCN [1] is also a recursively defined architecture. A
high-level HCN(n, h) employs a low level HCN(n, h−1)
as a unit cluster, and connects many such clusters by
means of a complete graph. HCN(n, 0) is the smallest
module, which consists of n dual-port servers and an
n-port switch. For each server, its first port is used to
connect to the switch, and its second port is used to

interconnect with another server in different smallest
modules for constituting larger networks. An HCN(n, i)
(i > 0) is formed by n HCN(n, i − 1)’s and has n
servers that still have one remaining port, each in an
HCN(n, i− 1) for further expansion. Fig. 8(a) shows an
HCN(4, 1) which connects four HCN(4, 0)’s.

A BCN architecture can be represented by
BCN(α, β, h, γ), where h denotes the level of BCN
in the first dimension, and γ denotes the level of
a BCN, which is selected as the unit cluster in the
second dimension. When 0 ≤ h < γ, the BCN(α, β, h, γ)
is simply BCN(α, β, h), which is the same as an
HCN(α, h), except that in each of the smallest unit
BCN(α, β, 0)’s, there are β slave servers that can be
used to expand the network in the second dimension.
α = n − β is the number of master servers that can be
used to expand the network in the first dimension in
a BCN(α, β, 0). The shortest path length among all of
the server pairs in BCN(α, β, h) is at most d = 2h+1 − 1.
Actually, in order to maximize the number of dual-
port servers, the case when h < γ needs not to be
considered, since an HCN(n, h) will have more servers
than a BCN(α, β, h).

When h ≥ γ ≥ 0, the shortest path length among
all of the server pairs in BCN(α, β, h, γ) is at most
d = 2h+1 + 2γ+1 − 1. The number of servers is Nv =
αh−γ(αγ(α+β)(αγβ+1)). Apparently, in this case, Nv ≤
nh−γnγn(nγ+1+1) ≤ nh+γ+3. Since d = 2h+1+2γ+1−1 ≥
2
√

2h+1 · 2γ+1 − 1, we have h+ γ + 2 ≤ 2 log2((d+ 1)/2).
Thus, Nv ≤ n2 log2((d+1)/2)+1. The number of switches is
Nw = Nv/n. All slave servers have degree 2, α(αγβ + 1)
master servers have degree 1, while all other master
servers have degree 2. Thus, the average server degree is
2− 1/(αh−1n). Since HCN is just a special case of BCN,
and has a known small network order, we focus on BCN
only. More details on HCN & BCN can be found in [1].
Table 3 provides some feasible h, γ and d values for BCN.
Fig. 8(b) shows a BCN(4, 4, 0, 0).

TABLE 3
h, γ, d values for BCN

d h = 0 h = 1 h = 2 h = 3
γ = 0 3 5 9 17
γ = 1 1 7 11 19
γ = 2 1 3 15 23
γ = 3 1 3 7 31

7.3 DPillar

The DPillar architecture, which is based on the butter-
fly network, can be represented by DPillar(n, k), which
consists of k server columns and k switch columns; Hi

and Si (0 ≤ i ≤ k − 1) represent server and switch
columns, respectively. The server and switch columns
are alternately placed along a cycle, as shown in Fig. 9(a).
A server in each server column is connected to the two
switches in its two neighboring switch columns. For a
switch in column Si, half of its n ports are connected
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Fig. 9. DPillar.

to n/2 servers in Hi, and the other half are connected
to n/2 servers in Hi+1 mod k. Each server column has
(n/2)k servers; each switch column has (n/2)k−1 switch-
es. Fig. 9(b) shows a DPillar(4, 3).

The diameter, the number of switches in a DPillar(n, k)
are d = k + bk/2c, Nw = k(n/2)k−1, respectively.
The number of servers in a DPillar(n, k) is Nv =
(2d/3)(n/2)2d/3, when k is even and Nv = ((2d +
1)/3)(n/2)2d/3 , when k is odd. Every server’s degree is
2, because both of its two ports are used. Table 4 provides
some feasible k and d values for DPillar.

TABLE 4
k, d values for DPillar

k 1 2 3 4 5 6 7 8 9 10 11 12 13
d 1 3 4 6 7 9 10 12 13 15 16 18 19

8 ON THE COMPARISON OF VARIOUS ARCHI-
TECTURES

We compare various architectures in several aspects. The
first one is the design flexibility of different architec-
tures; our discussion focuses on the choices of network
diameters assuming c = 0. The second is the funda-
mental one: the number of servers that an architecture
can accommodate, given the same configurations. The
third aspect is the bisection width. The fourth aspect is
the interconnection cost per server in an architecture.
Last, we investigate the influence of c values on the
architectures.

8.1 Design Flexibility
As a recall, the network diameters of FiConn and BCN
are d = 2k−1(k ≥ 0) and d = 2h+1 +2γ+1−1(h ≥ γ ≥ 0),
respectively. Thus, FiConn and BCN allow very limited
network diameter values, due to the integer constraints
of k for FiConn, and h and γ for BCN. In a regular
SWCube where r1 = r2 = · · · = rk, n = k(r − 1) = (d −
1)(r−1), it is only required that d−1 is a divisor of n. As
we have mentioned, in practice, ris can differ from each
other. Thus, SWCube allows flexible choices of diameter
values. DPillar also allows flexible choices of diameters,
in that d only needs to be in the form of k + bk/2c.

SWKautz and SWdBruijn allow the most flexible choice
of network diameters because they can choose arbitrary
positive integer diameters independent of switch port
number, and their architectures themselves do not incur
additional constraints.

8.2 The Number of Servers Given d and n

As we have shown, FiConn and BCN allow very few
options for d. Besides, the number of servers that FiConn
accommodates is approximately 2(d+ 1)(n/4)d/2, which
is strictly less than that of DPillar, SWCube, SWKautz,
and SWdBruijn. The number of servers BCN accommo-
dates is less than n2 log2((d+1)/2)+1, which is also less than
that of DPillar, SWCube, SWKautz, and SWdBruijn for
most n and d values. We do not include FiConn and BCN
for comparison in Fig. 10.

We choose four typical diameter values for compar-
ing DPillar, SWCube, SWKautz, and SWdBruijn, d =
4, 6, 7, 9. When d = 4 and d = 7, we vary n = 12, 24, 36,
48, 96, 192. When d = 6, we vary n = 20, 40, · · · , 200.
When d = 9, we vary n = 16, 32, 48, · · · , 192. Results
for different d values are shown in Fig. 10(a), Fig. 10(b),
Fig. 10(c), and Fig. 10(d), respectively. As we can see, for
small d values, SWCube can accommodate more servers
than DPillar. For large d values, DPillar will exceed
SWCube when n is small; when n is sufficiently large,
SWCube still accommodates more servers than DPillar.
Under various configurations, SWKautz and SWdBruijn
almost always outperform DPillar and SWCube in terms
of maximizing the number of servers. The numbers of
servers that SWKautz and SWdBruijn accommodate are
the most close to the upper bound, even under the HEH
assumption when c 6= 0. Also notice that, the numbers of
servers that SWKautz and SWdBruijn can accommodate
are almost overlapped.

8.3 Bisection Width

In this subsection, we compare the bisection width of
various architectures given a network diameter d, and
the switch port number n. The bisection width of Fi-
Conn is at most Θ(Nv/d) [14]. The bisection width of
BCN(α, β, h, γ) for h ≥ γ is αh(αγβ + 2)β/4 [1], which
is αh+γβ2(1 + 2/(αγβ))/4 ≤ nh+γ+2 ≤ n2 log2 (d+1)/2. The
bisection width of DPillar(n, k) is (n/2)k ≈ Nv/(2d/3)
[2]. Based on Theorems 3, 4, 6, and 8, we can see
that the bisection widths of SWCube is approximately
Nv/(2(d − 1)), and the bisection width of SWKautz is
Θ(Nv/(d − 1)). Again, SWdBruijn has a similar bisec-
tion width as that of SWKautz’s, i.e., Θ(Nv/(d − 1)).
Notice that, in the above expressions, Nv is the num-
ber of servers that the corresponding architecture can
accommodate. Since DPillar, SWCube, SWKautz, and
SWdBruijn can accommodate more servers that those
of FiConn, the bisection width of DPillar, SWCube, and
SWKautz are also higher. The bisection width of BCN is
in the order of n2 log2 (d+1)/2, while the bisection widths
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Fig. 10. Number of servers given network diameter and various switch port numbers.

TABLE 5
Hardware Interconnection Cost Comparison

FiConn(n, k) BCN(α, β, h, γ) DPillar(n, k) SWCube(r, k) SWKautz(n/2, k) SWdBruijn(n/2, k)
Nw/Nv 1/n 1/n 2/n 2/n 2/n 2/n

average server degree 2− 1/2k 2− 1/(αh−1n) 2 2 2 2
cost per server Pw/n+Pl(2−1/2k) Pw/n+Pl(2−1/(αh−1n)) 2Pw/n+2Pl 2Pw/n+2Pl 2Pw/n+ 2Pl 2Pw/n+2Pl
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Fig. 11. Scaled diameter of FiConn, BCN, DPillar, SWCube, SWKautz for different c values.

of DPillar, SWCube, SWKautz, and SWdBruijn are gener-
ally in the order of nd/d. These rough comparisons show
that SWCube, SWKautz, and SWdBruijn can provide
high bisection widths.

8.4 Hardware Interconnection Cost per Server
We compare the hardware interconnection cost when
all architectures use n-port switches. Assume that the
price of an n port switch is Pw, and that the price of a
cable/link is Pl. Based on architectures’ switch-number
to server-number ratio and server degree, different archi-
tectures’ hardware interconnection costs per server can
be calculated as in Table 5. As we can see, the cost on
links of different architectures do not differ much; in fact,
it is very close to 2Pl for all architectures. The cost per
server on switches of DPillar, SWCube, SWKautz, and
SWdBruijn is twice that of FiConn and BCN; which is the
main reason why DPillar, SWCube, SWKautz, and SWd-
Bruijn can accommodate more servers than FiConn and
BCN. At only twice the cost, DPillar, SWCube, SWKautz,
and SWdBruijn provide a large order of increase on the
number of servers.

8.5 Influence of c on Various Architectures
We investigate the influence of c (NSD) on various archi-
tectures. For this purpose, we choose a fixed d = 7 when
c = 0. Under the HEH assumption, When c chooses

different values, the scaled diameter of different archi-
tectures can be calculated. Fig. 11(a), Fig. 11(b), Fig. 11(c)
and Fig. 11(d) show the comparisons when n = 24, 48, 96
and 192, respectively. Since, in FiConn and BCN, server-
to-server-direct hops exist, when c increases, their scaled
diameter will not increase as sharply as that of DPillar.
Though FiConn and BCN have a large scaled diameter
when c = 0, as c increases, their scaled diameters tends to
be comparable with that of DPillar. SWCube has a larger
scaled diameter than DPillar when switch port number
is small; when the switch port number becomes large,
SWCube tends to have a comparable, or even lower
scaled diameter than that of DPillar. SWKautz always
has the lowest scaled diameter because its network order
is much greater than that of all the others. The scaled
diameter of SWdBruijn is almost overlapped with that
of SWKautz, due to their various similarities.

9 EVALUATION OF SWCUBE AND SWKAUTZ
In this section, we revert to the situation when c = 0,
which is the assumption that all existing works have
adopted. As readers may have already noticed, SWKautz
and SWdBruijn demonstrate an extremely high degree
of similarity. In the following, we just choose SWKautz
as the representative of the two, and omit discussions
on SWdBruijn. Since SWCube and SWKautz are based
on the generalized hypercube and Kautz graph, respec-
tively, they are conjectured to have high degrees of



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2389847, IEEE Transactions on Computers

LI AND WU: ON DATA CENTER NETWORK ARCHITECTURES FOR INTERCONNECTING DUAL-PORT SERVERS 11

regularity, high width, good fault-tolerance, rich parallel
paths, as well as other nice properties for DCNs. In our
work, we focus on their properties related to routing.

9.1 Routing Properties of SWCube and SWKautz
Lemma 3: The shortest path length between two

servers, S = (S1, S2) and D = (D1, D2), in an SWCube
can be calculated by: 1 + min {hd(S1, D1), hd(S1, D2),
hd(S2, D1), hd(S2, D2)}, where hd() is the Hamming
distance between two switches.

Proof: For a packet at server S to reach D, it must go
through one of the two switches S1 and S2, and one of
the two switches D1 and D2. In a generalized hypercube,
the shortest path length between two nodes is their
Hamming distance; thus, in the shortest path between
any pair of two switches, say S1 and D1, there exist at
most hd(S1, D1) servers. Thus, the shortest path length
between two servers S and D is 1 + min {hd(S1, D1),
hd(S1, D2), hd(S2, D1), hd(S2, D2)}.

Theorem 9: For two servers S = (S1, S2) and D =
(D1, D2), if their shortest path length is l ≥ 2, their exist
at least l−1 server-disjoint shortest paths between them.

Proof: For l ≥ 2, min{hd(S1, D1), hd(S1, D2),
hd(S2, D1), hd(S2, D2)} ≥ 1, without lose of generali-
ty, we assume min{hd(S1, D1), hd(S1, D2), hd(S2, D1),
hd(S2, D2)} = hd(S1, D1). According to the hypercube
properties, there exist hd(S1, D1) switch disjoint short-
est paths between S1 and D1. Obviously, these paths
are also server-disjoint. Therefore, there exist at least
hd(S1, D1) = l−1 server-disjoint shortest paths between
S and D.

It has been shown that, there exist r node-disjoint
paths between any pair of nodes in a KA(r, k) [23], and
their lengths are no greater than k + 2.

Theorem 10: There exist at least n/2 server-
disjoint paths between any pair of servers in an
SWKautz(n/2, k), and their lengths are no greater than
k + 3.

Proof: This theorem follows from the aforementioned
fact. Plus 1 is imposed on k + 2 because the length of
the path between two servers is less than or equal to the
number of servers in a path between their home switches
plus 1.

As Theorems 9 and 10 have indicated, both SWCube
and SWKautz have good fault-tolerance properties.

9.2 Average Path Length
For SWCube, the shortest path length between any pair
of servers can be easily calculated. For SWKautz, con-
sidering two servers S = (S1, S2) and D = (D1, D2),
we first calculate the shortest path length among the
following paths as in the original Kautz graph: S1→D1,
D1→S1, S1→D2, D2→S1, S2→D1, D1→S2, S2→D2,
D2→S2 by the shortest path routing algorithm of Kautz
graph [20]; denote this value as lm. Then the shortest
path length between S and D in SWKautz is l ≤
l
′

= 1 + lm. The actual shortest path length l may
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Fig. 12. Path length distributions. (a) SWCube(13, 2) and
SWKautz(12, 2). (b) SWCube(9, 3) and SWKautz(12, 3).

not be equal to l
′

because Kautz is a directed graph,
while SWKautz is undirected. More details are omitted.
We calculate shortest path lengths and l

′
values of all

possible pairs of servers in SWCube and SWKautz,
respectively. Fig. 12(a) shows the shortest path length
distribution of SWCube(13, 2) and l

′
value distribution

of SWKautz(12,2). Fig. 12(b) shows the same distribu-
tions of SWCube(9, 3) and SWKautz(12, 3). In the figures,
a bar represents the percentage of paths whose lengths
are equal to the corresponding value. The average short-
est path lengths of SWCube(13, 2) and SWCube(9, 3)
are 2.66 and 3.42, respectively; the average l

′
values

of SWKautz(12, 2) and SWKautz(12, 3) are 2.51 and
3.45, respectively. Since SWKautz(12, 3) consists of 22,464
servers, and SWCube(9, 3) only consists of 8,748 servers,
one might conjecture that the SWKautz has a greater
average shortest path length. However, the average l

′

values is just slightly greater than the average shortest
path length of SWCube(9, 3). Thus, the shortest path
length in SWKautz(12, 3) is also small.

9.3 Routing Simulation With Congestion
We develop a proprietary simulator to conduct rout-
ing simulations to evaluate SWCube’s and SWKautz’s
performances, under different degrees of network traffic
flow pressure. Notice that our emphasis is on evaluating
the architectures themselves, instead of on designing the
most efficient routing algorithms. Our simulations are
time step (ts) based. We consider single-packet flows and
a fixed packet size. Thus, we have a fixed transmission
delay, which is considered as one unit of time, which is
the value of one time step. We assume that each server
can send a packet at each time step; however, it can send
at most one packet at each time step. If more than one
packet needs to be sent out, the packages will be queued
by the First-In-First-Out (FIFO) scheme. If packets arrive
at a server at the same time, the packet with a smaller
flow index is assigned a higher priority. At each time
step, only the packet at the server’s queue head will
be sent to this packet’s next server, and other packet(s)
should be delayed. These idealistic assumptions comply
with the HOH assumption that delay at switches is
negligible, compared to the delay at servers.

In SWCube, we adopt the shortest path for SWCube,
which can be easily achieved according to Lemma 3; as
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Fig. 13. Routing simulation for SWCube(13, 2) and
SWKautz(12, 2) without and with congestion.

for selecting the shortest path from switch W 1 to W 2

in SWCube, the path that corrects the switch address
string from the first bit to the last bit is selected. Since
shortest path routing in Kautz graph may cause a severe
congestion problem [20], we choose the long path rout-
ing algorithm for SWKautz. Each server chooses its left
switch as its home switch; then, a path from a source
server’s home switch to a sink server’s home switch
can be constructed by the long path routing algorithm
[20]. A flow’s delay without congestion is just the flow’s
path length, while a flow’s delay with congestion is
the time step, ts’s value, at which the flow arrives at
its destination. Though our path selection is fixed, by
simulating a sufficiently large number of flows, the path
selection of all the servers in the network will tend to be
randomized.

We conduct simulations for SWCube(13, 2) and
SWKautz(12, 2) separately. SWCube(13, 2) has Nv =
2028 servers, and SWKautz(12, 2) has Nv = 1872 servers.
Both of them use 24-port switches. We vary the number
of flows as 100, 200, 300, · · · , 1000. For each number of
flows, we randomly generate 100 sets of flows and
calculate the average delay. In each set of the flows,
flows’ sources are in one half of all the servers, and their
destinations are in the other half of all the servers. Par-
titioning the servers into two halves is based on servers’
addresses. Specifically, each server has a unique address,
which is converted into a unique integer, which can be
from 0 to Nv − 1; then, the first half includes servers
from 0 to Nv/2− 1, and the second half includes servers
from Nv/2 to Nv − 1. Fig. 13 shows the results of our
simulation. “SWCube WoC”, “SWCube WC”, “SWKautz
WoC”, and “SWKautz WC” represent the average delays
of SWCube without congestion, SWCube with conges-
tion, SWKautz without congestion, and SWKautz with
congestion, respectively. When the total number of flows
is small, the average delay with congestion is almost the
same as that of the average delay without congestion.
For the case in which the number of flows is 100, the
average delays with congestion are only 3.36% and 2.53%
greater than the average delays without congestion for
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Fig. 14. Routing simulation for SWCube(17, 3) without
and with congestion.
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Fig. 15. Routing simulation for SWKautz(12, 3) without
and with congestion.

SWCube(13, 2) and SWKautz(12, 2), respectively. When
the number of flows increases, the average delays with
congestion only slightly increase linearly, even when
about half of the servers initiate a flow at the same time.
For the flow number equal to 1,000, the average delays
with congestion are 31.17% and 27.15% greater than the
average delays without congestion for SWCube(13, 2)
and SWKautz(12, 2), respectively.

We also conduct simulations for SWCube(17, 3) and
SWKautz(12, 3) separately. SWCube(17, 3) uses switches
with n = 48 ports, and has Nv = 117, 912 servers.
For SWCube(17, 3), we vary the number of flows from
5,000 to 6,0000 with a step size of 5,000. The results
for SWCube(17, 3) are shown in Fig. 14. The average
delay without congestion is about 3.6890 for all sets
of flows. The average delay with congestion, when the
number of flows is 5,000, is 3.8390, which is 4.06%
greater than the average delay without congestion. When
the number of flows is 60,000, the average delay with
congestion is 5.0826, which is 37.78% greater than the
average delay without congestion. SWKautz(12, 3) uses
switches with n = 24 ports, and has Nv = 22, 464 servers.
For SWKautz(12, 3), we vary the number of flows from
1,000 to 11,000 with a step size of 1,000. The results for
SWKautz(12, 3) are shown in Fig. 15 The average delay
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without congestion is about 3.8388 for all sets of flows.
The average delay with congestion, when the number
of flows is 1,000, is 3.9198, which is 2.11% greater than
the average delay without congestion. When the number
of flows is 11,000, the average delay with congestion is
4.8076, which is 25.24% greater than the average delay
without congestion.

From the above simulations, we can see that both
SWCube and SWKautz can efficiently handle network
congestion. The simulation results for SWKautz show
that, though SWKautz’s long path routing has a greater
average delay, its delay with congestion increases less
significantly. Also, simulations for large-scale architec-
tures, namely SWCube(17, 3) and SWKautz(12, 3) show
that SWCube and SWKautz demonstrate good scalabili-
ty.

10 CONCLUSION AND FUTURE WORK

We consider the design and analysis of DCN architec-
tures for interconnecting dual-port servers in this paper.
Unlike all existing works, we propose distinguishing a
sever-to-server-direct hop and a server-to-server-via-a-
switch hop when calculating the distance of two servers,
to unify the design of DCN architectures for intercon-
necting dual-port servers. Next, we aim to maximize
the number of servers, given a network diameter and a
switch port number. Motivated by the diameter/degree
problem in traditional graph theory, we give an upper
bound on this maximal number. Then, we propose three
novel architectures which try to approximate this upper
bound: SWCube, SWKautz, and SWdBruijn which are
based on the generalized hypercube, Kautz graph, and
de Bruijn graph, respectively. We compare our proposed
architectures with three existing ones in various aspects.
Results show that SWCube, SWKautz, and SWdBruijn
demonstrate advantages in various aspects. Analysis and
simulations on SWCube and SWKautz in detail reveal
that they also maintain good properties for DCNs.

Our future work will focus on designing efficient rout-
ing algorithms for the proposed architectures. Another
direction of our future work is to consider intercon-
necting servers with more than two NIC ports. Also,
considering the design and analysis of DCNs with new
technologies, such as wireless DCNs [24] and optical
switching [25], deserves future research endeavor.
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