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Crowdsourcing is a new approach which obtains information or input for a particular
task by enlisting the services of the crowd. In recent crowdsourcing applications, the
hybrid human–computer approach has been widely studied, to take advantage of both
human beings and computers. In this paper, we propose a novel such application: blood
typing for people in a family. We propose the BloodTyping method. It selects some
members to take medical blood type tests, and to determine other family members’
blood types, based on the inheritance rules. The aim is to reduce the number of medical
tests, and thus, lower the cost. We extract rules for both þ induction and 2 induction.
The former is to predict children’s blood types from parents’, and the latter is to
backward-induce a parent’s blood type, given those of children and the other parent.
Different combinations of blood types can induce different results: some may be an
exact blood type, while others are composed of several blood types. Our method is
optimised by conducting the cases which generate exact blood types first. The order is
guided by extra-information via crowdsourcing, including the distribution of blood
types with respect to the birthplace, and the personality, which may indicate some
specific blood types. Taking a family with two parents and all children as a basic unit,
the algorithm can be conducted simultaneously among different families in a
decentralised way. The simulation results show that BloodTyping can significantly
reduce the required number of blood tests.

Keywords: crowdsourcing; hybrid human–computer; blood typing; inducing blood
type; inheritance rules

1. Introduction

Crowdsourcing is the practice of obtaining needed services, ideas or content by soliciting

contributions from a large group of people (i.e. the crowd). In crowdsourcing applications,

the hybrid human–computer approach has gained substantial interest [1,3,7,20,22], to take

advantage of both human beings and computers. Human beings are generally good at

identification and semantic analysis. They can be classified into two categories of ordinary

crowds and the experts, according to whether the expertise is needed or not. Hiring experts

usually takes a high cost. Computers can handle large-scale numerical analytics with a

lower cost [10], but they are not efficient in performing some specific tasks. The cost of the

crowd (crowdsourcing) falls in between experts and computers. Generally speaking, the

more accurate the results we desire, the more cost we should pay. Properly incorporating

experts, computers and the crowd can produce significant results economically, e.g.

CrowdDB [7], CrowdSensing [21] and reCAPTCHA [19].
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In this paper, we propose another novel application, i.e. non-emergent blood typing for

all members in a family. Blood typing is the process of learning which blood type a person

has, usually by taking a medical test. Knowing blood type can benefit people in multiple

aspects, such as (1) keeping healthy (e.g. to eat or exercise as suggested); (2) preventing

the risk for some specific diseases (e.g. [13] shows that blood type can actually predict the

risk for heart disease) and (3) for urgent blood transfusion (http://en.wikipedia.org/wiki/

Blood_transfusion) when medical blood type test resources are unaccessible. However, is

it necessary to give each member a medical test, for the task of knowing all their blood

types? Is there any way to reduce the number of medical tests, and to hasten the process?

We resort to crowdsourcing for this end. Similar to the above-mentioned examples, in

order to complete the task with higher efficiency and lower costs, it also needs a careful

design of the incorporation of experts (i.e. medical test), computers and the crowd.

We formulate this problem, and propose a hybrid blood typing framework which aims to

minimise the medical tests for determining all the blood types.

We take a natural family (http://www.worldcongress.org/WCF/wcf_tnf.htm) that

consists of two parents and their children as a basic unit, denoted as a family unit.

Generally speaking, each person (adult) may be involved in two family units, i.e. where

he/she takes the role of a child or a parent. Taking v7 in Figure 1(b) for instance, he/she is a

child in family unit 1, with v1 and v2 being the parents, and v5 and v6 being the siblings.

Meanwhile, he/she is a parent in family unit 3, with v8 being his/her spouse, and v9 and v10
being the children. Additionally, there are several blood type groups. Here, we focus on

the ABO blood groups, where there are four blood types: A, B, AB and O; and six gene

types: AA, AO, BB, BO, AB and OO.

Figure 1. (a) The illustration of accuracy and cost in hybrid human–computer applications. (b) An
example family tree with three family units. Each node is a person with his/her blood type at the side;
each edge has a direction from parent to child.

W. Jiang et al.2
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Motivation example. Our goal is to reduce the number of medical blood type tests on

members in a family (we will use test, blood test or medical test with the same meaning).

We know that human blood types are inherited from parents. Using the inheritance rules,

we can derive the possible blood types of offspring. However, usually there are several

possible results for each child. Taking family unit 3 in Figure 1(b) for instance, the process

of determining children’s blood types is given in Figure 2(a). Suppose v7 has type A blood,

and v8 has type B. The corresponding genotype for A is AA or AO, while genotype for B is

BB or BO. Then, taking one gene from each parent, the child’s blood type can be A, B, AB

or O, each with an individual probability. Here, we cannot tell what the exact blood type

will be. However, given the blood type of a parent and those of children, we can backward

induce to get the other parent’s blood type (Figure 2(b)). We can induce that v8’s blood

type is B, given the others’ blood types shown in the figure. Then, we can save one blood

test for family unit 3.

Based on this, we can extract two key points for saving medical tests: (1) The early

detection of forward induction or backward induction, that is, to save tests on children or

on a parent. (2) The blood typing order, i.e. determining which members to test earlier in

order to induce others’ blood types.

Basic ideas and contributions. We propose a hybrid human–computer method,

BloodTyping, to test or induce blood types for all members in a family. We extract

induction rules for both predicting children’s blood types from those of parents (i.e.

þ induction representing forward prediction), and rules from children and a parent to

Figure 2. Inducing blood type for family unit 3: (a) forward (b) backward.

International Journal of Parallel, Emergent and Distributed Systems 3

D
ow

nl
oa

de
d 

by
 [

T
em

pl
e 

U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 0
6:

23
 1

4 
Se

pt
em

be
r 

20
15

 



induce the other parent’s blood type (i.e. 2 induction representing backward induction).

We find that, if only considering blood types themselves (neglecting their distributions),

the optimal blood typing order is to first test type O, then test AB, finally test A and B.

In addition, for the children’s blood type set, we care more about new blood types.

Therefore, if we can estimate who are type Os, or which members may have different

blood types, the saving chance will be increased. To this end, we incorporate

crowdsourcing, to gain information such as the birthplaces, and the personalities which

may indicate some specific blood types [6, 16]. This information can help estimate the

possible blood types and can guide the blood typing order. Additionally, we differentiate

three types of family relations – intermarriage families, independent families and

hierarchical families. We also design a decentralised blood typing algorithm, which can

be conducted simultaneously among different families.

Our contributions are manifold:

(1) As far as we know, we are the first to propose the novel application of hybrid

human–computer blood typing for a family. Our work can be used for universal

medical assistances, or blood type statistics, especially in some specific areas or

scenarios where there are a limited number of medical resources.

(2) We extract rules for both þ induction and 2 induction, to induce blood types and

save the medical tests. During the extraction, we find that the earlier determination

of types O and AB can benefit the savings of medical tests.

(3) We incorporate crowdsourcing to guide the blood typing order. To be specific, we

first estimate the possible blood types by the birthplace and personality, then we

select a minimal subset of members to take medical tests.

(4) We devise a decentralised blood typing algorithm to reduce the time cost.

(5) We conduct extensive simulations to validate the effects of the proposed method.

It shows that the number of medical tests can be reduced significantly.

The remainder of this paper is organised as follows: we formulate our problem in Section 2

and then propose a blood typing framework in Section 3. Section 4 discusses the optimal

blood typing order. Section 5 devises a decentralised blood typing algorithm.

An experimental study is presented in Section 6. We cover related work in Section 7,

and present our conclusion and future work in Section 8.

2. Problem formulation

In this section, we first formally describe the system settings. Then, we define two types of

inductions ofþ induction and2 induction (Section 2.1), and introduce howwe incorporate

crowdsourcing to help determine the order of blood typing (Section 2.2). Finally, we

formulate the problem we address. Notations used in this paper are described in Table 1.

A BloodTyping system is constructed based on a family tree G ¼ ðV;EÞ, with V ¼
fv1; . . . ; vn} being the node set and E being the directional edge set. Each node is a

member of the family. Each edge eij indicates that vi is a parent of vj. The blood type of a

node v is denoted as tv, while the blood type set of nodes in C is denoted as TC. The aim is

to induce some members’ blood types based on the inheritance rules.

2.1 1 Induction and 2 induction

We first give the definitions of þ induction and 2 induction. Then, we extract the rules to

guide the blood typing process.

W. Jiang et al.4
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Definition 1:þ induction. It is the process used to predict children’s blood types, given

those of parents.

Definition 2: 2 induction. It is the process of predicting a parent’s blood type, given

those of children and the other parent.

It is worth noting that, given only children’s blood type, we may induce the blood type

combination of two parents. However, we cannot distinguish which one is the father’s and

which one is the mother’s. Therefore, in2 induction, we need a parent’s blood type as the

known condition. As a result, we can save at most one medical test using 2 induction.

For theþ induction, Table 2 shows the probabilities that a child has some blood types,

given those of two parents. We can see that, there are a total of 10 possible combinations

for parents’ blood types. Among them, only the first case, O and O, can produce children

with one exact blood type. This occurs in 1 out of 10 cases; the proportion is 1=10 ¼ 10%.

Table 3 shows the results of 2 induction. The first column depicts the blood type

combinations of children. For the four ABO blood types, each may or may not occur in

children, thus there are a total of 24 ¼ 16 cases. The first row depicts the four possible

blood types of a parent. The remainder in the table is the induced possible blood type of the

other parent. We can see that there are a total of 16�4 ¼ 64 cases. Among them, 17 cases

cannot happen (represented by “ 2 ” in the table). And 15 out of 47 cases can be exactly

induced. The proportion is 15/(64 2 17)<31.915%.

The above comparison indicates that 2 induction has more instances to save medical

tests than þ induction. However, þ induction may actually save more tests than

2 induction for two reasons: (1) þ induction can save many tests when there are many

Table 1. Notations.

Symbol Description

G ¼ ðV ;EÞ A family tree a family unit with node set V And edge set E
F A family unit
tv Blood type of node v
TC Blood type set of node set C
PvðtÞ Probability that v’s blood type is t
k Maximum number of children in a family
v fp1; p2; c1; . . . ; cn}, members with tentative order
Eþ Expected saving number of þ induction
E2 Expected saving number of 2 induction

Table 2. Blood types by þ induction.

Parentsnchild A (%) B (%) AB (%) O (%)

{O, O} 0 0 0 100
{A, O} 75 0 0 25
{A, A} 93.75 0 0 6.25
{A, B} 18.75 18.75 56.25 6.25
{A, AB} 50 12.5 37.5 0
{B, O} 0 75 0 25
{B, B} 0 93.75 0 6.25
{B, AB} 12.5 50 37.5 0
{AB, O} 50 50 0 0
{AB, AB} 25 25 50 0

International Journal of Parallel, Emergent and Distributed Systems 5
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children of type O parents. All of them will have type O blood, and will save medical tests.

Meanwhile, 2 induction can save at most one test on a parent. (2) Within different

population, there are varying blood type distributions. For instance, if type O represents

50% of the population, then the chance of an O;O combination will be quite large,

indicating that þ induction may occur frequently. Meanwhile, other blood types (or

combinations) will take a small proportion, leading to the fewer occurrence of

2 induction.

Based on the inheritance rules on blood types (see Appendix or http://en.wikipedia.

org/wiki/ABO_blood_group_system), we extract the following induction rules:

Rule 1. Only when both parents are with blood type O can the children’s blood type be

predicted exactly.

Rule 2. If the children’s blood type set contains fO}, then, the parents cannot be type

AB; and vice versa.

Rule 3. If the children’s blood type set contains fAB;O}, then, the parents must be a

type A ðAOÞ and a type BðBOÞ.
Rule 4. If the children’s blood type set is fX;O} ðX ¼ A or BÞ, and parents are one X

and another O, then, determining type O can help to induce the other, but not vice versa.

Rule 5. If a family has no child, no medical test can be saved.

Rule 6. If a family has only one child, use þ induction only, since no medical test can

be saved in 2 induction with a child.

Rule 1 can be applied toþ induction. In this case, there is only one possible blood type

for each child, that is O. The case is very useful for that, as long as we know the two

parents’ blood types, all children’s blood types can be determined. Therefore, a type O

parent deserves an earlier test. Rules 2, 3 and 4 can be applied to 2 induction. Only the

cases in which children’s blood types contain O do we have the chance to save medical

tests (of a parent). Therefore, a type O child also deserves an earlier test. Rule 4 suggests

the earlier test of a type O parent in 2 induction. Rules 5 and 6 describe two special cases

of no-child and one-child families.

These rules, and the two tables, indicate that type O blood has a large impact on the

final savings of medical tests. In addition, types A and B cannot be distinguished from each

Table 3. Blood types by 2 induction.

Childrennparent A B AB O

{O} A, B, O A, B, O – A, B, O
{AB} B, AB A, AB A, B, AB –
{AB, O} B A - –
{B} B, AB A, B, AB, O A, B, AB, O B, AB
{B, O} B A, B, O – B
{B, AB} B, AB A, AB A, B, AB –
{B, AB, O} B A – –
{A} A, B, AB, O A, AB A, B, AB, O A, AB
{A, O} A, B, O A – A
{A, AB} B, AB A, AB A, B, AB –
{A, AB, O} B A – –
{A, B} B, AB A, AB A, B, AB, O AB
{A, B, O} B A – –
{A, B, AB} B, AB A, AB A, B, AB –
{A, B, AB, O} B A – –

W. Jiang et al.6
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other. Therefore, intuitively, the optimal order is first to test type O, then type AB and

finally A and B. However, the optimal order requires knowing the real blood types upfront,

which cannot be achieved in reality. To solve this issue, we propose incorporating

crowdsourcing approaches to estimate the possible blood types, so as to guide the blood

typing order.

2.2 Crowdsourcing

We want to incorporate crowdsourcing to estimate the possible blood types. As far as we

know, the most common study about blood types is the distribution in different areas, and

the relation between blood type and personality. Due to the dynamic property of both

blood type distribution and personality, there is no definite conclusion about that so far.

However, those studies can at least give us some suggestions.

Many crowdsourcing platforms (e.g. Amazon Mechanical Turk (AMT)) provide

Application Programming Interfaces (APIs) for calling workers to complete micro-tasks

(human intelligent tasks [HITs]) [20]. To gain the information about a person’s

birthplace and personality, we can invite him/her to join the investigation, and answer

simple questions such as (1) “In which area were you born?” (2) “Which description fits

your personality the best?” Note that we will not predict a person’s blood type directly

by the answers. We only estimate his/her possible blood type by considering the

birthplace or the personality. Based on the possible blood type, an initial blood typing

order can be determined. Then, some members will take real medical tests, and the

following order will be dynamically updated according to the real results.

2.3 Problem description

To process blood typing, we first use crowdsourcing to generate a candidate set of testing

nodes. The goal of our work is to get all nodes’ exact blood types. In our setting, some

nodes will be selected by crowdsourcing results, and will take real medical tests; others’

blood types will be induced using induction rules that we have previously extracted.

We call the former ‘crowdsourced’ (tested) nodes, and the latter ‘induced’ nodes.

Typically, it is more expensive to take a medical blood type test (about 10 dollars per

person) than to perform a crowdsourcing task (about 25 cents per HIT). Thus, there is a

financial incentive to minimise the number of medical tests. Formally, we define our

problem as follows.

Definition 3: Blood typing problem. Given a set of family units where the blood types

of all members need to be determined, our goal is to select a minimum number of nodes

who will take real blood type tests, such that for the other nodes, their blood types can be

induced.

3. Bloodtyping: the framework

In this section, we propose a BloodTyping framework. Our framework takes as input a

set of family units for which the blood types of all members need to be known. People

who are involved in this work will be asked to take simple crowdsourcing tasks. They

will choose birthplaces from a series of given areas, and will answer some personality-

related questions, so as to estimate their possible blood types. They are then sorted by

these types. Some of them will be selected to take medical tests to determine their

blood types, while others will be induced by þ induction or 2 induction. In this paper,

International Journal of Parallel, Emergent and Distributed Systems 7
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we take both medical blood type tests and þ /2 induction as blood typing. As shown in

Figure 3, our framework mainly consists of two components, crowdsourcing and blood

typing. Their details will be described in the following two subsections. We focus on

studying the optimal blood typing order, and how to incorporate crowdsourcing to

guide the order.

3.1 Crowdsourcing component

As mentioned before, we find that the blood typing order will affect the number of induced

users and tested users. Based on this observation, in our framework, the crowdsourcing

component attempts to identify the optimal blood typing order to minimise the number of

tested nodes, and maximise that of the induced nodes. Thus, it takes as input a set of family

units without knowing blood types, and outputs a sorted list of nodes, as shown in

Algorithm 1. For the nodes who are parents in a family, we select possible type Os first.

For those who are children, we prefer possible type Os and ABs; However, we select each

type only once. For instance, we can first select a child with possible type O; for the

remainders, each time, we will select a child who has a different possible blood type than

that of previously selected children. In this way, we can determine the children’s blood

type set earlier, and thus induce a parent’s blood type earlier. In Algorithm 1, lines 1–2

take a time complexity of OðnÞ, where n is the total number of nodes. Line 4 takes a

constant time, because we only compare who is more possibly type O for two parents;

lines 5–6 take 4�OðnÞ, because we only select at most four representatives for children.

Therefore, the total time complexity is OðnÞ.
A blood typing order can be taken as a sorted list of users, denoted by

v ¼ fp1; p2; c1; . . . ; cn}, where the first two are the parents, and the remainder ones are

the children; p2’s order is not determined. Among all children, ci’s ð2 # i # nÞ blood type
will be either tested or induced after ci21. Take family unit 3 in Figure 1(b) for instance, an

optimal order is fv7; v8; v10; v9}. It means that the blood types of v7; v10 and v9 will be

tested, and v8’s type will be induced (if possible), or finally tested (if it cannot be induced).

Figure 3. The hybrid framework.

W. Jiang et al.8
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Algorithm. 1 Crowdsourcing (F)

Input: F, a family unit for blood typing.

Output: F
0
, a list of members with tentative order.

1: for each node v in F do

2: Crowdsourcing for birthplace and personality. Using this information, estimate

v’s possible blood type.

3: Add nodes into F0 based on their possible blood types:

4: Step 1: put a parent who is more like type O as the first, and another as the second.

5:Step2: forchildren ina family, add thepossible typeOand typeABonesbeforeothers.

6: Step 3: add the child who has a different possible blood type than the previously

selected children.

7: return F0 ¼ fp1; p2; c1; . . . ; cn}.
8: Note that the order is a tentative one and will be determined dynamically in

Algorithm 2.

3.2 Blood typing component

In the blood typing component, we select some nodes to take medical tests and induce

others’ blood types by usingþ /2 induction. Without loss of generality, we assume that the

medical test results are always correct. Then, the main task is to improve the efficiency of

blood type induction.

Algorithm 2. BloodTyping ðF0Þ
Input: F0, the resulting set of Algorithm 1.

Output: T=I, the set of tested/induced members.

1: //for a family having no child

2: if F0 ¼ fp1; p2} then

3: return T ¼ fp1; p2}, I ¼ B.

4: //for a family having one child

5: if F0 ¼ fp1; p2; c1} then
6: Test parents p1; p2prime; blood types.

7: if tp1 ¼ O and tp2 ¼ O then

8: return T ¼ fp1; p2}, I ¼ fc1}.
9: else return T ¼ fp1; p2; c1}, I ¼ B.

10: //for a family having more than one child

11: Test p1’s blood type.

12: if tp1 ¼ O and p2 is possibly type O then

13: Test p2’s blood type.

14: if tp2 ¼ O then

15: return T ¼ fp1; p2}, I ¼ fc1; . . . ; cn}.
16: else return T ¼ fp1; p2; c1; . . . ; cn}, I ¼ B.

17: else //Begin to test children’s blood types.

18: for each child c in F0 do
19: Test c’s blood type. T ˆ c.

20: if I ¼ B then

21: Induce p2’s blood type.

22: if can induce an exact blood type then

23: return T ¼ fp1; c1; . . . ; cn}, I ¼ fp2}.
24: return T ¼ fp1; p2; c1; . . . ; cn}, I ¼ B.

International Journal of Parallel, Emergent and Distributed Systems 9
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Based on the sorted list resulting from the crowdsourcing process, we select some

nodes to take medical tests. As shown in Algorithm 2, there are three cases according to

the number of children. (1) A family with no children cannot save tests (lines 1–3). (2)

A family having only one child may save a test only when both parents are type O, so

we first test the parents’ blood types (lines 4–9). (3) For a family with more than one

child (lines 10–24), at least a parent p1 is selected for testing (line 11). If his/her blood

type is O, and the other parent p2 is possible type O, then we test p2’s blood type (lines

12–13). If we get another O, then, all the children’s blood types are O by the

þ induction rule (lines 14–15); otherwise, we cannot save medical tests (line 16). If the

first parent is not O, or p2 is not possibly type O, we will test the children and try to

induce p2’s blood type (lines 17–24): each time we test a child’s blood type in the

order proposed in F0 (line 19). Then we try 2 induction to see if p2’s blood type can be

induced as early as possible (lines 20–23). The worst-case scenario is after all the

children’s blood types are tested, o2’s blood type cannot be induced (line 24). The total

time complexity is OðnÞ.

4. Optimal blood typing order

As we have mentioned before, different blood types take different roles in inducing others’

blood types. In this section, we first provide two theorems to formally describe the optimal

blood typing order. Then, we study how the estimated blood types will benefit the results,

and how to incorporate crowdsourcing to determine the order of blood typing.

4.1 Two theorems

We propose two theorems, in which we only consider the blood types themselves and

neglect their distributions.

Theorem 1: Considering only the blood types, the optimal blood typing order is to test type

O first, and then AB, A/B.

Proof. We consider four cases of testing four blood types. In each case, we differentiate

two subcases of whether we are testing a parent or a child. We can prove the theorem

by calculating (1) the number of possible blood types that those cases may generate,

denoted as ay
i , where i [ 1; 4

� �
, and y can be p or c, represents the testing of a parent or

a child; and (2) the number of possible blood types they generate through combination

with other types, denoted as by
i . The fewer possible blood types there are, the better the

case is.

Case 1: test type O. (1) If we test a parent who has type O blood, then, the possible

blood types for his/her children could be O, A and B. It cannot be AB. Therefore, ap
1 ¼ 3.

When combining with other blood types, we can get bp
1 ¼ 2 according to Table 2. (2) We

can get the same results for parents if we test a child who has type O blood. Therefore,

ac
1 ¼ 3. When combining with other blood types, we can get bc

1, which can be any value in

f1; 3}, according to Table 3.

Case 2: test type AB. (1) If we test a parent who has type AB blood, then, the possible

blood types for his/her children could be AB, A and B. It cannot be O. Therefore, ap
2 ¼ 3.

When combining with other blood types, we can get bp
2, which can be any value in f2; 3}

(Table 2). (2) If we test a child who has type AB blood, we can get the same results for

parents. Therefore, ac
2 ¼ 3. When combining with other blood types, we can get bc

2, which

can be any value in f1; 2; 3} (Table 3).

W. Jiang et al.10
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Case 3: test type A. (1) If we test a parent who has type A blood, then, the possible

blood types for his/her children could be O, A, B and AB. Therefore, ap
3 ¼ 4. When

combining with other blood types, we can get bp
3,which can be any value in f2; 3; 4}

(Table 2). (2) If we test a child who has type A blood, the parents could be any ABO blood

types. Therefore, ac
3 ¼ 4. When combining with other blood types, we can get bc

3, which

can be any value in f1; 2; 3; 4} (Table 3).

Case 4: test type B. Do the same process with case 3. Then, ap
4 ¼ 4, ac

4 ¼ 4, bp
4 is in

f2; 3; 4}, and bc
4 in f1; 2; 3; 4}. By comparing ay

i and by
i , we complete the proof. A

Theorem 2. Considering the role of a member in a family, for only the parents, Theorem 1

still applies. For parents and children, or only the children, an additional principle is to test

different blood types first.

Proof. We consider the following two cases to show why testing different blood types first

will be beneficial.

Case 1: for parents and children. As shown in Table 3 for2 induction, for all the cases

that a parent p’s blood type can be exactly induced, p provides a genotype that some

children have, but the given parent does not. It indicates that selecting to test a parent who

may have a different genotype than his/her children will have a high probability of exact

induction.

Case 2: for only children. Again, we consider2 induction in Table 3. We can see that a

single blood type of children cannot help induce parent’s exact blood type. The more

different blood types there are in children’s combination set, the larger the probability that

we can induce. A

4.2 Estimated blood types and expected savings

Wediscuss how the estimated blood type can impact the expected saving number ofmedical

tests. Let p1 represent a parent in a family, and p2 be another; and C ¼ fc1; . . . ; ck} be the
children. Suppose we can estimate parents’ blood types as being O with probability Pp1ðOÞ
and Pp2ðOÞ. Then, the expected saving number of þ induction will be as follows:

Eþ ¼ Pp1 ðOÞ�Pp2ðOÞ�k; ð1Þ

2 induction is more complex because of the varying number of children. Taking k ¼ 2 for

instance, children’s blood type set TC can be fO}, fA}, fB}, fAB}, fAB;O}, fA;O}, fB;O},
fA;B}, fA;AB}, fB;AB}. Among them, only fAB;O}, fA;O}, fB;O}, fA;B} have the

chance to induce an exact blood type. Together with a parent’s blood type, a total of seven

cases can save one medical test (Table 3): fAB;O}< fA}, fAB;O}< fB}, fA;O}< fB},
fA;O}< fO}, fB;O}< fA}, fB;O}< fO} and fA;B}< fO}. Let j be the index of

the seven cases ðj [ ½1; 7�Þ. Taking the first case fAB;O}< fAA} for instance, the expected
saving number E2

1 can be calculated as E2
1 ¼ ½Pc1ðABÞ�Pc2ðOÞ þ Pc2 ðABÞ�

Pc1 ðOÞ��½Pp1ðAÞ þ Pp2ðAÞ�. The total expected savings can be summarised as follows:

E2 ¼
X

j[½1;7�
E2
j ð2Þ

International Journal of Parallel, Emergent and Distributed Systems 11

D
ow

nl
oa

de
d 

by
 [

T
em

pl
e 

U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 0
6:

23
 1

4 
Se

pt
em

be
r 

20
15

 



4.3 Crowdsourcing for guiding blood typing order

In the above subsection, we calculate the expected saving numbers, given the probability

of some member being some blood type. Now, we will calculate this probability according

to the birthplace and personality. It is worth noting that, heuristically, birthplace takes

more of an effect on the parents than on the children, while personality takes more of an

effect on the children than on the parents. The intuitive reason is that the two parents may

come from two totally different places. While for children in the same family (although

they may be born in different places), the birthplace should not impact them much.

In addition, the personality of an adult is formed by many factors, rather than only the

blood type, while that of a child can be taken as formed by birth (i.e. it has not been shaped

by other factors).

Some prior information will be used by the Bayes equation [11, 17]. Again, consider a

family with parents p1 and p2. Suppose in the area of p1’s birthplace, the probability of a

person being type O blood is PB
p1
ðOÞ. Similarly, we have PB

p2
ðOÞ considering p2’s

birthplace, and Pp
p1
ðOÞ and Pp

p2
ðOÞ considering p1’s and p2’s personality, respectively.

Now, we can calculate Pp1 ðOÞ and Pp2ðOÞ, the probability that p1 is of type O and p2 is of

type O, respectively. Take p1 for instance. Let e1, e2, e3 be the events which are defined as

follows. e1: a person’s birthplace belongs to area A. e2: a person’s personality belongs to

category B. e3: a person’s blood type is O. Let Pðe3je1Þ represent the probability that a

person born in areaA has blood type O and Pðe3je2Þ be the probability that a person whose
personality falls into category B has blood type O. In addition, let Pðe3Þ be the probability
that any person in the world is type O (representing the percentage of all population in the

world have type O blood). Suppose we know Pðe3je1Þ ¼ 0:6, Pðe3je1Þ ¼ 0:4,
Pðe3Þ ¼ 0:45. We also assume that e1 and e2 are independent events, then,

Pðe1e2Þ ¼ Pðe1ÞPðe2Þ. For a person f who is born in area A, and has a personality in

category B, the probability that p1’s blood type is O, Pp1 ðOÞ is calculated as follows:

Pðe3je1e2Þ ¼ Pðe1e2e3Þ
Pðe1e2Þ ¼ Pðe1e2je3Þ�Pðe3Þ

Pðe1Þ�Pðe2Þ
¼ Pðe1je3Þ�Pðe2je3Þ�Pðe3Þ

Pðe1Þ�Pðe2Þ

¼
Pðe3je1Þ�Pðe1Þ

Pðe3Þ � Pðe3je2Þ�Pðe2Þ
Pðe3Þ �Pðe3Þ

Pðe1Þ�Pðe2Þ
¼ Pðe3je1Þ�Pðe3je2Þ

Pðe3Þ
< 0:5333

ð3Þ

Similarly, we can calculate Pp2 ðOÞ, PciðXÞ ðX ¼ fO;AB;A;B}Þ. Moreover, we can

further save some probability calculations for children. As mentioned before, we care

more about the different blood types of children. Hence, we can take only part of them, i.e.

representatives who have different personalities with each other, so as to get all possible

blood types in children. After estimating each member’s possible blood type, we can sort

them by using Algorithm 1.

5. Decentralised bloodtyping

In this section, we first distinguish three types of relationships between two family units:

intermarriage families, independent families and hierarchical families. Then, we present a

W. Jiang et al.12
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decentralised bloodtyping algorithm that can be conducted simultaneously in different

family units.

5.1 Relations between two family units

Definition 4: Intermarriage families. Two family units are called intermarriage if they

have no common nodes, but a node in a unit is married to a node in the other unit.

Definition 5: Independent families. Two family units are independent if they have no

common nodes and they are not intermarriage families. That is, their members are not

relatives.

Definition 6: Hierarchical families. Two family units are hierarchical if they share a

common node who is a child in one family and a parent in another family. The former is

called the parent family, and the latter the child family.

Taking Figure 1(b) for instance, family units 1 and 2 are intermarriage families; family

units 1 and 3, and 2 and 3 are hierarchical families, respectively.

In addition, if taking the set of three families in Figure 1(b) as a bigger unit, there may

also be overlap between the units. In this case, we can adopt a dynamic locking scheme to

ensure each calculation an atomic action while still supporting concurrency. The two-

phase locking (2PL) [2] is such a scheme where consistency is guaranteed if it is well

formed and two-phase. A computation is well formed if it (1) locks an object (e.g. a

person) before accessing it, (2) does not lock an object that is already locked and (3) before

it completes, unlocks each object it has locked. A computation is two-phase if no object is

unlocked before all needed objects are locked.

5.2 Decentralised bloodtyping

In the decentralised BloodTyping algorithm, independent families can conduct blood

typing (Algorithm 2) simultaneously. However, intermarriage families and hierarchical

families should be treated carefully. Taking Figure 1(b) for instance, suppose we treat

family units 1 and 2 first. For family unit 1, the best case is to test v1 (who is possible type

O), and subsequentially test all children, and v2 can be induced. Family unit 2 has only one

child, so parents are first tested, then the child is also tested since his/her blood type cannot

be induced. Then, only one test (for v2) can be saved. However, if we treat family units 1

and 3 first, we can save two tests for v8 and v2. Therefore, we can improve the savings by

properly treating intermarriage and hierarchical families. We design the following

additional rules for the decentralised algorithm.

Algorithm 3. Decentralised BloodTyping (F1; F2; F3)

Input: F1 and F2 are intermarriage families; F1 and F3, F2, and F3 are hierarchical

families.

Output: T , a set of tested nodes; I, a set of induced nodes.

1: Call Algorithm 1 for F1, F2 and F3 simultaneously.

2: Apply Rule 7 to F1, F2 and F3, using the following steps (add tested nodes into T

and induced nodes into I):

3: Step 1: select families with two possible type O parents. Test the parent who is most

likely type O. If an O is achieved, test the other parent.

4: Step 2: Call Algorithm 2 (bloodtyping) to treat the new selected family units, using

Rule 8 and Rule 9.

5: return T ; I.

International Journal of Parallel, Emergent and Distributed Systems 13

D
ow

nl
oa

de
d 

by
 [

T
em

pl
e 

U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 0
6:

23
 1

4 
Se

pt
em

be
r 

20
15

 



Rule 7. Treat the family with two possible type O parents first.

Rule 8. For simultaneous treating of two hierarchical families, treat the child family

first.

Rule 9. For simultaneous treating of two intermarriage families, treat the family with

more children first.

Rules 7–9 are applied in Algorithm 3, to further save the medical tests. Rule 7 is used

to give type O parents the priority, with the expectation of saving tests on all children in

the family. Rule 8 gives higher priority to the child’s family, with the expectation of

saving a test on one parent, which may further save another test on a grandparent. Rule 9

gives the priority to the family with more children, which has a larger chance of saving

tests.

5.3 Optimisation techniques

We propose two optimisation techniques to further enhance our decentralised algorithm,

as follows.

Instant decision: recall our decentralised bloodtyping algorithm. It will first

crowdsource all members of multiple family units to the crowdsourcing platform. After

we have estimated the possible blood types of all the crowdsourced nodes, independent

families can conduct the BloodTyping algorithm (Algorithm 2) simultaneously.

Intermarriage and hierarchical families will be treated using Rules 7–9 (Algorithm 3).

Some family members will wait until others are tested or induced. Notice that we do not

need to wait to decide the next-round tested or induced pairs. Instead, when some of the

crowdsourced nodes are being tested or induced, we can utilise them instantly to treat the

remainders.

Type O firs: As we have mentioned, in optimal blood typing order, type Os are

suggested to be tested first. Therefore, for any members in intermarriage or hierarchical

families, possible type Os can be tested first without waiting for others.

6. Experiment

In this section, we evaluate our BloodTyping method. The goals of simulation are to (1)

examine and compare the effectiveness ofþ induction and2 induction (i.e. the number of

savings on medical tests), (2) examine the effectiveness of optimal blood typing order and

(3) validate the advantage of incorporating crowdsourcing. Correspondingly, we divide

the experiments into three parts as follows.

6.1 Expected saving numbers

We study how the (1) blood type distribution and (2) þ /2 induction can impact the

expected saving numbers.

Data generating. Without loss of generality, we construct 10,000 virtual family units.

(1) We first generate 10,000 males and 10,000 females; their blood types are set randomly

according to BloodBook (www.bloodbook.com), which has collected the distribution of

four ABO blood types in 50 different groups of people (www.bloodbook.com/world-abo.

html#Maoris). (2) We randomly match a male and a female, to construct 10,000 pairs of

parents. (3) We randomly generate children for each pair of parents. The blood type of

each child is randomly determined by inheritance rules in Table 2. The number of children

is set randomly in the range of [1] (http://www.worldcongress.org/WCF/wcf_tnf.htm).

W. Jiang et al.14
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As shown in Table 4, we generate eight data-sets. The blood distributions of D1–D4 are

set according to four real people groups in BloodBook, while those of D5–D8 are set

artificially.

The effects of þ induction and 2 induction. Figure 4 shows the medical test saving

numbers usingþ induction and2 induction. We have three main findings: (1) In both real

(D1–D4) and artificial (D5–D8) blood type distributions, the saving number of using

þ induction is approximately linear to the number of children. (2) The saving number of

using 2 induction is increased with the number of children, and shows a diminishing

return. That is, it first increases quickly, and reaches the highest speed at k ¼ 3 or k ¼ 4,

then its increase slows down. (3) The saving number ofþ induction is far more than that of

2 induction, especially when it has a larger percentage of the type Os. This finding

Table 4. Blood type distribution in different data-sets.

Data-set A (%) B (%) AB (%) O (%)

Real D1 42 8 3 47
D2 27 32 13 28
D3 33 32 18 17
D4 39 0 0 61

Synthetic D5 25 25 25 25
D6 10 10 30 50
D7 30 30 30 10
D8 15 15 50 20

Figure 4. Number of medial test savings using þ induction and 2 induction. (a) þ induction in
D1-D4. (b) 2 induction in D1-D4. (c) þ induction in D5-D8. (d) 2 induction in D5-D8.
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validates our analysis in þ /2 induction. That is, although there is only one case in which

þ induction can save, it can save more because the case has a high likelihood of occurring,

and once it occurs, the saving number is larger (if there are many children).

The effects of blood type distribution. From Figure 4, we can also gain some findings

with respect to the different effects of different blood type distributions. (1) Type O

increases savings in þ induction: in Figure 4(a), D4 makes the largest savings, then D1,

D2 and D3, which is consistent with the order of type O’s percentage. That is, the more

type O people there are, the more savingsþ induction can make. Figure 4(c) also validates

this point. (2) The combination of fX;O} (X can be A;B or AB) helps savings in

2 induction: in Figure 4(b), D1 makes the largest savings, then D4, D2 and D3. In Figure 4

(d), the order is D5, D6, D7 and D8. The order is different from that in þ induction.

It indicates that for 2 induction, the balance of the combinations of fX;O} (X can be A;B
or AB) takes more effects than only a single type O. Recall what we have mentioned in

2 induction, the combinations can lead to exact induction. The percentage distribution in

Table 4 and the savings in Figure 4(b),(d) validate this point.

6.2 Blood typing with order

In this subsection, we will conduct blood type inductions using the data-sets in Table 4.

The goal is to gain the real medical test saving numbers. As we have proven before, the

optimal blood typing order is O, AB, then A and B. Since we do not know the blood type

when conducting the BloodTyping algorithm, we assume that each member has a larger

probability of being some blood type than other blood types, and the probability is already

known. This information will be used to guide the blood typing process.

Evaluation metrics. Similar to [15], we use two metrics, i.e. the coverage and the

accuracy. Coverage is the ratio of real induction compared to the total cases that can be

induced. Accuracy represents the ability of inducing a user’s blood type or not, as in the

following: Precision¼ P
AX > BX=

P
BX , Recall¼

P
AX > BX=N, Fscore¼2�Recall �

Precision/(Recall þ Precision), where AX is the number of people whose real blood type is

X (ðX [ fA;B;AB;O}Þ), and BX is the number of people whose blood type is induced as

X, N is the total expected savings that can be made. The Fscore metric is used to measure

the accuracy using Recall and Precision jointly.

Methods of comparison. We compare two methods: (1) Random method, which

randomly chooses one parent to take a blood type test and randomly conductsþ induction

or 2 induction. (2) Greedy method, which uses the most probable blood type as the

estimated type, to guide the blood typing order. We assume for at most a percentage of p

users, that their possible blood types are the same as the real blood type. Other users’

possible blood types are randomly set using the remaining blood types other than the real

type.

The effects of different methods. Figure 5 shows the comparison of different methods

(random and greedy with p ¼ 0:5) in two real data-sets of D1 and D2, and two synthetic

data-sets of D5 and D6. Figure 6 shows the results of the greedy method with

p [ 0:5; 0:9
� �

. The results indicate that the greedy method beats the random method in

both coverage and accuracy, even when at most half of the blood types are right, i.e.

p ¼ 0:5. (1) For the coverage, the random method takes a value that is close to (but less

than) 0.5, while the greedy method with p ¼ 0:5 has a coverage that is more than 0.5 and is

close to 0.6. The improvements range from 1.6% to 34.56%. (2) For the accuracy, the

greedy method makes an improvement over the randommethod, from 1.8% to 36.96%. (3)

The improvements in D2 and D5 are larger than those in D1 and D4. We analyse that the
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Figure 5. Comparison of coverage and accuracy (Fscore) with two methods (random and greedy):
(a) and (b) in D1 and D2, (c) and (d) in D5 and D6.

Figure 6. Comparison of coverage and accuracy (Fscore) using the greedy method with different
percentages of correct estimation (p). (a) Coverage in D1. (b) Fscore in D1. (c) Coverage in D5.
(d) Fscore in D5.

International Journal of Parallel, Emergent and Distributed Systems 17

D
ow

nl
oa

de
d 

by
 [

T
em

pl
e 

U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 0
6:

23
 1

4 
Se

pt
em

be
r 

20
15

 



reason lies in the balance of different blood types, which are better in the former two. (4)

The improvements hit the lowest point when the number of children k is 1. It increases

significantly when k is around 3–6. After that it remains stable. (5) Figure 6 show that the

coverage and accuracy change almost proportionally when p changes from 0.5 to 0.9, in all

data-sets. It indicates that, if we can estimate blood type with a higher probability, the

performance will be significantly improved.

Figure 7(a),(b) shows the saving ratios, i.e. real/expected saving numbers. We can see

that for types AB and O, the ratios are 1 with both methods. Meanwhile, for types A and B,

the random method fails in some cases. Those findings show the effectiveness of the

greedy method. Figure 7(c),(d) shows the percentage of savings with respect to different

blood types in data-set D1. We have several findings: (1) one-child families cannot save

any blood types other than type O. (2) Type O is the most prevalent in both random and

greedy (with p ¼ 0:5) methods. It indicates that þ induction makes more savings. (3)

Type A takes a larger proportion in the greedy method than in the random method. (4)

With the increase of children, type O’s percentage increases. It also indicates the effects of

þ induction. That is, two type O parents can lead to more savings if they have more

children. Those findings validate the reasonability of our proposed optimal blood typing

order.

6.3 Incorporating crowdsourcing

We conduct two groups of experiments. One is for the area distribution, which is suitable

for distinguishing parents’ possible blood types. The other is for the personality, which is

Figure 7. Saving ratios (real/expected) of four blood types in D1, and percentages of four blood
types in real saving: (a), (c) random method, and (b), (d) greedy method.
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suitable for distinguishing those of children. Table 5 shows the typical personalities

corresponding to different blood types.

Data settings. Without loss of generality, we assume that there are four areas where the

blood type distributions are the same with the data-sets D1–D3 and D8. That is to say, for

people who are born in the area of D1, their blood types are O for 47%, A for 42%, and so

on. Therefore, for a person born in one of the four areas, the possible blood types are

O;B;A;AB, respectively. We consider two cases in which the population (i.e. the parents)

is distributed (1) uniformly (i.e. 1/4) and (2) non-uniformly (e.g. 0.2, 0.3, 0.4, 0.1) in each

area. Our method can be easily extended when applied to practical cases, in which there

may be more areas to be considered. Similarly, we consider four types of personalities for

children corresponding to four blood types, either uniformly or non-uniformly distributed.

The effects of the area distribution. We compare four settings of population

distribution, in which the percentages for D1–D3 and D8 are set as follows: uniform

¼ ð0:25; 0:25; 0:25; 0:25Þ, non1¼ ð0:2; 0:3; 0:4; 0:1Þ, non2¼ ð0:1; 0:2; 0:3; 0:4Þ and

non3 ¼ ð0:4; 0:3; 0:2; 0:1Þ. Figure 8 shows the resulting coverage and accuracy.

We can see that non3 gets the best performance, followed by uniform, non2 and non1.

We analyse the reason, and again we find that the performance is related to the blood type

distribution in each area. A higher percentage of O or balance of combination fX;O}

Table 5. Typical personality with respect to blood type.

Type Personality

A Artistic, shy, conscientious, trustworthy, sensitive
B Goal-oriented, strong-minded
AB Split personalities, outgoing and shy, confident and timid
O Outgoing, very social

Figure 8. The effects of incorporating area distribution from crowdsourcing. (a) Coverage
(b) Accuracy.
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ðX ¼ A;B;ABÞ leads to a better performance. We get similar results when testing the

effects of personality. Due to space limitation, we do not display the results here.

6.4 Summary of experiments

We conduct many simulations to validate the effects of the proposed BloodTyping

method. Multiple factors including the blood type distribution, the blood typing order

(random or greedy) and the crowdsourcing are tested. The main findings are

(1) þ /2 induction can significantly save the medical blood type tests. In addition,

þ induction saves more than 2 induction. (2) Comparing the greedy and the random

methods, the estimated blood types do help improve the performance, indicating the

necessity of incorporating crowdsourcing for estimation. (3) The percentage of O impacts

the savings of using þ induction, while the balance of the fX;O} (X can be A;B, or AB)
combination impacts that of 2 induction.

7. Related work

We first briefly review related work in crowdsourcing, then we describe the existing work

on blood type distribution, and the relation between blood type and personality.

Hybrid human–computer and Crowdsourcing. Crowdsourcing has been used in many

tasks such as crowdsensing [21], [9], [5] language translation [4], [14] and database

operations [20], [12], [8]. Among them, [20] proposed an interesting work, to leverage the

transitive relations for crowdsourced joins. For instance, if o1 matches with o2, and o2
matches with o3, then they can deduce that o1 matches with o3 without needing to

crowdsource ðo1; o3Þ. They adopted a hybrid transitive relations and crowdsourcing

labelling framework: (1) use machines to generate a candidate set of matching pairs, (2)

ask humans to label the pairs in the candidate set as either matching or non-matching and

then (3) use transitive relations with machines to deduce other pairs. To crowdsource the

minimum number of pairs, they proof the optimal labelling order and devise a parallel

labelling algorithm to efficiently crowdsource the pairs following the order. Wang’s work

gave us insights into inducing blood types, which is more difficult and challenging. In our

work, we cannot ask the crowd to report their blood types, since in that case, they will have

to take medical tests. Alternatively, we can learn the birthplace and the personality of the

crowd by asking simple questions. The results can be used to decide (1) which ones are

likely to have some specific blood type, and (2) which members have different

personalities, and thus, may have different blood types.

Background: ABO blood group. Everyone has an ABO blood type, i.e. A, B, AB or O.

The four types are called phenotypes, because they can be explicitly tested. In fact, There

are six genotypes in the ABO blood group, i.e. AA., AO, BB, BO, AB, and OO. Each person

has a specific blood genotype from the six. Blood types are inherited from parents. Each

biological parent donates one of two ABO genes to his/her child. The A and B genes are

dominant, and theOgene is recessive. For example, if anOgene is pairedwith anAgene, the

blood typewill beA, i.e. genotypeAOshows typeA in themedical test. Similarly,BOshows

type B. Table 6 depicts the rules of possible genotypes of offspring, given the parents’

genotypes. From the table, we can derive the probability of a child having a specific blood

type.

Blood type. The distribution patterns of blood types are complex. Taking type A for

instance (Figure 9), about 21% of all people share the A allele. The highest frequencies of

A are found in small, unrelated populations, especially the Blackfoot Indians of Montana

W. Jiang et al.20
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(30–35%), the Australian Aborigines (many groups are 40–53%) and the Lapps, or Saami

people, of northern Scandinavia (50–90%). Relation with personality. There is a long

history of the study on blood type and personality (http://en.wikipedia.org/wiki/Blood_

types_in_Japanese_ culture) [18]. Some key personality features of people with different

blood types are summarised in Table 5. However, both the distribution and personality are

not strictly defined. Therefore, they can only be used for the guidance of the blood typing

order. Additionally, a website has developed a blood type calculator (www.endmemo.

com/medical/bloodtype.php). However, in the backward calculation, they only consider

one child together with a parent to calculate the other parent’s possible blood type. In our

work, we consider all possible combinations of children’s blood types, and we focus on

predicting the exact type.

8. Conclusion and future work

In this paper, we propose a novel hybrid human–computer application-blood typing for

members in a family. We present the BloodTyping method, to test or induce the ABO

blood types, based on the inheritance rules. The goal is to reduce the number of medical

tests, and thus reduce the financial cost. We extract induction rules for both þ induction

and 2 induction; þ induction is used to predict children’s blood types from parents, and

2 induction is used to determine a parent’s blood type, given the blood types of the

children and the other parent. We incorporate crowdsourcing to estimate the possible

blood types. According to our pre-defined selection rules, some members are selected to

take medical blood type tests, while others’ will be induced. In addition, we differentiate

Figure 9. Distribution of type A blood (www.anthro.palomar.edu/vary/vary_3.htm).

Table 6. The rule of blood genotype by inheritance.

Parent
genes A B AB O

AA AO BB BO AB OO
A AA AA AA, AO AB AB, AO AA, AB AO

AO AA, AO AA, AO, OO AB, BO AO, BO, AB,
OO

AA, AB, AO,
BO

AO, BO,

B BB AB AB, BO BB BB, BO AB, BB BO
BO AO, AB AB, AO BO,

OO
BB, BO BB, BO, OO AB, AO, BB,

BO
BO, OO

AB AB AA, AB AA, AO, BO,
AB

AB, BB BB, BO, AB,
AO

AA, BB, AB AO, BO

O OO AO AO, OO BO BO, OO AO, BO OO
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three types of family relations, among which the blood typing process can be conducted

simultaneously among independent families. Meanwhile, a decentralised algorithm is

designed for that in intermarriage and hierarchical families. We conduct extensive

simulations to test the performance of the proposed methods, which also validate the

effects of the impact factors, including the number of children, the order of blood typing,

the probability of correct estimation and the blood type distribution. For the future work,

we are interested in applying the proposed method into practice, and predicting the blood

type distribution of the population in a certain area, given that of the current generation.
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