Reputation-based System for Encouraging the
Cooperation of Nodes in Mobile Ad Hoc Networks

Tiranuch Anantvalee and Jie Wu
Department of Computer Science and Engineering
Florida Atlantic University
Boca Raton, Florida 33431
Email: {tanantva@, jie@cse.}fau.edu

Abstract—In a mobile ad hoc network, node cooperation
in packet forwarding is required for the network to function
properly. However, since nodes in this network usually have
limited resources, some selfish nodes might intend not to forward
packets to save resources for their own use. To discourage such
behavior, we propose a reputation-based system to detect selfish
nodes and respond to them by showing that being cooperative
will benefit them more than being selfish. In this paper, besides
cooperative nodes and selfish nodes, we introduce a new type
of node which is a suspicious node. These suspicious nodes will
be further investigated and if they tend to behave selfishly, we
could take some actions against them like we do to selfish nodes
to encourage them to be cooperative. We introduce the use of a
state model to decide what we should do or respond to nodes in
each state. In addition, we introduce the use of a timing period
to control when the reputation should be updated and to use as
a timeout for each state.

Keywords: Ad hoc networks, cooperation, reputation, selfish

I. INTRODUCTION

A mobile ad hoc network (MANET) is a self-configuring
network that is formed automatically by a collection of mobile
nodes without the help of a fixed infrastructure or central-
ized management. In order for a node to communicate to a
node that is out of its radio range, the cooperation of other
nodes in the network is required; this is known as multi-
hop communication. MANETSs was originally developed for
military purposes which all nodes belong to the same authority
which they all must cooperate to achieve their goals. Currently,
MANETs have been developing rapidly and are increasingly
being used in many civilian applications since setting up such
networks can be done without the help of any infrastructure
or interaction with a human. However, each of these devices
belongs to different authorities or belongs to individuals. In
such networks, we cannot always assume that they cooperate.
Thus, they might intend not to cooperate in order to disrupt
the network or to save batteries for their own uses.

The simulations in [1], [5] showed that the presence of
only a few misbehaving nodes can dramatically degrade the
performance of the entire system. Much research has been
done to cope with this cooperation problem. The research can
be divided into three main categories: secure routing (such as
Ariadne [8], SRP [9], and SEAD [10]), economic incentives

This work was supported in part by NSF grants ANI 0073736, EIA
0130806, CCR 0329741, CNS 0422762, CNS 0434533, and CNS 0531410.

(such as Nuglets [12] and SPRITE [11]), and reputation-based
system (such as Watchdog and Pathrater [1], CONFIDANT
[5], CORE [2], OCEAN [3], and SORI [4]).

In this paper, we address the problem of selfish nodes by
using a reputation approach called reputation management
system (RMS). The main purpose of this system is to detect
and punish selfish nodes. By punishing these nodes, we want
to show that being selfish will not benefit them. Instead, being
cooperative has a better chance to increase their benefit. This
RMS can be used as an extension to any source routing
protocols, and we chose dynamic source routing (DSR) for
our simulation implementation.

An RMS runs independently on every node and monitors
transmissions that it can overhear, even ones it is not in-
volved in, which is known as a watchdog mechanism [1].
Reputation values are given according to the results from
the watchdog and reputation regarding one node is different
from one neighbor to another. Therefore, RMS allows the
propagation of these reputation values. Unlike other previous
works, we limit the propagation to only when it is necessary,
e.g., when it is requested or when detecting selfish nodes. If no
selfish behavior is detected, no information is propagated. This
results in less transmissions, less overhead, and less energy
consumptions.

The propagation of reputation values may be used to attack
a legitimate node by accusing it as a selfish node. To alleviate
this problem, only second-hand information that is compatible
with a node’s own information will be used. Even if the
information is used, it should only slightly influence the
resulting reputation values. Once we determine that a node
is selfish, the punishment is carried out to penalize the selfish
node. To receive a better service, we also avoid routing through
selfish nodes by selecting a route without them. In addition, to
obtain only routes free of them, selfish nodes may be added to
an avoid list, an additional field, when sending a route request.

When using reputation, most of the existing systems use a
binary threshold to determine whether a node is well-behaving
or selfish. In our system, we use two thresholds to categorize
nodes into three categories. If the reputation value is above the
first threshold or below the second threshold, it is cooperative
or selfish, respectively. The third type of node we introduce
in this paper is a suspicious node, whose reputation value
falls between two thresholds. We cannot determine right away
whether they are cooperative or selfish, so they should be

further investigated. If they tend to behave selfishly, we also
take some actions against these suspicious nodes to encourage
them to be cooperative.

In addition to using two thresholds, we also introduce the
use of a state model to determine the states of other nodes and
to decide what should be done in each state. What state a node
is put into depends on its reputation rating, which is compared
against two thresholds, and its previous state. Moreover, we
also introduce the use of a timing period to control when the
reputation should be updated and to be used as a timeout for
each state.

The remainder of this paper is organized as follows. Section
IT provides related works in node cooperation in MANETS
using reputation approach. The assumptions and overview of
the proposed system is presented in Section III. The detailed
description and the detection mechanism are presented in
Section IV and V respectively, followed by the simulation
result which was implemented on the JiIST/SWANS simulator
in Section VI. Then, the conclusion is drawn in Section VII.

II. RELATED WORKS

Marti, et al. [1], proposed two techniques, watchdog and
pathrater. The watchdog promiscuously listens to the trans-
mission of the next node in the path for detecting misbehavior.
The pathrater keeps the ratings for other nodes performs route
selection by choosing routes that do not contain selfish nodes,
and have the highest average node rating. However, these
selfish nodes are not punished, but rather rewarded, as their
packets continue to be forwarded by others while they do not
have to forward for any node.

Michiardi and Molva [2] proposed CORE, which also uses
the watchdog mechanism to observe neighbors, and aims
to detect and isolate selfish nodes. The node reputation is
heavily weighted towards past reputation, therefore, cooper-
ative nodes with low battery condition would not be detected
as misbehaving nodes right away. However, only positive
indirect reputation is allowed in this system to avoid false
accusation and denial of service attacks. In our system, a node
receives indirect reputation from other nodes, but the decision
whether or not to use it depends on the deviation from direct
information.

Bansal and Baker [3] proposed an extension to the DSR
protocol called OCEAN, which also considers selfish behavior.
Each node maintains the ratings for neighbors who directly
interact with it. To avoid trust management complexity and
false accusation, these ratings are not propagated to any other
node. A neighbor whose reputation value is less than the faulty
threshold is put into a faulty list, whose traffic will be rejected.

SORI, proposed by He, Wu and Khosla [4] also addressed
the problem of selfish nodes. The first-hand reputation is based
on the ratio of the number of packets sent to be forwarded
to the number of packets that have been forwarded. This
reputation is updated periodically and is broadcast to neighbors
only when it significantly changes. When combining, the
second-hand reputation is weighted by credibility, which is
the first-hand reputation of the sender node. As a punishment
to selfish nodes, packets originating from selfish nodes are
probabilistically dropped.

Buchegger and Le Boudec [5] proposed CONFIDANT,
an extension to the source routing protocol. CONFIDANT
deals not only with selfish behavior, but also several types
of misbehavior such as silent route change or frequent route
updates. When misbehaving nodes are detected, it sends an
alarm to other nodes in the network, defined as friends, to
isolate misbehaving nodes from the network. This original
CONFIDANT requires predetermined trust to evaluate the
trustworthiness of the received alarms. The authors have
improved CONFIDANT with an adaptive Bayesian reputation
and trust system [6]. In [6], the first-hand reputation is locally
broadcast to exchange information with neighbors periodically.
In contrast, our system only broadcasts reputation when re-
quested or when selfish nodes are detected. [6] also involves
a trust metric, which is a measure of the node’s previous
behavior in reporting second-hand information. Our system
uses a similar trust metric.

III. REPUTATION MANAGEMENT SYSTEM (RMS)
A. Assumptions

The system model presented in this paper is based on the
following assumptions.

« Each node has a unique id and it cannot be spoofed.

o The network is dense enough so that each node has at
least two one-hop neighbors.

o A wireless interface of each node supports promiscuous
mode operation: a node always listens to every transmis-
sion within its one-hop neighborhood although it doesn’t
involve in those transmissions.

o Links are bidirectional. At time ¢, if node B can receive a
message from node A, node A should be able to receive
a message from node B at time ¢ as well.

o An antenna used on each node is an omni-directional
antenna which enables its transmission to be monitored
by its one-hop neighbors.

o Each node is independent from each other, no collusion.

o We do not consider malicious nodes, only selfish nodes
seeking to conserve their own resource.

B. RMS Overview

The reputation management system (RMS) is an extension
to the source routing protocol which runs independently on
each node. Each node (a monitoring node) hosts a watchdog to
monitor the forwarding behaviors of its neighbors (monitored
nodes), then assigns the reputation values (ratings) for each
of them according to the observed behaviors. We will refer
to this reputation value as the reputation value in forwarding
packets (RF'). This RF' value should be updated periodically
to reflect the current behavior of a node. Thus, the timing
period (7) is introduced to serve this purpose so that the RF'
value is updated only at the end of each period. Additionally,
when updating, it should take into account the past reputation
to avoid false detections due to link breaks or the lack of
resources.

Since RMS runs independently on each node, an RF' value
regarding one node is different from one neighbor to another.

Because of this, RMS allows the propagation of this RF
value. Unlike [6] which publishes the reputation periodically,
we limit the propagation to only when it is necessary, e.g.
when it is requested, or when a node is being investigated. In
addition, only reputations of requested nodes or detected nodes
are propagated to the requestors or neighbors, respectively.
Moreover, since we use a timing period to control when to
update the RF" value, the propagation, if any, will occur only
at the end of the period after the update as well. Obviously,
this results in less transmissions, less overhead, and less energy
consumptions.

However, this propagation may be used to attack a legitimate
node by accusing it as a selfish node. To alleviate this problem,
the decision whether or not to allow the received RF' to
be used in calculating the final RF' value is made by first
comparing the received rating with the node’s own RF rating.
If the comparing result is in the acceptable range, then the new
value will be integrated. In addition, even if it’s used, it should
only slightly affect the resulting RF' value because we always
believe in our own observation more than others’ observation.

In the real world, when we receive recommendations from
several persons, which recommendation we believe more de-
pends on that person’s reputation in telling the truth. Similarly,
after deciding which received RF' values we will use, we will
also weigh which received RF' should have more effect on
our resulted RF'. Thus, we introduce the second reputation
value: the reputation in being a referrer (RR). This reputation
value represents how trustworthy a referring node is, com-
paring to other referring nodes, when giving the information
regarding other nodes. This RR value changes when a received
RF' value is compared with the existing RF' value. If the
comparing result is in the acceptable range, RR is increased,
otherwise, it is decreased.

Generally, the RF' value can represent the forwarding
behavior of a monitored node. Whether it is considered
cooperative or selfish depends on its RF' value, compared
against a predefined threshold (T'H). Basically, if RF <
TH, it means that the monitored node behaves selfishly and
should be punished, otherwise it’s well-behaving. Using one
threshold may be too harsh to determine the behavior of
the node. Therefore, in our system, we introduce the use of
two thresholds: T'H oop and T Heppisn. If RF' > T Hoop OF
RF < THgeifish, it is straightforward that the monitored node
is cooperative (cooperative state) or selfish (punished
state since it should be punished) respectively. However, if
THgeifish < RF < THeoop, the behavior of the monitored
node cannot be determined immediately. We categorize these
nodes as suspicious nodes. For example, a monitoring node
might misunderstand a monitored node due to the limitations
described in [1], so the RF' value of the monitored node is
below T'H,op. Another possible reason is, it might forward
only the necessary amount of packets to stay above T'Hej fish-
Therefore, punishment should not be limited to only the
monitored nodes whose RF' values are below T Hgeyish,
but also for monitored nodes whose RF' values fall between
these two thresholds for more than a certain period of time.
Nonetheless, the level of punishment should be different from
the node whose RF' value is below THefisn. For these

reasons, there should be more states than just cooperative
and punished. As a solution, we introduce the use of the
state model to control the state transition of a monitored
node based on the comparison of the RF' value against two
thresholds. Note that the state is determined only after the
update of the RF' value, which occurs at the end of period
only.

When a node is considered to be selfish, it is put into
the punished state. As described above, we also punish
nodes who are suspicious and tend to behave selfishly, but
with different levels of punishment. Thus, we use PLEV EL
to determine the punishment level which varies from 1 to
4 (maximum punishment). The selfish node will be given
chances to behave cooperatively so that it can recover from
the punished state. But if it continues to behave selfishly
and is put into the punished state with PLEV EL = 4 for
more than a certain number of times, it will be put into the
blacklisted state and will never recover from this state.
The punishment for nodes in the blacklisted state is like
that for nodes in the punished state with PLEVEL =
4, except that none-blacklisted nodes can change their
behavior in the punished state and recover to other states.

In addition, since states could tell us, to some degree, how
nodes have behaved, we also use states to determine how we
should respond to nodes in each state. Therefore, once a node
is put into one state, it should stay in that state and should be
monitored for some more periods of time. Since we already
use the timing period (7) to control when the RF value is
updated, it will also be used to define how long or how many
more periods (a multiplication of 7) the node should stay in
one state before the next state of the node is determined.

IV. RMS COMPONENTS

The reputation management system (RMS) is comprised of
four main components: the monitoring module, the reputation
manager, the response module and the communication module.
These components reside on every node in the network.

A. The Monitoring Module

The monitoring module uses a watchdog mechanism to
monitor the packet-forwarding behavior for each of its neigh-
bors by keeping track of two counters for each neighbor. Let
M be the monitoring node and m be the monitored node.

o SBF(M,m) denotes the number of packets that should

be forwarded by m observed by M
o ABF(M,m) denotes the number of packets that have
actually been forwarded by m observed by M

Whenever node m receives a packet which is supposed to
be forwarded, either from node M, or from another neighbor
and node M overhears the transmission, node M stores the
packet in its buffer, sets the timeout, and increases the SBF
counter by one. If node m forwards the packet, the packet is
removed from the buffer and the ABF counter is increased
by one. Otherwise, the packet is removed when time reaches
the timeout.

These two counters for each neighbor are counted over
a fixed timing period (7). At the end of each period, the

monitoring module sends these counters to the reputation
manager, resets them, and starts counting from zero again.

B. The Reputation Manager

The reputation manager is responsible for maintaining a
reputation record for each neighbor by keeping them in
the reputation table. Each field in the reputation record is
described below.

e NODE: Node ID of a monitored node m

e RF: Reputation value in forwarding packets that the
monitoring node has for the monitored node. The value
range is [0,1]

e RR: Reputation value in being a referrer that the moni-
toring node has for the monitored node, the value range
is [0,1]

e STATE: The state of a monitored node m determined
by node M, which can be cooperative, suspected,
inspecting, punished, and blacklisted

e STATE_TS: The last updated time of STATE

e STIME: Time to determine the state of a monitored
node after updating RF' value

e PLEV EL: The level of punishment which is used only
when STATE is punished. The value is 1, 2, 3, or 4.

e COUNT: The number of times that the node has been
put into punished state with PLEVEL =4

At the end of every period (t = to + 7,t9 + 27,t9 +
37,..., where o is the time when a monitoring node joins
the network), the reputation manager updates each reputation
record according to the data received from the monitoring
module (two counters) and the communication module (RF
values from other nodes in REP_REP or ALARM, explained
later in Section IV-C). The update process can be divided into
three steps: 1) Calculating RF" and RR values. 2) Determining
STATE, PLEVEL, and STIME. 3) Informing the re-
sponse module to punish selfish nodes and the communication
module to send REP_REQ or ALARM when necessary. We
will describe each step by assuming that M is the monitoring
node and m is the monitored node.

1) Calculating RF and RR Values: As mentioned earlier,
the RF' value for each monitored node m can be obtained by
directly monitoring the forwarding behavior of node m and by
combining its RF value with the RF’ values from other nodes.
In other words, the value of RF' depends on inputs from two
sources: 1) two counters from the monitoring module of the
node itself and 2) the RF' values received in REP_REP and
ALARM messages from neighbors (via the communication
module). Therefore, at the end of each period, if there is
at least one input, the new RF value that node M has for
node m, RF(M,m), is calculated by using the formula shown
below:

RFE(M,m)=3-RFO(m)+ (1—f)- RFR(m) (1)

where RFO(m) is the reputation value regarding node m
calculated from the information OBSERVED by the node
itself. Whereas RF'R(m) is the reputation value regarding
node m calculated from the information RECEIVED from

other nodes, which is the RF values from REP_REP and
ALARM messages. [is a self-belief factor for how much
the node believes in itself and ranges from O to 1.

From Equation 1, if there are inputs from two sources, the
new RF' value should be calculated based on both inputs. In
the case where there is only input from neighbors, the current
RF value that is stored in the table, RE}qp. (M, m), should
be also brought into account when calculating the new RF
value by using RFO(m) = RFape(M,m). This is because
the new RF' value should not be changed completely to what
neighbors say. It should still be related to the current RF' value
that has been accumulated over time.

Let us now consider the value of RFO(m). This value
depends on the observation of the monitoring module, which
sends those two counters for node m to the reputation manager.
RFO(m) is calculated by:

ABF(M,m)

RFO(m) =« - RFtable(Ma m) + (1 — Oé) . m

(@)

Since there could be nodes that have been cooperative for a
long time but happen to be out of power, these nodes should
not be mistaken for being selfish. For this reason, the current
RF value, RFyp1. (M, m), should not be entirely discarded, as
it can represent the past behaviors of the node. « is introduced
as a past behavior factor which is used to judge nodes based on
past behaviors. Hence, the more we want to give priority to the
past behaviors, the more the value of « should be. However,
when there is no existing record for m, the value of RFO(m)
would be only the ratio of ABF(M,m) to SBF(M,m).

Now, let us consider the value of RF'R(m). When combin-
ing the received RF' values, the RR values of the nodes that
sent those RF" values should be brought into consideration.
The RR value represents how trustworthy a referring node is,
compared to other referring nodes, when giving information
regarding other nodes. RF R(m) is calculated by:

" (RR(M, N;) - RF(N:, m))
RFR(m) = =4 3)
ST RR(M, N;)

i=1

where n is the number of neighboring nodes who sent
the REP_REP or ALARM messages containing RF' value
regarding node m, RF(N;,m), to node M. Note that RF
values in ALARM messages will be used in Equation 3 at
the end of whichever period they are received, but RF' values
in REP_REP messages will be used only when time reaches
STIME and the STATE of node m is suspected, as
explained later in Section V.

However, the choice of whether or not to include the
received RF' value in Equation 3 depends on the value of
ARF(N;) which is calculated by:

ARF(NZ) = ‘RF(NZ,m) - RFtable(Mv m)| (4)

If ARF(N;) < ¢, the RR(M, N;) will be increased by
~ and the received RF(N;,m) will be used in Equation 3.
On the contrary, if ARF(N;) > 4§, the RR(M,N;) will

neutral

[first time update]
and [RF < THcoqp)

[first time update]

[not updated
and [RF > THeop)

for a long time]

A4

cooperative

[timeout] and JF < THeop) A \

suspected

[timeout] and

[RF 2 THeoop] timeout] and
[timeout] and]) [THerfish < RF < THeoop]
[PLEVEL = 1] and inspecting
[RF = THegop]

[timeout] and
[PLEVEL = 1] and

[THgeifish < RF < THeoop] [timeout] and
[RF < THeifisn] and
([timeout] and [PLEVEL > 1]) or [COUNT < 3]

([timeout] and [PLEVEL = 1] and

[RF < THyae] and [COUNT < 3])

[timeout] and [timeout] and
[RF < THgeigisn] and [RF < THgeisisn] and
[PLEVEL=1] and [COUNT = 3]

[COUNT =3]
blacklisted

Fig. 1. State diagram of a monitored node

be decreased by + and the received RF(N;,m) will be
disregarded. However, if node M never had a reputation record
for node m before, M will ignore all received ALARMS
regarding m since M has no RF;qp(M, m) to compare with
the received RF'(N;, m).

2) Determining STATE, PLEVEL, and STIME:
After calculating the new value of RF'(M,m), the state
of node m will be determined according to this new
value. A node can be in one of the following five states:
cooperative, suspected, inspecting, punished,
and blacklisted. As mentioned earlier, two thresholds
are used to determine which state the node is in. Figure 1
illustrates the state diagram of a monitored node. Note that
timeout means when time reaches STIME.

If there is no reputation record for node m, the STATE
of node m is always considered as neutral. Once there are
counters from the monitoring module for m, at the end of that
period, m will be put into cooperative or suspected
according to its RE' value. But if there is a reputation record
for node m in the reputation table, the STATFE of node
m is determined only when time reaches STIM E. Assume
that the time at the end of the current period is ¢ty and the
STIME is also toy. Table I shows an example of how the
next ST ATFE of a monitored node is determined and how the
value of PLEV EL and STIME are changed.

STIME is used as a state timeout to keep the monitored
node in one ST AT'FE for a certain period of time. For example,
when the state of a node is inspecting, if RF(M,m)
is between T'H_,op, and T'Hgepisn, node m will be put
into punished with PLEVEL = 1 for 10 more periods
(t20 + 107). During that time, node M continues monitoring

node m. When time ¢t = toq + 107, after the RF of node m
is calculated according to Section IV-B.1 above, the STATE
of node m is then determined.

3) Informing the Response Module and Communication
Module: Once the reputation manager has finished updating
all reputation records, it then checks the reputation table to see
whether any node whose STATE has just been changed to
suspected, or punished or blacklisted within that
period (i.e., from the previous example, STATE_T'S = ty).

o The reputation manager will inform the response module
of nodes whose states are changed to punished (or
whose PLEV EL is changed) or blacklisted, so
these nodes will be responded to accordingly.

o The reputation manager will inform the communication
module to send REP_REQ or ALARM to its neighbors
for nodes whose states are changed to suspected or
punished with PLEV EL = 4, respectively.

C. The Communication Module

The communication module acts as an interface for the RMS
to communicate to neighbors’ RMS. The main purpose of this
module is to exchange reputations with immediate neighbors
through three types of messages:

 REP_REQ Message: This message is sent to neighbors
in order to ask for RF' values for nodes whose states have
changed to suspected. Upon receiving REP_REQ), the
communication module asks the reputation manager to
return the RF values of nodes in REP_REQ.

« REP_REP Message: When the communication module
receives the returned RF' values from the reputation
manager, it constructs the REP_REP message and sends it
back to the requestor node. Upon receiving the REP_REP,
the communication module forwards the received RF
values to the reputation manager.

e ALARM Message: This message is sent to neigh-
bors when there is a node whose state is changed
to punished with PLEVEL = 4. Upon receiving
ALARM, the communication module forwards the re-
ceived RF' values to the reputation manager.

D. The Response Module

The response module participates in route selection and
route discovery processes. When there are several paths to
a destination, the response module helps to select a route that
has the best average reputation value and free of selfish nodes,
blacklisted or punished with PLEV EL = 4 nodes.
For nodes whose PLEV EL are 1, 2, or 3, we still route
packets through these nodes and observe them to give them
chances to change their behaviors.

The response module also takes part in a route discovery
process. When a node sends out a route request, it will append
to the message header an avoid list, an additional field con-
taining blacklisted and punished with PLEVEL =4
nodes. If a node receives a route request with an avoid list
containing itself, it then does not forward that route request.
Thus, a route reply received at the source node will not contain

TABLE I
STATE TRANSITION OF A MONITORED NODE

current next
STATE [PLEVEL [COUNT [RF STATE [PLEVEL [COUNT [STIME
neutral - any RE > THecoop cooperative - same tog + T
neutral - any RF < THecoop suspected - same tog + T
cooperative - any RFE > THecoop cooperative - same tog + T
cooperative - any RF < THecoop suspected - same tog + T
suspected - any RFE > THecoop cooperative - same tog + T
suspected - any THseipish < RE <THcoop inspecting - same too + 5T
suspected - 3 RF <THgeifish blacklisted - same &)
suspected - <3 RF <T'Hsecifish punished 4 +1 tao + 307
inspecting - any RE > THecoop cooperative - same too + 7
inspecting - any THeifish < RE <THcoop punished 1 same too + 107
inspecting - 3 RF <T'Hgeitish blacklisted - same 00
inspecting - <3 RF <T'Hseitish punished 4 +1 tao + 307
punished 4 any any punished 3 same too + 107
punished 3 any any punished 2 same too + 107
punished 2 any any punished 1 same too + 107
punished 1 any RE > THecoop cooperative - same too + T
punished 1 any THgeipish < RE <THcoop inspecting same too + 5T
punished 1 3 RF <T'Hseitish blacklisted - same 00
punished 1 <3 RF <T'Hseifish punished 4 +1 too + 307

such nodes. Another case is when a node receives a route
request originated from selfish nodes. Since the punished
state is divided into four levels, the response module may take
different actions for nodes in each level. When receiving their
requests, only some proportion, depending on the PLEV EL
of the requestors, of their requests are forwarded and replied
to. The response for nodes in blacklisted state is like
that for nodes in punished state with PLEV EL = 4. In
our implementation, for example, 75%, 50%, and 25% of their
requests are forwarded and replied to when PLEV EL is 1, 2,
and 3, respectively. For PLEVEL = 4 and blacklisted
nodes, all of their requests are not forwarded nor replied to.

V. STATE FLOW: DETECTION MECHANISM

In this section, refer to Figure 1 and Table I, we will describe
how the state is changed from one state to another and what
being done in each state. Our implementation in the next
section is also based on Figure 1 and Table I.

Whenever node m becomes known to node M, as an
intermediate node in a route to a destination, as a neighbor, or
as a node who requests for a service, it is positively considers
to be cooperative and treated like it is in cooperative
state. However, its state is neutral since there is no re-
putation record for m. The state of m changes, to either
cooperative or suspected, only when RF(M,m) is
calculated based on two counters from the monitoring module.

If m is in the cooperative state, it is cooperative and
nothing needs to be done. If m is in the neutral state,
it is also treated as if it is in the cooperative state.
Whenever its RF' value falls below T'Hqop, it’ll be put in
the suspected state in order to gather more information
from neighbors.

When m is put into the suspected state, M sends
out REP_REQ and waits for REP_REP. Once the end of a
period reaches STIME, M combines received RF' values in
REP_REP with its own RF' value regarding m. The combined

result is then used to determine the state of m according to
Table I.

In the inspecting state, M is doing the further in-
spection, for example, whether m is trying to forward only
the necessary amount of packets just to be above T He;fish.-
When this inspecting period comes to an end and m’s RF'
value is still in between the two thresholds, it will definitely
be punished by putting it into the punished state with
PLEVEL 1. Otherwise, its state will be changed to
cooperative or punished with PLEV EL = 4 accord-
ing to the RF value.

In the punished state, m is considered selfish and is being
punished. In this state, PLEV EL is used to define different
levels of punishments or responses. In our implementation in
the next section, when PLEV EL = 4, m will be excluded
from all network activities: avoiding routing packets through
m, ignoring requests from m, and adding m to an avoid-
list when sending a route request. Although m is offered
a chance to rejoin the network after a predefined period
by using STIME, it is first allowed to rejoin the network
with some limitation, so it is still in the punished state
with different PLEV E'L which is decreased gradually. Since
STIME is used as a timeout, once the time reaches STIME,
PLEVEL is decreased and the new STIMFE is set. When
PLEVEL =1 and the time reaches STIME, m’s state is
determined according to its RF' value as shown in Table I.

Whenever m is put into the punished state with
PLEVEL = 4, COUNT is increased by 1. In our imple-
mentation, we allow a node to be put into the punished state
with PLEV EL = 4 only three times. If node m’s RF'is less
than T'Hejfi5n for the fourth time, m will be put into the
blacklisted state and it will never be given any chance
to recover from this state.

VI. SIMULATION

To evaluate the performance of our system, we implemented
RMS using JiST/SWANS simulator [13], [14]. We integrated

0.75

0.75
e - - < - - DSR: Average 0.75 - - < - - DSR: Cooperative nodes - - < - - DSR: Selfish nodes
0.70 4 :‘\A — -&— - Avoid: Average 0.70 4% — -&— - Avoid: Cooperative nodes 0.70 - — -&— - Avoid: Selfish nodes
T AL —%— RMS: Average T : A . —%— RMS: Selfish nodes
0.65 1 RN le] 0.65 . —%— RMS: Cooperative nodes 0.65 1 S - R
3 5 AR F] e, MTTAl
< 0.60 1 £ 0.60 1 5 060+ .
o
S 0.55 + S 0.55 4 % 0.55 -
5 E 5
= 0.50 4 = 0.50 1 = 0.50
g g . Sl
2 0.45 + 3 0.45 4 . R g 0.45 A
< < o <
0.40 1 0.40 R 0.40
0.35 0.35 0.35 -
0.30 i i i i 0.30 0.30 : . . .
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Percentage of selfish nodes

Fig. 2. Application goodput of all nodes

RMS as an extension to the Dynamic Source Routing protocol
(DSR). The results are compared against the regular DSR
network without our extension. Note that in our simulation, we
assume that RMS messages are sent out correctly as specified.
They are not used to attack the legitimate nodes.

Metrics used in our simulation results are:

o Application Goodput: This is the average ratio of the
total number of packets received at destination to the
total number of packets intended to send, at the appli-
cation level, by all nodes. The application goodput of
cooperative nodes means the average ratio of the total
number of packets received at destination to the total
number of packets intended to send at the application
level by cooperative nodes only. The application goodput
of selfish nodes is defined in the same manner.

o Routing Goodput: This is the average ratio of the total
number of packets received at destination to the total
number of packets originated by all nodes at the routing
layer. Unlike the application goodput, packets are counted
only when they are being sent out. If there is no available
route to the destination, they are not counted.

o Number of Packets Dropped: This is the average num-
ber of packets dropped by selfish nodes taken from 20
simulation runs.

A. Simulation Setup

The simulated network consists of 50 wireless nodes de-
ployed in a field of 1000 x 1000 square meters. The random
waypoint is chosen as a mobility model. Each node is first
randomly placed in the field, waits for the pause time (0 second
in our simulation), then moves to another random position
with a speed chosen between 1 to 10 m/s. Every 10 seconds
during the simulation, ten new source and destination pairs
are randomly selected, therefore, every node has chances to be
both a source and a destination. The constant bit rate (CBR)
is selected as our traffic model with a rate of 4 packets per
second. The run time for each simulation is 1000 seconds. The
parameters used for our RMS extension in the simulations
are: 7 = 5 second, &« = 0.8, # = 0.8, 6 = 0.4, v = 0.05,
THeoop = 0.4, and T Hgeppisn = 0.1. The results presented
here are the average from 20 simulation runs with different

Percentage of selfish nodes

Percentage of selfish nodes

Fig. 3. Application goodput of cooperative nodes Fig. 4. Application goodput of selfish nodes

seeds. The seeds influence the placement and the movement
of the nodes, and the selection of source-destination pairs.

B. Simulation Results

For the simulation results, we graph three curves for DSR,
Avoid and RMS. (1) DSR: This is a result for the original
DSR with no extension. (2) Avoid: This is a result for DSR
with RMS enabled. However, no reputation exchange or pun-
ishment mechanism is executed. RMS only helps the source
node to select a route that has the best average reputation value
and does not contain nodes whose states are blacklisted
or punished with PLEVEL = 4. (3) RMS: This is a
result for implementing all of our extensions to the original
DSR. Besides avoiding routing through selfish nodes, it also
does not forward or reply to requests from them. Nodes
also exchange RMS messages through their communication
modules. In addition, an avoid list containing punished with
PLEVEL = 4 nodes is added to the DSR header when
sending a route request. To limit the size of the header, a
maximum of five nodes can be added in the avoid list in the
simulation.

Figure 2-4 shows the comparison of the application goodput
of the original DSR and the DSR with our RMS extensions
when the percentage of selfish nodes varies from 0 to 50
percent. When nodes only avoid routing through punished
nodes with PLEV EL = 4, the application goodput for all
nodes increases including that of the selfish. Although this
results in the best application goodput for the overall system,
not only are selfish nodes not punished, they do not have to
relay traffic as they are avoided.

When we implement all of our extensions to DSR, not
only are selfish nodes avoided, requests from them are not
forwarded nor replied to. Thus, their packets could not be
sent out since there is no route to the destination. Although the
application goodput of all nodes is decreased when using our
extension, Figure 2, 3 and 4 show that the application goodput
of cooperative nodes is increased while that of selfish nodes
is noticeably decreased. The differences in the application
goodput of cooperative nodes and that of selfish nodes are 0.25
and 0.15 when the percentages of selfish nodes are 5% and
50%, respectively. Since being selfish is a worse strategy than
being non-selfish, an intelligent player will take the dominant
strategy of being non-selfish.

x1000

35 0.75
.- --DSR ———RMS: Cooperative nodes

B 301 — % - Avoid 4 0.70 4 - - % - - RMS: Partially cooperative nodes

2 —%—RMS o — =+ — RMS: Selfish nodes

g . ., 0.651 —&—RMS: Average

i o £ 060

g o _.x 8 x.

§ 201 o L S 0.55 -

g X 5

G 15 4 P % 0.50 -

] o’ el £ - -X-

2 . x” S 0454 T N4 — = *

£ 101) -7 < Sk

2 Y x 0.40 4 T .

51 8. xS 0.35 T -y
0.30 T T T T T T T T T Lz
0 10 20 30 40 50 0 T T T T T T T T 0.30 T T T T T T T
0 10 30 40 50 0 5 10 15 20

Percentage of selfish nodes

Percentage of selfish nodes

Fig. 5. The routing goodput

nodes

Figure 5 shows the result of the routing goodput. Once the
packets leave the sender nodes, the chances that they will be
received at the destination nodes is increased when using our
extension. The routing goodput is improved when avoiding
routing through selfish nodes, but it is improved more when
nodes exchange reputation, which help nodes to detect selfish
nodes faster and avoid them. In the presence of 50% of selfish
nodes, the routing goodput increases from 0.40 to 0.55.

Figure 6 shows the number of packets dropped by selfish
nodes. With our extension, when selfish nodes are detected,
we route around them, so the number of packets dropped by
selfish nodes is decreased.

We also evaluated our system in the presence of nodes who
forward only the necessary amount of packets so that they are
not detected as selfish. This means that they try to keep their
reputation in between the two thresholds which we categorize
them as suspicious nodes. To refer to this type of nodes, we
use the term “partially cooperative”. In the simulated network,
there are three types of nodes: cooperative nodes, partially
cooperative nodes, and selfish nodes. Every simulation has 5
selfish nodes and the number of partially cooperative nodes
varies from O to 20. The number of total nodes is still 50
nodes. Using the parameters in Section VI-A, we configured
partially cooperative nodes to drop 75% of data packets. Thus,
their reputation should be above T'H¢; #is1, but below T'H ;op.
Figure 7 shows the result of the application goodput for
all types of nodes in the simulation when using DSR with
our extension compared to the one without. The application
goodput of partially cooperative nodes is as expected, more
than the application goodput of selfish nodes, but less than
that of cooperative nodes.

VII. CONCLUSION

In this paper, we proposed a reputation-based system as an
extension to source routing protocols for detecting and punish-
ing selfish nodes in mobile ad-hoc networks. We also evaluated
our proposed system by implementing it on JiST/SWANS
simulator. The simulation results show that our system can
identify both selfish nodes and suspicious nodes and punish
them accordingly. Although they could save their resources
by not forwarding packets for others, their packets would not
be delivered as well as we can see from the result in the

Fig. 6. The number of packets dropped by selfish Fig. 7.

Number of partially cooperative nodes

Application goodput of nodes in the
presence of 5 selfish nodes

application goodput. The result can also provide selfish nodes
with an incentive to behave more cooperatively, as behaving
selfishly does not benefit them as they expect. Instead, being
cooperative would result in their increased benefit.

REFERENCES

[1] S. Marti, T. J. Giuli, K. Lai, and M. Baker, “Mitigating Routing
Misbehavior in Mobile Ad Hoc Networks,” Proceedings of MobiCom
2000, Boston, MA, August 2000.

[2] P. Michiardi and R. Molva, “Core: A Collaborative Reputation mech-
anism to enforce node cooperation in Mobile Ad Hoc Networks,”
Communication and Multimedia Security Conference, September 2002.

[3] S. Bansal and M. Baker, “Observation-Based Cooperation Enforcement
in Ad hoc Networks,” Research Report cs.NI/0307012, Stanford Univer-
sity, 2003.

[4] Q. He, D. Wu, and P. Khosla, “SORI: A Secure and Objective
Reputation-based Incentive Scheme for Ad-hoc Networks,” Proceedings
of WCNC 2004, Atlanta, GA, March 2004.

[5] S. Buchegger and J.-Y. Le Boudec, ‘“Performance Analysis of the
CONFIDANT Protocol: Cooperation Of Nodes - Fairness In Dynamic
Ad-hoc NeTworks,” Proceedings of MobiHoc 2002, June 2002.

[6] S. Buchegger and J.-Y. Le Boudec, “A Robust Reputation System for
Peer-to-Peer and Mobile Ad Hoc Networks,” Proceedings of P2PEcon
2004, Cambridge, MA, June 2004.

[71 D. B. Johnson, D. A. Maltz, and Y. C. Hu, “The Dynamic Source
Routing Protocol for Mobile Ad Hoc Networks (DSR),” Internet Draft,
MANET Working Group, IETF, July 2004.

[8] Y. Hu, A. Perrig, and D. B. Johnson, “Ariadne: A secure On-Demand
Routing Protocol for Ad hoc Networks,” Proceedings of the Sth An-
nual International Conference on Mobile Computing and Networking
(MobiCom 2002), Atlanta, GA, September 2002.

[9]1 K. Sanzgiri, B. Dahill, B. N. Levine, C. Shields, E. Belding-Royer,

“A Secure Routing Protocol for Ad Hoc Networks,” Proceedings of the

10th IEEE International Conference on Network Protocols (ICNP 2002),

Paris, France, November 2002.

Y. Hu, D. B. Johnson, and A. Perrig, “SEAD: Secure Efficient Distance

Vector Routing for Mobile Wireless Ad Hoc Networks,” Proceedings of

the 4th IEEE Workshop on Mobile Computing Systems and Applications

(WMCSA 2002), Calicoon, NY, June 2002.

S. Zhong, J. Chen, and Y. Yang, “Sprite: A Simple, Cheat-Proof, Cred-

itbased System for Mobile Ad-Hoc Networks,” Proceedings of the 22nd

Annual Joint Conference of the IEEE Computer and Communication

Societies (INFOCOM 2003), San Francisco, CA, April 2003.

L. Blazevic, L. Buttyan, S. Capkun, S. Giordano, J.-P. Hubaux, and

J.-Y. Le Boudec, “Self-Organization in Mobile Ad-Hoc Networks: the

Approach of Terminodes,” IEEE Communication Magazine, Volume 39,

Issue 6, pp. 166-174, June 2001.

R. Barr, “JiST - Java in Simulation Time Users Guide,”

http://jist.ece.cornell.edu/docs/040319-jistuser.pdf

R. Barr, “SWANS - Scalable Wireless Ad hoc Network Simulator Users

Guide,” http://jist.ece.cornell.edu/docs/040319-swans-user.pdf

[10]

(1]

[12]

[13]

[14]

