
Zhang S, Qian ZZ, Wu J et al. Service-oriented resource allocation in clouds: Pursuing flexibility and efficiency. JOURNAL

OF COMPUTER SCIENCE AND TECHNOLOGY 30(2): 421–436 Mar. 2015. DOI 10.1007/s11390-015-1533-2

Service-Oriented Resource Allocation in Clouds: Pursuing Flexibility

and Efficiency

Sheng Zhang1,2 (张 胜), Student Member, CCF, IEEE, Zhu-Zhong Qian1,2,∗ (钱柱中), Member, CCF, IEEE
Jie Wu3 (吴 杰), Fellow, IEEE, and Sang-Lu Lu1,2 (陆桑璐), Member, CCF, IEEE

1State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
2Department of Computer Science and Technology, Nanjing University, Nanjing 210023, China
3Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, U.S.A.

E-mail: zhangsheng@dislab.nju.edu.cn; qzz@nju.edu.cn; jiewu@temple.edu; sanglu@nju.edu.cn

Received December 24, 2013; revised July 8, 2014.

Abstract The networking-oblivious resource reservation model in today’s public clouds cannot guarantee the performance
of tenants’ applications. Virtual networks that capture both computing and networking resource requirements of tenants have
been proposed as better interfaces between cloud providers and tenants. In this paper, we propose a novel virtual network
model that could specify not only absolute and relative location requirements but also time-varying resource demands.
Building on top of our model, we study how to efficiently and flexibly place multiple virtual networks in a cloud, and we
propose two algorithms, MIPA and SAPA, which focus on optimizing resource utilization and providing flexible placement,
respectively. The mixed integer programming based MIPA transforms the placement problem into the multi-commodity
flow problem through augmenting the physical network with shadow nodes and links. The simulated annealing-based SAPA
achieves resource utilization efficiency through opportunistically sharing physical resources among multiple resource demands.
Besides, SAPA allows cloud providers to control the trade-offs between performance guarantee and resource utilization, and
between allocation optimality and running time, and allows tenants to control the trade-off between application performance
and placement cost. Extensive simulation results confirm the efficiency of MIPA in resource utilization and the flexibility of
SAPA in controlling trade-offs.

Keywords resource allocation, virtual network embedding, opportunistic resource sharing

1 Introduction

The paradigm of cloud computing has experienced

serious growth in recent years, attracting increasing at-

tention from academic and industrial communities[1].

Today’s public clouds (e.g., Amazon EC2 and Microsoft

Azure) adopt a networking-oblivious resource reserva-

tion model, which only allows tenants to specify com-

puting resource demands, and ignores networking com-

pletely. That is, almost all current clouds offer just

best-effort networking service. The performance of te-

nants’ applications is influenced by various factors, such

as virtual machine (VM) placement and clouds work-

load. Considering the scarcity and the common over-

subscription of cloud bandwidth resources, this reser-

vation model makes a tenant’s application performance

very unpredictable[2]. The unpredictability further lea-

ds to two major consequences. First, tenants’ expen-

ses are increased, since cloud providers charge tenants

based on the duration of an application, which depends

on both computing and networking resources. Second,

cloud providers’ revenues are decreased, since unpre-

dictability impacts cloud applicability, and further lim-

its the adoption of clouds[3-4].

Recent studies[3,5-8] noticed this lack of bandwidth

guarantee in clouds, and proposed a service-oriented

approach[9] that allows a tenant to specify his/her de-

mand in a virtual network (VN), where nodes represent

VMs with CPU demands, and edges represent band-

width demands between VMs. Such resource demands

are then enforced in clouds through source routing[5]

or rate limiting[3,6]. Albeit these studies make a good

Regular Paper
This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 61472181, 61202113, and

61321491, the Key Project of Jiangsu Research Program of China under Grant No. BE2013116, and the EU FP7 IRSES Mobile Cloud
Project under Grant No. 612212.

∗Corresponding Author
©2015 Springer Science+Business Media, LLC & Science Press, China



422 J. Comput. Sci. & Technol., Mar. 2015, Vol.30, No.2

start, there are still some limitations. For example, vir-

tual networks only have star or tree topologies in [3, 6];

fixed resources are reserved throughout a virtual net-

work’s lifetime in [5, 7-8].

In this paper, we introduce RLVN, a novel virtual

network model that could specify not only absolute and

relative location requirements, but also time-varying

resource demands. Many virtual networks have time-

varying resource demands, as evidenced in existing pro-

filing experiments[6]. Thus, provisioning fixed resources

for virtual networks throughout their lifetimes is clearly

wasteful. Besides, many applications want to have loca-

tion constraints on VMs. For example, VMs for content

distribution services should be deployed in clouds as

widely as possible to obtain a broad geographical foot-

print; VMs for parallel computing should be near each

other to mitigate the impact of networking latency on

task makespan; and the backup VMs should be placed

in different failure regions to avoid geographically cor-

related region failures.

Building on top of our model, we study how to ef-

ficiently and flexibly place multiple virtual networks

in a cloud, and we propose two algorithms, MIPA

and SAPA, which focus on optimizing resource utiliza-

tion and providing flexible placement, respectively. To

maximize physical resource utilization, we design the

mixed integer programming based MIPA. The main

idea of MIPA is transforming the placement problem

into the multi-commodity flow problem[10], and con-

structing a mixed integer programming based formu-

lation through augmenting a physical network with

shadow nodes and links.

To provide flexible and efficient virtual network

placement, we design the simulated annealing-based

SAPA. To efficiently utilize physical resources while re-

taining a performance guarantee, SAPA opportunisti-

cally shares physical resources between multiple vir-

tual network demands. To flexibly control the trade-

off between the placement optimality and the running

time of the placement algorithm, we adopt simulated

annealing[11] as our optimization framework. The moti-

vation of providing such a trade-off is that, different vir-

tual networks have different requirements on response

time. For example, a virtual network request for sup-

porting the real-time VoIP (Voice over Internet Phone)

service should be deployed as quickly as possible, irre-

spective of whether the placement is optimal; on the

contrary, for a virtual network request without require-

ments on response time, the cloud provider should focus

on placement optimality. We show through extensive

simulations that, MIPA and SAPA accept up to 8.18%

and 6.05% more virtual networks than two state-of-the-

art allocation algorithms[7,12] respectively, and the flexi-

bility of SAPA in controlling several trade-offs is well

confirmed.

The contributions of this paper are threefold. First,

to the best of our knowledge, we are the first to study

placing virtual networks with both location constraints

and time-varying resource demands. We provide a

generic VN model for tenants to flexibly trade off

between application performance and placement cost.

Second, through augmenting the physical network with

shadow-nodes, we provide a mixed integer program-

ming based algorithm, which gives us an upper bound

on resource utilization. Third, we design a simulated

annealing-based practical algorithm, which aims at pro-

viding flexible placements.

The remainder of this paper is organized as follows.

The RLVN model is introduced in Section 2. The prob-

lem definition is described in Section 3. Local resource

sharing in a single physical machine is given in Sec-

tion 4. We present MIPA and SAPA in Sections 5 and 6,

respectively. We conduct performance evaluations in

Section 7. Before concluding the paper in Section 9, we

go over related work in Section 8.

2 RLVN — Virtual Network Model with

Time-Varying Resource and Location

Requirement

In this section, we first present the traditional vir-

tual network and the RLVN models, then we present a

simple model generation strategy for RLVN, and finally

we show the advantages of the proposed model.

2.1 Traditional Virtual Network Model

We focus mainly on CPU and bandwidth resources

in this paper, which has typically been the case in most

of the prior studies[7-8,12-13]. Without loss of genera-

lity, the physical network is assumed to be based on

time division multiplexing, where time is partitioned

into multiple frames of equal length, and each frame is

further divided into equal time slots. Both CPU and

bandwidth resources are measured in time slots.

A traditional virtual network request is denoted by

a weighted undirected graph Gv = (V v, Ev), where V v

is the set of virtual machines (VMs), and Ev is the set

of virtual links (VLs). Each VM nv ∈ V v is associ-

ated with a CPU demand Rcpu(n
v) in time slots, and

each VL evuv = (nv
u, n

v
v) ∈ Ev is associated with a band-

width demand Rbw(e
v
uv) in time slots. Each VN has a



Sheng Zhang et al.: Service-Oriented Resource Allocation in Clouds 423

lifetime L, indicating how long the requested resources

should be reserved in a cloud. Fig.1(a) shows an exam-

ple, where the corresponding resource demand of each

VM or VL is written next to the respective node or link

that represents it.

2.2 RLVN Model

We find that most of the prior studies do not take dy-

namic resource demands of virtual networks or physical

location constraints of virtual machines into account.

On one hand, cloud tenants usually lease physical re-

sources from cloud providers for installing their appli-

cations and services, which are accessed by end users.

The randomness of end users and the dynamics of ap-

plications make the amount of physical resources actua-

lly utilized by virtual networks fluctuate over time, as

shown in prior measurements[6,14]. On the other hand,

cloud tenants usually would like to restrict the physi-

cal locations of virtual machines for security, backup,

coverage, or some other purposes. Combining them

together motivates us to design RLVN that captures

both time-varying resource and physical location re-

quirements.

One can potentially derive some complicated func-

tions, e.g., high-order polynomials, to capture the ac-

tual resource demands in a very precise way[6]. How-

ever, such smooth functions complicate the representa-

tion and provisioning of physical resources in clouds. To

strike a balance between modeling precision and imple-

mentation difficulties, as well as to initiate a tractable

study, we resort to a simple probabilistic model.

We assume that the computing resource demand

of a VM nv is the probabilistic combination of two

parts: a basic part R1
cpu(n

v), which exists through-

out the lifetime of the virtual network, and a vari-

able part R2
cpu(n

v), which exists with a probability of

p(nv). That is, the variable part R2
cpu(n) follows a

Bernoulli distribution. Here, Rcpu(n
v) = R1

cpu(n
v) +

R2
cpu(n

v). We denote the resource demands of a VM

nv and a VL ev by tuples (R1
cpu(n

v), R2
cpu(n

v), p(nv))

and (R1
bw(e

v), R2
bw(e

v), p(ev)), respectively. Taking

Fig.1(b) for example, the demand of VM a is (6.0, 2.0,

0.1), which means that, in a time slot, this VM requires

6 and 8 units of computing resources with probabilities

of 0.9 and 0.1, respectively.

Fig.1. In our RLVN model, the resource demand of a node nv

(resp. link ev) is denoted by a tuple (R1
cpu(n

v), R2
cpu(n

v), p(nv))

(resp. (R1
bw(ev), R2

bw(ev), p(ev))), and the preferable physical

locations of a node nv are denoted by a set Rloc(n
v). (a) Tradi-

tional VN model. (b) RLVN model.

Since a cloud tenant may have requirements on the

physical locations where his/her VMs are deployed, the

RLVN model allows cloud tenants to specify two types

of location constraints, i.e., absolute and relative con-

straints. The absolute constraint of a VM nv is de-

noted by a set Rloc(n
v), which contains the physical

machines that nv should be placed on. For the relative

location constraint, we assume a cloud physical net-

work consists of multiple disjoint failure regions; that

is, the failure regions form a partition of the physi-

cal network. For example, the physical network in

Fig.2 has three failure regions, as indicated by gray

areas. If Rloc(a) = {A,B,C}, then VM a should

be placed on one of the three physical machines; if

Rloc(b) ∩ Rloc(c) = ∅, then these two VMs should be

placed in different failure regions.

2.3 Model Generation Strategy

This subsection presents a simple strategy which can

be used by a cloud tenant to generate model parameters

for each VM and VL in his/her virtual network request.

It contains two steps.

First, a cloud tenant must get the computing and

networking usage traces and guarantee them to be con-

sistent with the realistic deployment in clouds. We envi-

sion that cloud providers offer profiling runs for tenants

to obtain their resource usage traces. That is, a cloud

tenant can tentatively deploy its VN request in a cloud

for a relatively short time period; the cloud system col-

lects the computing and networking usages over time,

and feeds them back to the tenant.

Second, given the usage traces, a tenant needs to

generate an appropriate tuple for each VM and VL.



424 J. Comput. Sci. & Technol., Mar. 2015, Vol.30, No.2

Fig.2. Example of RLVN placement. The physical network consists of three failure regions (indicated by gray areas). The resource

demand/capacity of each node or link is written next to the respective node or link that represents it. The dashed red lines give a

possible placement of the two RLVNs. (a) RLVN Gv
1 . (b) RLVN Gv

2 . (c) Physical network G.

Here we provide a strategy for a tenant to flexibly con-

trol the trade-off between application performance and

cost through tuning R1
cpu. It is better to illustrate the

strategy using the example in Fig.3, where the solid

black curve shows the computing resource demand of

a VM over time, while the dashed red curve represents

our model. As mentioned in previous studies[6,15], the

actual resource demands of virtual networks often ex-

hibit cyclic patterns. In this example, we assume the

cycle is T . Given R1
cpu and the peak demand, i.e.,

(R1
cpu +R2

cpu), we have p = (t4−t3)+(t2−t1)
T .

Fig.3. Example of the generation strategy.

2.4 Advantages of RLVN

RLVN has several desirable properties. First and

foremost, previous VN models can be seen as special

cases of our model. It ensures that our system is com-

patible with existing VN models, e.g., virtual cluster[3],

and virtual data center[5].

Second, we provide great flexibility for tenants to

trade off between application performance and rent

cost. At one extreme, if a tenant has a large amount

of funds, and only cares about application performance,

the tenant can request physical resources that are equal

to the peak resource demand (i.e., let the variable part

be zero in RLVN), though some of the requested physi-

cal resources are not utilized most of the time. At the

other extreme, if a tenant only cares about placement

costs, the tenant can let the basic part be zero in RLVN.

In general, a tenant can adjust model parameters to

best suit his/her objective.

Finally, our model is also a trade-off between mode-

ling complexity and precision. When the number of

parts in our model (currently 2) increases, the model

precision increases, and hence, can represent realistic

resource demands more accurately. However, the com-

plexity in generating parameters for RLVN, not sur-

prisingly, increases as well, which may complicate the

interactions between cloud providers and tenants.

One limitation of RLVN is that, modeling genera-

tion incurs some profiling overheads. However, this

overhead can be drastically reduced if tenants have to

reserve resources for the same type of VNs repeatedly

and lastingly. For example, about 40% of applications

are recurring in Bing’s production data center[16]. For

the same type of VNs, the cloud provider only needs

to offer one profiling run, and the same results could

be fed back to tenants who want to deploy that type

of VN. Thus, the profiling overhead for cloud providers

would be greatly reduced.

3 Problem Statement

The cloud physical network is modeled as a weighted

undirected graph, G = (V,E), where V denotes the set



Sheng Zhang et al.: Service-Oriented Resource Allocation in Clouds 425

of physical machines (PMs), and E denotes the set of

physical links (PLs). The amount of available CPU re-

sources in a PM n ∈ V is denoted by Acpu(n). A PL

eij connects two PMs ni and nj , i.e., eij = (ni, nj).

The amount of available bandwidth resources in a PL

eij ∈ E is denoted by Abw(eij). PMs on the same rack

are considered to be in the same failure region. In Fig.2,

the physical network consists of three disjoint failure re-

gions. We use P (ni, nj) to represent the set of loop-free

physical paths between ni and nj . We also denote by

P , the set of all loop-free paths in the physical network.

In Fig.2, there are four loop-free paths between PMs B

and J . The physical network is assumed to be fixed; for

fault-tolerant resource allocation in clouds, please refer

to [17-19].

Placing an RLVN request can be decomposed into

two phases, namely, VM mapping and VL mapping.

The VM mapping phase provides the placement results

of VMs, and it can be seen as an mapping MV from

V v to V . We have, ∀nv
i , n

v
j ∈ V v:

MV (n
v
i ) ∈ V,

Acpu(MV (n
v
i )) > Rcpu(n

v
i ),

MV (n
v
i ) = MV (n

v
j ) ⇔ nv

i = nv
j .

The second condition ensures that a VMmust be placed

on a PM that has enough physical resources. The third

condition guarantees that different VMs must be placed

on different PMs, as in previous studies[7-8,12].

The VL mapping phase provides the placement re-

sults of VLs, and it can be seen as a mapping ME from

Ev to P , where ∀evuv = (nv
u, n

v
v) ∈ Ev:

ME(e
v
uv) ⊂ P (MV (n

v
u),MV (n

v
v)),∑

p∈ME(evuv)
Abw(p) > Rbw(e

v
uv).

The available bandwidth of a path p is defined as the

minimum of the bandwidths of all physical links along

the path. That is, Abw(p) = mine∈p Abw(e).

Taking Fig.2 for example, the VM mapping for

RLVN Gv
1 is {a → A, b → B, c → J}, and the

VL mapping is {(a, b) → {(A,B)}, (b, c) → {(B, J)},
(c, a) → {(J,A)}}. The VM mapping for RLVN Gv

2

is {e → B, f → C, g → D}, and the VL mapping is

{(e, f) → {(B,C)}, (f, g) → {(C,D)}}.
Different VNs from different tenants usually offer dif-

ferent services, thereby it is reasonable to assume that

the resource demands from different VNs are mutually

independent. To provide efficient physical resource uti-

lization, we propose the opportunistic sharing of physi-

cal resources among multiple variable resource parts

from different VNs. However, when more than one

variable part of resource demand occurs simultaneously,

a capacity violation happens. To provide probabilistic

performance guarantee, a cloud provider must provide

an upper bound on the collision probability. We de-

note the upper bound by pth. For example, in Fig.2,

VM b from Gv
1 and VM e from Gv

2 are placed on the

same PM. If resource sharing is not exploited as in

prior studies, these two VMs would occupy a total of

17 units of computing resources on PM B. However,

when opportunistic resource sharing is allowed, these

two VMs would occupy a total of only 15 units of re-

sources on PM B. For example, let pth be 0.1, since

p(b) × p(e) = 0.2 × 0.1 = 0.02 < pth, we only have to

allocate two units of resources to the variable resource

parts of VMs b and e.

This paper focuses on placing multiple RLVNs that

arrive and depart over time in a given physical network.

Upon the arrival of an RLVN request, a decision must

be made to determine whether or not to accept the

request. Here, we assume that RLVN requests arrive

one by one, and batch processing is not the focus of

this paper. The goal is to maximize a cloud provider’s

revenue through efficiently utilizing physical resources,

and in the meanwhile, to provide flexibility for both

tenants and providers. Following prior studies[7-8,12], a

cloud provider’s revenue R(Gv
i ) from embedding Gv

i is

proportional to the amount of allocated resources and

its lifetime Li. That is,

R(Gv
i ) =

(
α

∑
nv∈V v

Rcpu(n
v) + β

∑
ev∈Ev

Rbw(e
v)
)
× Li,

where a cloud provider can adjust α and β to ensure

that, neither CPU nor bandwidth becomes a bottle-

neck. In our simulation, both α and β are set to 1. The

total revenue of a cloud provider can be denoted by∑
Gv

i
R(Gv

i ), where Gv
i is an accepted RLVN request.

We denote by acceptance ratio the ratio of the num-

ber of accepted RLVN requests to the number of all

requests; denote by node utilization ratio the ratio of

the amount of allocated computing resources to that of

overall computing resources in a physical network; and

denote by link utilization ratio the ratio of the amount

of allocated networking resources to that of overall net-

working resources in a physical network. For example,

in Fig.2, after successfully placing RLVNs Gv
1 and Gv

2,

the acceptance ratio is 2/2 = 1, the node utilization

ratio is (8 + 10 + 10 + 7 + 9 + 7)/200 = 0.255, and the

link utilization ratio is (4+ 4+6+2+2)/180 = 0.1. It



426 J. Comput. Sci. & Technol., Mar. 2015, Vol.30, No.2

is easy to see that, maximizing a cloud provider’s reve-

nue is equal to maximizing the acceptance ratio, node

utilization ratio, or link utilization ratio. We formally

define the problem below.

Problem 1 (RLVN Placement Problem). Given a

physical network G = (V,E) and a series of RLVN re-

quests Gv
i = (V v

i , E
v
i ), how to find a placement for these

requests to maximize the acceptance ratio while provid-

ing flexibility for both tenants and providers?

Determining whether a virtual network request

could be placed in a given physical network is proven to

be NP-hard[20], and thus, placing multiple RLVNs in a

cloud network to maximize the acceptance ratio is also

NP-hard. In this paper, we design two heuristic yet

efficient algorithms, MIPA and SAPA, which focus on

optimizing physical resource utilization and providing

flexible allocation, respectively.

4 Local Resource Sharing

Before we present MIPA and SAPA in the next two

sections, in this section, we first introduce how to share

physical resources between multiple variable parts of

resource demands from different VNs in a single PM.

The technique developed in this section serves as a basic

component for MIPA and SAPA.

Recall that both computing and networking re-

sources are measured in time slots. In this section, we

only present the technique for local resource sharing in

a PM, and the result can be used in a PL without any

major changes.

4.1 Time Slot Assignment Problem

The number of time slots in a frame of each PM

is proportional to the physical capacity of the re-

spective PM. Consider the following time slot assign-

ment problem: based on the placement generated by

MIPA or SAPA, a set of m VMs are placed on a PM.

The resource demand of the i-th VM nv
i is (R1

cpu(n
v
i ),

R2
cpu(n

v
i ), p(n

v
i )). For the basic parts of resource de-

mands, we have no choice but to allocate the respective

amount of physical resources to them; for the variable

parts of resource demands, we propose the opportunis-

tic sharing of physical resources among them. Given

an upper bound on the collision threshold pth, the ob-

jective is to find a sharing solution that minimizes the

amount of time slots used.

We illustrate the idea of opportunistic resource shar-

ing with the example in Fig.4. Four VMs are placed on

the same PM. VMs n1, n2, n3 and n4 require 3, 2,

3 and 2 time slots with probabilities of 0.3, 0.3, 0.2

and 0.4, respectively. The objective is to minimize the

time slots occupied by the four VMs. Fig.4 also shows

a possible sharing solution, which occupies a total of

five time slots. In this solution, ts1 is shared between

n1 and n2, because they collide with a probability of

0.3 × 0.3 = 0.09, which is less than pth; ts1 cannot be

shared among n1, n2, and n3, because their collision

probability is 0.174, which is larger than pth. More for-

mally, the collision probability of a set S of variable

parts of resource demands is defined as

P (S) = 1−
∏
ni∈S

(1− p(ni))−∑
ni∈S

(p(ni)
∏

nk∈S,k ̸=i

(1− p(nk))).

Fig.4. Example of resource sharing among multiple variable parts

of resource demands. The collision threshold serves as the “ca-

pacity” of a time slot.

4.2 Benefit of Resource Sharing

This subsection provides some insights into the bene-

fit of local resource sharing. In general, local resource

sharing produces a win-win situation — cloud tenants’

costs are lowered, and cloud providers’ revenues are in-

creased.

Consider a cloud provider CP1 that has a physical

link with a bandwidth capacity equal to 20 time slots,

and there are three cloud tenants, CT 1, CT 2 and CT 3.

Each of them wants to lease eight time slots in the sub-

strate link. Without resource sharing, it is clear that

CP1 can only accept two requests (8 × 3 = 24 > 20).

If CP1 charges one dollar for one slot per hour, then

CP1 can get 16 dollars per hour, and each tenant pays

8 dollars per hour to CP1.

However, each tenant may find that his/her resource

demand is composed of a basic part of six time slots and

a variable part of two time slots, which occurs with a

probability of 0.3. With resource sharing, CP1 could

accept all of the three requests in the following way.



Sheng Zhang et al.: Service-Oriented Resource Allocation in Clouds 427

CP1 assigns 18 dedicated slots to the basic parts, and

lets the variable parts share the remaining two slots.

The collision probability in each of the two sharing slots

is

1− 0.8× 0.8× 0.8− 3× 0.8× 0.8× 0.2 = 0.104.

Since there are collisions for the variable parts of re-

source demands, CP1 may charge 0.1 dollars for one

sharing slot per hour. Thus, the cost of an accepted

request is (6 + 0.1 + 0.1) = 6.2 dollars per hour,

which is less than the previous amount, and CP1 gets

(6+0.1+0.1)×3 = 18.6 dollars per hour, which is more

than the previous one.

We see that local resource sharing enables better uti-

lization of physical resources, and hence, increases the

revenues of cloud providers, and decreases the costs of

cloud tenants. We believe that local resource sharing

can benefit all parties through reasonable pricing. We

will not discuss how to set prices in this paper, as it is

out of this paper’s scope and deserves separate study.

4.3 First-Fit Based Sharing Algorithm

The time slot assignment problem has been proven

to be NP-hard in the strong sense[12]. We observed that

it is similar to the classic bin packing problem[21], which

is to find a packing in unit-sized bins for a set of items

with sizes that are less than one, so that the number

of bins used is minimized. First-fit is an approxima-

tion algorithm with a factor of two for the bin packing

problem.

We design FFS, a first-fit based sharing algorithm,

as shown in Fig.5. For the i-th variable part of resource

demand characterized by R2
cpu(ni) and p(ni), FFS at-

tempts to place it in the first time slot that can accom-

modate it. If this is not possible, FFS moves to the

next time slot. FFS keeps on finding another time slot

in which the i-th variable part of resource demand can

be placed, until the number of these slots is equal to

R2
cpu(ni). By “accommodate” we mean that the col-

lision probability is not larger than the threshold pth.

FFS can be executed in an on-line fashion, and has a

low time complexity.

The arrows in Fig.4 show the results after apply-

ing FFS to the example. FFS firstly tries to place

the variable parts of resource demands from n1, and

places them in the first three time slots. When

FFS checks whether ts1 could accommodate n2, since

p(n1) × p(n2) < pth, FFS places the variable parts of

resource demands of n2 in the first two time slots, and

so on.

First-Fit Based Sharing (FFS)

1: input: R2
cpu(ni) and p(ni) for i = 1 to m

2: for i = 1 to m

3: count ← 0, j ← 1

4: while count < R2
cpu(ni) do

5: if tsj can accommodate ni then

6: Place ni in tsj

7: count ← count + 1

8: j ← j + 1

9: end while

10: end for

Fig.5. Pseudo-code for the first-fit based sharing algorithm. It

handles the micro-level time slot assignment, serving as a basic

component for MIPA and SAPA.

We summarize this section by providing two final

notes. First, in Section 3, we assume that different

VMs from the same VN should be placed on different

PMs. This assumption is made for brevity. The pro-

posed algorithms can naturally adapt to the scenario

when a tenant wants to deploy multiple VMs (e.g.,

n1, n2, . . . , nk) on one PM. In this case, we can treat

these k VMs as one large VM nk
1 . Since resource de-

mands from VMs in the same VN are usually correlated,

we cannot simply sum up the variable parts of resource

demands. The resource demand of nk
1 consists of (k+1)

parts: one basic part, i.e.,
∑

16i6k R
1
cpu(ni), and k vari-

able parts, where the i-th variable part R2
cpu(ni) occurs

with a probability of p(ni). In FFS, we just have to en-

sure that the variable parts of resource demands from

the same VM cannot share physical resources.

Fig.6 shows an example. Suppose that a tenant

wants to treat n1 and n2 as one VM n2
1, and another

tenant wants to treat n3 and n4 as one VM n4
3. When

we use FFS to deal with time slot assignment, the vari-

able parts of resource demands from n2
1 cannot share

physical resources. The arrows show the final assign-

ment.

Fig.6. Extending FFS to the scenario when a tenant wants to

deploy multiple VMs on one PM.



428 J. Comput. Sci. & Technol., Mar. 2015, Vol.30, No.2

Second, while MIPA and SAPA generate the map-

ping from VMs (resp. VLs) to PMs (resp. loop-free

physical paths), FFS determines the micro-level time

slot assignment in a single PM or PL, and is a basic

procedure in both MIPA and SAPA.

5 Mixed Integer Programming-Based

Algorithm (MIPA)

In this section, we first present the MIP-based algo-

rithm for the case where all physical location require-

ments of VMs are in the form of a set of preferable PMs,

then we show how to deal with the other cases.

5.1 Augmented Physical Network

The main idea of MIPA is to transform the place-

ment problem into the multi-commodity flow problem.

Given an RLVN request Gv, we can extend the physical

network G to construct an augmented physical network

G′ by exploiting the absolute location requirements of

Gv.

The augmented physical network can be constructed

as follows. For each nv ∈ V v, we create a correspond-

ing shadow-node ϑ(nv) (or nv without causing confu-

sions), and we connect nv with all the PMs belong-

ing to Rloc(n
v) using shadow-links with infinite band-

width capacities. Denote the augmented network of

G = (V,E) by G′ = (V ′, E′), which is the combination

of G, shadow-nodes, and shadow-links. We have

V ′ = V ∪ {nv|nv ∈ V v},
E′ = E ∪ {(nv, n)|nv ∈ V v, n ∈ Rloc(n

v)}.

Fig.7 shows an example, where the location require-

ments of Gv
1 are Rloc(a) = {A,B,C}, Rloc(b) = {C,D},

and Rloc(c) = {A, J,H}. The shadow-links with infi-

nite bandwidths connect a shadow-node to the physical

nodes that belong to the respective set of preferable lo-

cations.

5.2 MIP-Based Formulation

Based on the augmented network, we can take a

virtual link evij = (nv
i , n

v
j ) ∈ Ev as a commodity flow

starting from nv
i and ending at nv

j . By forcing all flows

starting from and ending at each shadow-node nv to go

through the same neighbor of nv in G′, we effectively

oblige nv to connect to only one active physical ma-

chine in Rloc(n
v). In doing so, we have the result of

VM mapping, that is, we can place nv on that active

PM. More formally, we present the MIP-based formu-

lation, MIP-RLVN-Placement, as below.

Fig.7. Augmented physical network for placing RLVN Gv
1 in

physical network G (see Fig.2 for details of Gv
1 and G). The

location requirements of Gv
1 are Rloc(a) = {A,B,C} , Rloc(b) =

{C,D}, and Rloc(c) = {A, J,H}.

• Unknown decision variables : h(nv, n), the indica-

tive binary variable, which is 1 if nv is mapped to n;

otherwise, it is 0; f(evij , euv): the amount of flow from

virtual link evij in the u → v direction of physical link

euv.

• Objective :

min
∑

nv∈V v

Rcpu(n
v) +

∑
evij∈Ev

∑
euv∈V

f(evij , euv). (1)

• Capacity constraints :

h(nv, n)×Rcpu(n
v) 6 Acpu(n),∀nv ∈ V v,∀n ∈ V ′, (2)

f(evij , euv) > 0, ∀euv ∈ E′, ∀evij ∈ Ev, (3)∑
evij∈Ev

(f(evxy, euv) + f(evij , evu)) 6 Abw(euv), ∀euv ∈ E.

(4)

• Shadow-node constraints :

h(nv, n) ∈ {0, 1}, ∀nv ∈ V v,∀n ∈ V ′,∑
nv∈V v

h(nv, n) 6 1, ∀n ∈ V ′, (5)∑
n∈Rloc(nv)

h(nv, n) = 1, ∀nv ∈ V v, (6)

∑
n/∈Rloc(nv)

h(nv, n) = 0, ∀nv ∈ V v, (7)

∑
evij∈Ev

(f(evij , envw) + f(evij , ewnv ))

6 h(nv, nw)×Abw(envw),

∀nv ∈ V v, ∀nw ∈ Rloc(n
v). (8)



Sheng Zhang et al.: Service-Oriented Resource Allocation in Clouds 429

• Flow constraints :∑
nu∈V ′

f(evij , euv) =
∑

nw∈V ′

f(evij , evw),

∀nv ∈ V ′ \ {nv
i , n

v
j}, (9)∑

nw∈V ′

f(evij , env
i w

) =
∑

nu∈V ′

f(evij , eunv
i
) +

∑
nw∈V ′

f(evij , env
i w

) =Rbw(e
v
ij), ∀evij ∈ Ev, (10)∑

nw∈V ′

f(evij , e
s
nv
jw

) =
∑

nu∈V ′

f(evij , eunv
j
)−

∑
nw∈V ′

f(evij , e
s
nv
jw

) =Rbw(e
v
ij), ∀evij ∈ Ev. (11)

There are two kinds of unknown decision variables

that correspond to VM and VL mappings, respectively.

Recall that our goal is to maximize the cloud provider’s

revenue by utilizing physical resources efficiently; there-

fore, we use the objective function ((1)) to minimize the

total physical resources that are allocated to the RLVN

request.

(2)∼(4) provide the capacity constraints. If nv is

placed on n, then the available CPU resource of n

must be no less than the resource demand of nv ((2)).

All flows must be positive ((3)), and the flows going

through a physical link must not exceed the bandwidth

capacity of that link ((4)).

(5) ensures that no more than one VM is placed on

a PM. (6) and (7) make sure that the location require-

ments are respected. Remember that, for a shadow-

node nv, there is only one PM nw in Rloc(n
v) that

satisfies h(nv, nw) = 1. Therefore, (8) forces all of the

flows starting from nv and ending at nv to pass the same

neighbor nw. (9)∼(11) are flow-related constraints.

Solving an MIP is NP-hard; in our algorithm, we

adopt LP relaxation and randomized rounding[22]. Af-

ter we get the macro-level mapping solution, for each

PM and PL, we invoke FFS to handle the micro-level

time slot assignment.

5.3 How to Deal with Other Cases

We have shown how to construct an augmented

physical network for embedding an RLVN request that

only has absolute location requirements. We now pro-

vide remarks on how to deal with other cases, i.e., rela-

tive and no location requirements.

If a VM nv does not have any location requirements,

we just assume Rloc(n
v) contains all PMs in the physi-

cal network, i.e., Rloc(n
v) = {n|n ∈ V }. If there are

relative location requirements, the augmented network

is constructed as follows. For each physical failure re-

gion, we create a corresponding region-head-node, and

we connect a region-head-node with all the PMs be-

longing to the respective region using region-links with

infinite bandwidths. We further connect a shadow-node

with these region-head-nodes using shadow-links with

infinite bandwidths.

Fig.8 shows an example, where the location require-

ments of Gv
1 are Rloc(a) = {A,B,C}, and Rloc(b) ∩

Rloc(c) = ∅. By forcing all flows starting from and

ending at b to pass the same region-head-node (e.g.,

f1) and the same PM (e.g., C), we effectively select a

PM (e.g., C) for b. By forcing a region-head-node to be

an active neighbor of only one shadow-node, we ensure

that b and c are not placed in the same region.

Based on this augmented network, we can define a

similar MIP-based formulation as before, and solve it

by LP-relaxation and randomized rounding. The de-

tails are omitted due to space limitations, and are left

to the reader.

Fig.8. Augmented physical network for placing Gv
1 , where the

location requirements are Rloc(a) = {A,B,C}, and Rloc(b) ∩
Rloc(c) = ∅. The region-links with infinite bandwidths connect

a region-head-node to the physical nodes belonging to the respec-

tive region.

6 Simulated Annealing-Based Practical

Algorithm (SAPA)

Based on previous expositions, this section presents

a practical meta-heuristic-based algorithm. We first in-

troduce the main idea of our algorithm, and then we

explain several key functions in the algorithm.

Determining whether a virtual network request

could be placed in a given physical network is proven

to be NP-hard[20]. We resort to simulated annealing

to cope with its intractability. Simulated annealing



430 J. Comput. Sci. & Technol., Mar. 2015, Vol.30, No.2

was originally developed for very large scale integra-

tion design, and is now widely adopted in optimiza-

tion problems[23-24]. Simulated annealing is chosen for

its simplicity. We believe that more complex methods

would hinder the scalability, while gaining only incre-

mental returns. While simulated annealing is a well-

known technique, our contribution lies in the choice of

appropriate energy and neighboring generation func-

tions to ensure rapid convergence to a near-optimal al-

location.

The main idea is to search through a solution state

space to find a near-optimal solution by iteratively im-

proving a candidate solution with regard to a given

measure of energy. Fig.9 shows the pseudo-code of our

algorithm. Given a physical network G, and an RLVN

request Gv, SAPA returns a near-optimal solutionMB .

We first generate the initial solution and temperature.

The function CalculateEnergy defines the energy of a

solution. Variables MB and ϵB are used to record the

best solution so far and its energy.

In each iteration, we move to a slightly-different

neighboring solution with a certain probability p, de-

pending on the energies of the current solution, the

neighboring solution, and the temperature. The tem-

perature is decreased by a factor of ρ after each itera-

tion. ρ is typically a value between 0.95 and 1[11,23-24].

Allowing the solution to move to a higher energy solu-

tion helps us to avoid local minima.

SAPA

1: input: G, Gv, N , ρ

2: M← an initial solution for Gv

3: T ← an initial temperature

4: ϵ← CalculateEnergy(M)

5: MB ←M, ϵB ← ϵ

6: for n = 1 to N do

7: M# ← GenerateNeighbor(M)

8: ϵ# ← CalculateEnergy(M#)

9: if ϵ# < ϵB then

10: MB ←M#, ϵB ← ϵ#
11: if Random() < p(M,M#, T ) then

12: M←M#, ϵ← ϵ#
13: T ← ρT

14: end for

15: returnMB

Fig.9. Pseudo-code of SAPA.

To better understand the algorithm, the reader could

imagine the solution state space as a graph, where the

individual solutions are vertices. Two solutions have

an edge between them if and only if we can get one of

them from the other through GenerateNeighbor. Our

algorithm is like a walk on this graph. In each itera-

tion, we randomly choose a neighbor solution, and move

to it with a probability p, which is determined by the

energies of the current solution, the neighbor solution,

and the temperature. We may move to a higher ener-

gy solution, which helps us avoid local minima. But

the probability of moving to a higher energy solution

is decreased as the temperature goes down. The larger

the iteration count N is, the better the final solution

is. Therefore, we can use N to control the trade-off

between solution optimality and running time.

Note that, after we get the mapping solution from

SAPA, we then invoke FFS to reduce the amount of oc-

cupied resources in each PM and PL, and thus improve

the physical resource utilization.

6.1 Initial Solution and Temperature

We generate the initial solution using the following

greedy approach. We first sort PMs and VMs in the

order of decreasing available resources and resource de-

mands, respectively. For each VM in this order, we

place it on the first PM that has not been used be-

fore. This kind of “maximum-first” mapping fashion

is beneficial for future requests that may require some

bottleneck resources. We then map each virtual link

to the shortest path with sufficient bandwidth between

the corresponding PMs.

The moving probability p(M,M#, T ) for transition

from the current solution M (with an energy of ϵ) to

the neighboring solution M# (with an energy of ϵ#) is

defined as

p(M,M#, T ) =

{
1, if ϵ# < ϵ,

e−
ϵ#−ϵ
T , otherwise.

The initial temperature T should be set to a value

that makes the average moving probability be 0.8 for

“bad” transitions from the initial solution, according

to the suggestions in [11]. By “bad” we mean that we

generate a higher energy neighbor solution from the ini-

tial solution using the function GenerateNeighbor. We

can get T in the following way: we randomly generate

M energy-increasing neighbor solutions from the initial

solution and compute the average increase in energy

ϵ̄ =
∑

(ϵ#−ϵ)
M ; let p(M,M#, T ) = e−

ϵ̄
T = 0.8, we have

T = − ϵ̄
ln(0.8) .

6.2 Generating Neighboring Solutions

The function GenerateNeighbor finds a slightly-

different solution in the neighborhood of the current



Sheng Zhang et al.: Service-Oriented Resource Allocation in Clouds 431

candidate solution in each iteration. This function

should be simple, otherwise it would cost more running

time. A well-crafted neighbor generating function in-

trinsically avoids deep local minima. Fig.10 shows the

pseudo-code of GenerateNeighbor. We first randomly

select a VM nv ∈ V v, and denote by n1 the PM on

which nv is placed in M. We then use a breadth-first

search starting from n1 to find another PM n2 that sati-

sfies the capacity and location requirements, and place

nv on n2 in M#.

GenerateNeighbor

1: input: M
2: M# ←M
3: Randomly select a VM nv ∈ V v

4: n1 ←M(nv)

5: Find another PM n2 using breadth-first

search starting from n1

6: M#(nv)← n2

7: for each (mv , nv) ∈ Ev

8: if n2 ∈M(mv, nv) then

9: M#(mv , nv)← the segment from

n2 toM(mv) inM(mv , nv)

10: else

11: Find a path segment ps

connecting n1 and n2

12: M#(mv , nv)←M(mv , nv) + ps

13: end if

14: end for

15: returnM#

Fig.10. Pseudo-code of GenerateNeighbor.

Denote by M(mv, nv) the physical path that

(mv, nv) is placed on in M. For each affected virtual

link, i.e., (mv, nv) ∈ Ev: if n2 belongs to the physical

pathM(mv, nv), we just place (mv, nv) on a part of the

path in M#; otherwise, we extend M(mv, nv) in M#

by adding the shortest path between n1 and n2. The

randomness we employed in generating neighboring so-

lutions helps us to walk uniformly within the solution

state space and avoid local minima.

6.3 Calculating Energy

The energy of a solution ϵ(M) must satisfy the

following properties. 1) If a solution M occupies less

physical resources than another solution M′, then

ϵ(M) < ϵ(M′). 2) If a solution does not meet the

resource demands of an RLVN request, then it has a

higher energy than any other solution that meets the

demands. 3) For two solutions, both of which do not

meet the resource demands of an RLVN request, the

solution that incurs more unsatisfied resource demands

must have a higher energy.

For a solution M, the amount of unsatisfied resource

demands can be defined as

∆(M) =
∑

nv∈V v

(Rcpu(n
v)− c(nv,M(nv))) +

∑
evij∈Ev

(
Rbw(e

v
ij)−

∑
M(nv

i )=nu

f(evij , euv)
)
,

where c(nv,M(nv)) and f(evij , euv) denote the amounts

of resources that are allocated for nv in M(nv), and al-

located for evij in euv, respectively. The energy of a

solution is defined as

ϵ(M) =


∑

nv∈V v

Rcpu(n
v) +

∑
evij∈Ev

∑
euv∈E

f(evij , euv),

if M meets the demands of Gv,

ϵM +∆(M), otherwise.

Here, ϵM is a sufficiently large energy, e.g., ϵM could be

defined as the sum of all the physical resources in the

physical network.

It is straightforward to see that the definition of ener-

gy satisfies the above three properties. We note that,

the energy can be defined in different ways to achieve

different purposes, e.g., a definition that prefers load

balancing is provided in [25].

6.4 Summary

Based on the RLVN model, opportunistic resource

sharing, and simulated annealing, SAPA achieves high

resource utilization through opportunistically sharing

physical resources among multiple resource demands.

The flexibility of SAPA is reflected in several aspects:

allowing tenants to control the trade-off between appli-

cation performance and placement cost; allowing cloud

providers to control the trade-offs between performance

guarantee and resource utilization, and between alloca-

tion optimality and running time; and so on.

7 Performance Evaluation

This section describes our evaluation results of the

proposed algorithms. The simulations settings are simi-

lar to those in prior studies[7-8]. There are two types

of settings in our evaluation: small-setting, and large-

setting. The small topology setting is designed for

MIPA, due to its high computational complexity; the

large topology setting is used in the evaluations without

involving MIPA.



432 J. Comput. Sci. & Technol., Mar. 2015, Vol.30, No.2

In the large-setting one, the physical network is

configured to have 50 physical machines that are ran-

domly connected with a probability of 0.5. Both of the

CPU resource capacity of every physical machine and

the bandwidth resource capacity of every physical link

are generated uniformly from a range of integers from

50 to 100. The threshold of collision probability is set

to 0.1, and the annealing parameter ρ is set to 0.99 ac-

cording to [11, 23-24]. The number of failure regions

in the physical network is set to 5, and we randomly

partition physical machines into five nonempty sets.

For each RLVN request, the number of VMs is uni-

formly generated from a range of integers from 2 to 10

and each pair is connected with a probability of 0.5.

We check whether a virtual network is connected; if

not, we regenerate it until we get a connected one. The

arrivals of RLVN requests are modeled as a Poisson pro-

cess with an average rate of two requests per minute.

The lifetime of each request is assumed to be exponen-

tially distributed with an average of ten minutes. The

CPU resource demand of each VM is uniformly gene-

rated from a range of integers from 1 to 20, and the

bandwidth resource demand of each VL is uniformly

generated from a range of integers from 1 to 50. The ra-

tio of the variable part of resource demand to the overall

resource demand of each VM or VL is uniformly gene-

rated from a range of real values from 0.1 to 0.2. For

the location requirements, we randomly choose two or

four VMs from each request and assume them to have

relative location requirements; the rest of the VMs are

assumed to have absolute location requirements.

In the small-setting one , simulation parameters are

the same as those in the large setting, except that the

physical network is configured to have ten machines,

and the number of VMs in an RLVN request is uni-

formly generated from a range of integers from 2 to 5.

7.1 Efficiency in Resource Utilization

The proposed algorithms are compared with G-

ORS[12] (greedy node mapping with resource sharing)

and G-SP[13] (greedy node mapping with the shortest

path-based link mapping). The performance metrics in-

clude acceptance ratio, node utilization ratio, and link

utilization ratio.

Fig.11 shows the comparison results on the accep-

tance ratio of the four algorithms in the small setting.

We note that, MIPA outperforms the other three algo-

rithms, and SAPA achieves the second-highest accep-

tance ratio. Specifically, the average acceptance ratios

of MIPA, SAPA, G-ORS, and G-SP after the first 1 200

seconds are 38.29%, 34.98%, 33.00%, and 30.11%, re-

spectively, which means that MIPA accepts up to 8.18%

more requests than G-SP. SAPA performs better than

G-ORS and G-SP, as it employs simulated annealing

as its optimization framework and takes local resource

sharing into account.

0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2
1000 2000 3000 4000 5000 6000

Time (s)

MIPA
SAPA
G-ORS
G-SP

A
c
c
e
p
ta

n
c
e
 R

a
ti
o

Fig.11. Comparison results of MIPA, SAPA, G-ORS, and G-SP

in the small setting.

Fig.12 shows the comparison results on the running

time of MIPA and SAPA. In this evaluation, we keep

the number of VMs fixed at 5, and set the iteration

count in SAPA to be 1 000. We note that, due to the

high time complexity of MIP formulation, the running

time of MIPA goes up quickly as the number of physical

machines in a cloud increases. For instance, MIPA costs

about two seconds when the physical network contains

50 PMs. SAPA has a much smaller time complexity,

and has almost linear running time.

10 15 20

MIPA
SAPA

25 30

Number of PMs

R
u
n
n
in

g
 T

im
e
 (

m
s)

35 40 45 50

2000

1500

1000

500

0

Fig.12. Running time with varying number of PMs.

Figs. 13(a), 13(b), and 13(c) show the comparison re-

sults on the acceptance ratio, node utilization ratio, and

link utilization ratio, respectively, of SAPA, G-ORS,

and G-SP in the large setting. In Fig.13(a), the ave-

rage acceptance ratio of these three algorithms after the



Sheng Zhang et al.: Service-Oriented Resource Allocation in Clouds 433

0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

1.0

0.8

0.6

0.4

0.2

01000 2000 3000 4000 5000 6000

Time (s) Node Utilization Ratio Link Utilization Ratio

A
c
c
e
p
ta

n
c
e
 R

a
ti
o

SAPA
G-ORS
G-SP

SAPA
G-ORS
G-SP

SAPA
G-ORS
G-SP

0.1 0.2 0.3

C
D

F

1.0

0.8

0.6

0.4

0.2

0

C
D

F

0.4 0.5 0.1 0.2 0.3 0.4 0.5

(a) (b) (c)

Fig.13. Comparison results of SAPA, G-ORS, and G-SP in the large setting. (a) Acceptance ratio over time. (b) CDF of node

utilization ratios. (c) CDF of link utilization ratios.

first 2 000 seconds is around 0.37, which is larger than

0.35 in Fig.11. The main reason is that, the physical

network in the large setting has a much higher diversity

than that in the small setting, and such a kind of diver-

sity will further enable the physical network in the large

setting to accept more virtual network requests. The

average acceptance ratios of SAPA, G-ORS, and G-SP

after the first 1 200 seconds are 38.35%, 36.14%, and

32.30%, respectively, which implies that SAPA accepts

up to 6.05% more virtual network requests than G-SP.

Figs. 13(b) and 13(c) show the cumulative distribution

function (CDF) of node and link utilization ratios, re-

spectively. We notice that, the node and link utilization

ratios in SAPA are, on average, higher than those in the

other two algorithms. The average node utilization ra-

tios of SAPA, G-ORS, and G-SP are 29.51%, 28.31%,

and 26.12%, respectively; that is, SAPA utilizes up to

3.39% more physical computing resources than G-SP.

7.2 Flexibility in Providing Trade-Offs

In this subsection, we present simulation results on

the ability of SAPA in providing flexible resource allo-

cations. In Fig.14(a), we show the acceptance ratio of

SAPA under three different values of collision threshold,

i.e., pth. We notice that, SAPA with a larger pth ac-

cepts more RLVN requests than SAPA with a smaller

pth. The main reason behind this phenomenon is that,

when a cloud provider increases the collision threshold,

more variable parts of resource demands could co-exist

in a single physical time slot, which improves physical

resource utilization. Therefore, a cloud provider can

control the trade-off between performance guarantee

and resource utilization through adjusting the collision

threshold.

In Fig.14(b), we present the acceptance ratio of

SAPA under three different settings of RLVN requests.

We denote by “R1/(R1 + R2)” the average percentage

of the basic part in the total resource demand. When

the percentage increases from 0.8 to 1.0, more varia-

ble parts of resource demands turn into basic parts,

which do not permit local resource sharing. Therefore,

the acceptance ratio of SAPA decreases. Since a cloud

provider charges a tenant a smaller amount of rent for

variable parts of resource demands than that for basic

parts, a tenant then can control the trade-off between

application performance and placement cost through

adjusting the percentage.

Fig.14(c) shows the acceptance ratio of SAPA with

different iteration counts. Generally, more iterations

0

0.9

0.8

0.7

0.6

0.5

0.4

0.3
1000 2000 3000 4000 5000 6000

Time (s)

A
c
c
e
p
ta

n
c
e
 R

a
ti
o

(a)

ρth/.
ρth/.
ρth/.

0 1000 2000 3000 4000 5000 6000

Time (s)

(b)

0 1000 2000 3000 4000 5000 6000

Time (s)

(c)

0.9

0.8

0.7

0.6

0.5

0.4

0.3

A
c
c
e
p
ta

n
c
e
 R

a
ti
o

0.9

0.8

0.7

0.6

0.5

0.4

0.3

A
c
c
e
p
ta

n
c
e
 R

a
ti
o

R1/(R1+R2)=0.8
R1/(R1+R2)=0.9
R1/(R1+R2)=1.0

N/ 
N/ 
N/ 

Fig.14. Evaluation results on the flexibilities of SAPA. (a) Trade-off between performance guarantee and resource utilization. (b)

Trade-off between application performance and placement cost. (c) Trade-off between placement optimality and running time.



434 J. Comput. Sci. & Technol., Mar. 2015, Vol.30, No.2

make SAPA perform better. That is, SAPA can gene-

rate better allocation results at the expense of time ef-

ficiency. It is worth noting that, the performance gain

becomes smaller as the number of iterations increases.

The cloud providers can control the trade-off between

placement optimality and running time through modi-

fying the number of iterations.

In summary, simulation results confirm the respec-

tive advantages of both MIPA and SAPA. We wish that

the proposed algorithms would provide some potential

insights into the future research in this direction.

8 Related Work

This is a rich heritage of studies in cloud resource

allocation and virtual network placement that has in-

formed and inspired our work. We describe a subset of

these efforts below.

The ability to provide scalable resource on demand is

central to cloud computing. Server and network virtu-

alization multiplexes and shares physical resources be-

tween cloud tenants, which finally translates into in-

creased provider revenue and decreased tenant cost. A

large quantity of related solutions have been proposed

in the past. Want et al.[26] considered bin packing based

virtual machine consolidation with dynamic bandwidth

demands. Meng et al.[27] focused on network-aware vir-

tual machine placement that minimizes average traffic

latency incurred by network infrastructures. Zhang et

al.[28] proposed a heterogeneity-aware resource mana-

gement system for dynamic capacity provisioning in

cloud environments. Wei et al.[29] investigated a QoS

(i.e., deadline and budget) constrained resource alloca-

tion problem and designed an evolutionary mechanism

from the perspective of game theory. Zhang et al.[30]

proposed a bidding language and an online auction

mechanism for cloud resource allocations where users

with heterogeneous demands come and leave on the fly.

To improve cloud task execution performance, Di and

Wang[31] studied the problem of minimizing cloud task

makespan under a budget with possible prediction er-

rors and proposed the ODRA algorithm. They also

investigated the problem of optimizing multi-attribute

resource allocation in self-organizing clouds[32]. Some

other researchers investigated resource allocation prob-

lems in mobile cloud computing[33-35]. Different from

these research efforts, our work aims to provide an ef-

ficient and flexible resource allocation algorithm with

probabilistic performance guarantee.

Energy efficiency is an important issue in data cen-

ters. Gao et al.[36] noted the location-specific carbon

footprint and electricity price of data centers, and pro-

posed to dynamically control the fraction of user-gene-

rated traffic directed to each geographically-distributed

data center. Wang et al.[37] explored several unique fea-

tures of data centers, e.g., topology regularity, applica-

tion characteristics, to improve the energy efficiency in

data center networks. In order to provide balanced and

scalable data center architectures, recent studies[2,38-40]

have proposed several novel architectures, e.g., VL2,

Fat-Tree, DCell, and BCube. Zhou et al.[41] proposed

augmenting physical cloud networks with 60GHz wire-

less links. Ballani et al.[42] studied pricing strategies

for cloud resources. Ghazar and Samaan[15] designed

incentive mechanisms for cloud tenants to proactively

regulate their resource demands through exploiting the

resource utilization fluctuation in data centers and the

delay-tolerant nature of many applications. These stu-

dies are complementary to our design, and can be used

together with our proposed algorithms to provide bet-

ter performance.

Virtual network placement is the key challenge in

network virtualization environments. To cope with

its NP-hardness[20], Ricci et al.[43] designed a meta-

heuristic-based algorithm. Zhu and Ammar[13] studied

how to achieve load balance in placing virtual networks

in a physical network with unlimited resources. Yu et

al.[7] envisioned substrate support for path splitting.

Lischka and Karl[44] designed a subgraph isomorphism

detection based virtual network placement algorithm.

Chowdhury et al.[8] proposed the ViNEYard frame-

work, where only a special case of location constraint

was taken into account. Cheng et al.[45] incorporated

topology-awareness into embedding virtual networks,

and designed a Markov chain based node ranking al-

gorithm.

To cope with physical node or link failure, Koslovski

et al.[17] and Yeow et al.[18] designed methods for im-

proving virtual network reliability through reserving re-

dundant physical resources. Based on column genera-

tion and p-cycle techniques, Jarray and Karmouch[19]

proposed augmenting virtual networks with redundant

nodes and links to achieve fault-tolerant virtual net-

work embedding. Comparatively, our work takes time-

varying resource demands and location constraints into

consideration, and focuses on flexible and efficient re-

source allocation.

9 Conclusions

In this paper, we studied how to efficiently and fle-

xibly place virtual networks with dynamic resource de-



Sheng Zhang et al.: Service-Oriented Resource Allocation in Clouds 435

mands and physical location requirements in a cloud.

We first proposed a novel virtual network model that

allows cloud tenants to better specify their resource de-

mands; we then proposed two algorithms with different

designing goals. MIPA focuses on optimizing physi-

cal resource utilization, while SAPA concentrates on

providing flexible resource allocation. Simulation re-

sults demonstrate the advantages of the proposed algo-

rithms. In our future work, we plan to design incentive

mechanisms for cloud providers to make tenants proac-

tively regulate their resource demands.

References

[1] Armbrust M, Fox A, Griffith R et al. A view of cloud com-
puting. Communications of the ACM, 2010, 53(4): 50-58.

[2] Greenberg A, Hamilton J R, Jain N et al. VL2: A scalable
and flexible data center network. In Proc. ACM SIGCOMM
2009 Conference, Aug. 2009, pp.51-62.

[3] Ballani H, Costa P, Karagiannis T et al. Towards pre-
dictable datacenter networks. In Proc. ACM SIGCOMM
2011 Conference, Aug. 2011, pp.242-253.

[4] Xu F, Liu F, Jin H et al. Managing performance overhead of
virtual machines in cloud computing: A survey, state of the
art, and future directions. Proceedings of the IEEE, 2014,
102(1): 11-31.

[5] Guo C, Lu G, Wang H et al. SecondNet: A data center
network virtualization architecture with bandwidth guar-
antees. In Proc. the 6th ACM International Conference
on Emerging Networking Experiments and Technologies,
Nov. 30–Dec. 3, 2010, Article No. 15.

[6] Xie D, Ding N, Hu Y C et al. The only constant is change:
Incorporating time-varying network reservations in data
centers. In Proc. ACM SIGCOMM 2012 Conference, Aug.
2012, pp.199-210.

[7] Yu M, Yi Y, Rexford J et al. Rethinking virtual network
embedding: Substrate support for path splitting and migra-
tion. ACM SIGCOMM Computer Communication Review,
2008, 38(2): 17-29.

[8] Chowdhury M, Rahman M, Boutaba R. ViNEYard: Vir-
tual network embedding algorithms with coordinated node
and link mapping. IEEE/ACM Transactions on Network-
ing, 2012, 20(1): 206-219.

[9] Duan Q, Yan Y, Vasilakos A V. A survey on service-oriented
network virtualization toward convergence of networking
and cloud computing. IEEE Transactions on Network and
Service Management, 2012, 9(4): 373-392.

[10] Ahuja R K, Magnanti T L, Orlin J B. Network Flows:
Theory, Algorithms, and Applications. Prentice hall, Up-
per Saddle River, NJ, USA, 1993.

[11] Kirkpatrick S. Optimization by simulated annealing: Quan-
titative studies. Journal of Statistical Physics, 1984,
34(5/6): 975-986.

[12] Zhang S, Qian Z Z, Wu J et al. Virtual network embedding
with opportunistic resource sharing. IEEE Transactions on
Parallel and Distributed Systems, 2014, 25(3): 816-827.

[13] Zhu Y, Ammar M. Algorithms for assigning substrate net-
work resources to virtual network components. In Proc. the
25th Annual IEEE International Conference on Computer
Communications, Apr. 2006.

[14] Vogels W. Beyond server consolidation. ACM Queue, 2008,
6(1): 20-26.

[15] Ghazar T, Samaan N. Pricing utility-based virtual net-
works. IEEE Transactions on Network and Service Man-
agement, 2013, 10(2): 119-132.

[16] Agarwal S, Kandula S, Bruno N et al. Re-optimizing data-
parallel computing. In Proc. the 9th USENIX Symposium
on Networked Systems Design and Implementation, Apr.
2012, pp.281-294.

[17] Koslovski G, Yeow W L, Westphal C et al. Reliability sup-
port in virtual infrastructures. In Proc. the 2nd IEEE Inter-
national Conference on Cloud Computing Technology and
Science, Nov. 30-Dec. 3, 2010, pp.49-58.

[18] Yeow W L, Westphal C, Kozat U C. Designing and em-
bedding reliable virtual infrastructures. ACM SIGCOMM
Computer Communication Review, 2011, 41(2): 57-64.

[19] Jarray A, Karmouch A. Cost-efficient mapping for fault-
tolerant virtual networks. IEEE Transactions on Comput-
ers, 2014, PrePrints.

[20] Andersen D G. Theoretical approaches to node assignment.
Technical Report, Computer Science Department, Carnegie
Mellon University, USA, Dec. 2002.

[21] Vijay V V. Approximation Algorithms. Springer-Verlag,
Berlin, 2001.

[22] Mitzenmacher M, Upfal E. Probability and Computing:
Randomized Algorithms and Probabilistic Analysis. Cam-
bridge University Press, New York, NY, USA, 2005.

[23] Anagnostopoulos A, Michel L, Hentenryck P V et al. A
simulated annealing approach to the traveling tournament
problem. Journal of Scheduling, 2006, 9(2): 177-193.

[24] Osman I H. Metastrategy simulated annealing and tabu
search algorithms for the vehicle routing problem. Annals
of Operations Research, 1993, 41(4): 421-451.

[25] Zhang S, Qian Z Z, Guo S et al. FELL: A flexible virtual
network embedding algorithm with guaranteed load balanc-
ing. In Proc. IEEE International Conference on Commu-
nications, Jun. 2011.

[26] Wang M, Meng X, Zhang L. Consolidating virtual machines
with dynamic bandwidth demand in data centers. In Proc.
the 30th Annual IEEE International Conference on Com-
puter Communications, Apr. 2011, pp.71-75.

[27] Meng X, Pappas V, Zhang L. Improving the scalabil-
ity of data center networks with traffic-aware virtual ma-
chine placement. In Proc. the 29th Annual IEEE Inter-
national Conference on Computer Communications, Mar.
2010, pp.1154-1162.

[28] Zhang Q, Zhani M F, Boutaba R et al. Harmony: Dynamic
heterogeneity-aware resource provisioning in the cloud. In
Proc. the 33rd International Conference on Distributed
Computing Systems, Jul. 2013, pp.510-519.

[29] Wei G, Vasilakos A V, Zheng Y et al. A game-theoretic
method of fair resource allocation for cloud computing ser-
vices. The Journal of Supercomputing, 2010, 54(2): 252-
269.

[30] Zhang H, Li B, Jiang H et al. A framework for truth-
ful online auctions in cloud computing with heterogeneous
user demands. In Proc. the 32nd Annual IEEE Inter-
national Conference on Computer Communications, Apr.
2013, pp.1510-1518.

[31] Di S, Wang C L. Minimization of cloud task execution
length with workload prediction errors. In Proc. the 20th
International Conference on High Performance Comput-
ing, Dec. 2013, pp.69-78.

[32] Di S, Wang C L. Dynamic optimization of multiattribute
resource allocation in self-organizing clouds. IEEE Trans-
actions on Parallel and Distributed Systems, 2013, 24(3):
464-478.

[33] Rahimi M R, Ren J, Liu C H et al. Mobile cloud comput-
ing: A survey, state of art and future directions. Mobile
Networks and Applications, 2014, 19(2): 133-143.



436 J. Comput. Sci. & Technol., Mar. 2015, Vol.30, No.2

[34] Rahimi M R, Venkatasubramanian N, Mehrotra S et al.
MAPCloud: Mobile applications on an elastic and scalable
2-tier cloud architecture. In Proc. the 5th IEEE/ACM In-
ternational Conference on Utility and Cloud Computing,
Nov. 2012, pp.83-90.

[35] Rahimi M R, Venkatasubramanian N, Vasilakos A V. Mu-
SIC: Mobility-aware optimal service allocation in mobile
cloud computing. In Proc. the 6th IEEE International Con-
ference on Cloud Computing, Jun. 28-Jul. 3, 2013, pp.75-82.

[36] Gao P X, Curtis A R, Wong B et al. It’s not easy being
green. In Proc. ACM SIGCOMM 2012 Conference, Aug.
2012, pp.211-222.

[37] Wang L, Zhang F, Aroca J A et al. GreenDCN: A gen-
eral framework for achieving energy efficiency in data center
networks. IEEE Journal on Selected Areas in Communica-
tions, 2014, 32(1): 4-15.

[38] Al-Fares M, Loukissas A, Vahdat A. A scalable, commod-
ity data center network architecture. In Proc. ACM SIG-
COMM 2008 Conference, Aug. 2008, pp.63-74.

[39] Guo C, Wu H, Tan K et al. DCell: A scalable and fault-
tolerant network structure for data centers. In Proc. ACM
SIGCOMM 2008 Conference, Aug. 2008, pp.75-86.

[40] Guo C, Lu G, Li D et al. BCube: A high performance,
server-centric network architecture for modular data cen-
ters. In Proc. ACM SIGCOMM 2009 Conference, Aug.
2009, pp.63-74.

[41] Zhou X, Zhang Z, Zhu Y et al. Mirror mirror on the ceil-
ing: Flexible wireless links for data centers. In Proc. ACM
SIGCOMM 2012 Conference, Aug. 2012, pp.443-454.

[42] Ballani H, Costa P, Karagiannis T et al. The price is right:
Towards location-independent costs in datacenters. In Proc.
the 10th ACM Workshop on Hot Topics in Networks, Nov.
2011, Article No. 23.

[43] Ricci R, Alfeld C, Lepreau J. A solver for the network
testbed mapping problem. ACM SIGCOMM Computer
Communication Review, 2003, 33(2): 65-81.

[44] Lischka J, Karl H. A virtual network mapping algorithm
based on subgraph isomorphism detection. In Proc. the 1st
ACM Workshop on Virtualized Infrastructure Systems and
Architectures, Aug. 2009, pp.81-88.

[45] Cheng X, Su S, Zhang Z et al. Virtual network embedding
through topology-aware node ranking. ACM SIGCOMM
Computer Communication Review, 2011, 41(2): 38-47.

Sheng Zhang received his B.S.
and Ph.D. degrees in computer sci-
ence from Nanjing University in 2008
and 2014, respectively. Currently, he
is an assistant lecturer in the De-
partment of Computer Science and
Technology, Nanjing University. He
is also a member of the State Key
Laboratory for Novel Software Tech-
nology. His research interests include

network virtualization, cloud/service computing, and mo-
bile networks. To date, he has published more than 15
papers, including those appeared in IEEE Transactions on
Parallel and Distributed Systems, IEEE Transactions on
Computers, ACM MobiHoc, and IEEE INFOCOM. He re-
ceived the Best Paper Runner-Up Award of IEEE MASS
2012.

Zhu-Zhong Qian is an associate
professor at the Department of Com-
puter Science and Technology, Nan-
jing University. He is also a mem-
ber of the State Key Laboratory for
Novel Software Technology. He re-
ceived his Ph.D. degree in computer
science in 2007. Currently, his re-
search interests include cloud com-
puting, distributed systems, and per-

vasive computing. He is the chief member of several national
research projects on cloud computing and pervasive com-
puting. He has published more than 30 research papers in
related fields. He is a member of CCF and IEEE.

Jie Wu is chair and Laura H.
Carnell professor in the Department
of Computer and Information Sci-
ences at Temple University. He
is also an Intellectual Ventures en-
dowed visiting chair professor at the
National Laboratory for Information
Science and Technology, Tsinghua
University. Prior to joining Temple
University, he was a program direc-

tor at the National Science Foundation and was a distin-
guished professor at Florida Atlantic University. His current
research interests include mobile computing and wireless
networks, routing protocols, cloud and green computing,
network trust and security, and social network applications.
Dr. Wu regularly publishes in scholarly journals, confer-
ence proceedings, and books. He serves on several editorial
boards, including IEEE Transactions on Service Computing
and the Journal of Parallel and Distributed Computing. Dr.
Wu was general co-chair/chair for IEEE MASS 2006, IEEE
IPDPS 2008, and IEEE ICDCS 2013, as well as program
co-chair for IEEE INFOCOM 2011 and CCF CNCC 2013.
Currently, he is serving as general chair for ACM MobiHoc
2014. He was an IEEE Computer Society distinguished vis-
itor, ACM distinguished speaker, and chair for the IEEE
Technical Committee on Distributed Processing (TCDP).
Dr. Wu is a CCF distinguished speaker and a fellow of the
IEEE. He is the recipient of the 2011 China Computer Fed-
eration (CCF) Overseas Outstanding Achievement Award.

Sang-Lu Lu received her Ph.D.
degree in computer science from
Nanjing University in 1997. She is
currently a professor in the Depart-
ment of Computer Science and Tech-
nology and the State Key Laboratory
for Novel Software Technology. Her
research interests include distributed
computing, wireless networks, and
pervasive computing. She has pub-

lished over 80 papers in referred journals and conferences in
the above areas. She is a member of CCF and IEEE.


