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Abstract—Recently, erasure coding has become widely used to
compensate for the low packet delivery ratio of multi-hop wireless
networks. Most existing works assume that the number of redundant
erasure-coded packets is unlimited for a message. In this paper,
we relax this assumption and integrate the packet quantity into a
routing problem in order to achieve a good balance between energy
cost and reliability (packet delivery ratio). In doing so, we encounter
two major challenges in regards to our new routing problem: one
is determining the optimal quantity of redundant packets and the
other is determining the optimal routing path. We introduce a benefit
value to reflect the trade-off between cost and reliability, and design
a single metric (expected utility) by integrating benefit value, cost,
and reliability. Based on the expected utility metric, we explore the
optimality in both path coding and source coding models. In the path
coding model, we design an optimal algorithm, and in the source
coding model we propose a heuristic solution. Results from extensive
simulations on our custom simulator verify our claims.

Index Terms—Energy cost, erasure coding, multi-hop wireless net-
works, reliability, routing, utility.

I. INTRODUCTION

In multi-hop wireless networks, the unreliable communication
[1]-[3] caused by the unstable wireless medium is one of the
major challenges. Compared to other methods, such as retrans-
missions and backup paths, erasure coding has better performance
in increasing packet delivery reliability. Erasure coding is a coding
technique that can convert a message into a larger set of coded
blocks such that any sufficiently large subset of coded blocks can
reconstruct the original message.

In this paper, we integrate erasure coding into the routing prob-
lem in multi-hop wireless networks. Most existing works [4], [5]
that have applied erasure coding to routing problems in unreliable
environments assume that there is no limitation on the number of
redundant erasure-coded packets for a message. This assumption
is not realistic because the overhead of message transmission
can be extremely high without proper restrictions on redundant
packets. Therefore, we consider an erasure-coding based routing
scheme with a pre-defined quantity of redundant packets. The
quantity of redundant packets should reflect the importance of
corresponding packets because an important packet requires high
reliability; and the increment of quantity on redundant packets
can directly increase the transmission reliability.

The challenge of integrating erasure coding into a routing
scheme lies in the fact that the routing algorithm needs to
determine not only the optimal quantity of redundant packets,
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but also the optimal routing path. We adopt a market value
to reflect the importance of a packet. In a market, an item
or a service with higher market value usually corresponds to
higher quality (or quality of service), and thus incurs higher
costs. In analogy, different types of packets have different market
values to the routing source. The source would rather deliver the
packet with higher market value through the route with higher
reliability; thereby, increasing the quantity of redundant packets
at the expense of higher cost. To discriminate the market value
of the packet from the general market value in the real market,
we adopt the benefit value to denote the former.

The objective of our routing scheme is to determine an optimal
combination of a routing path and redundant packets so that the
expected utility, which is defined as the expected benefit value
(defined as reliability times benefit value) minus transmission
cost, can be maximized [6]. For a specific type of packet,
the benefit value is fixed. However, the expected benefit value
varies because the benefit is realized only when the packet is
successfully delivered. The cost and the reliability depend on both
the specific routing path and the quantity of redundant packets.

We consider two coding models: path coding and source
coding. Path coding differs from source coding in that path coding
allows intermediate nodes to generate erasure-coded packets
instead of the source alone in the source coding. In the path
coding model, we design an optimal algorithm that can determine
the optimal combination of routing path and quantity of redundant
packets. In the source coding model, we propose a heuristic
solution.

The major contributions of this paper can be enumerated as
follows: 1) We integrate erasure coding into a utility-based routing
scheme where the maximization of utility depends not only on
the routing path but also on the quantity of redundant packets.
2) Through mathematical analysis, we prove the existence of the
optimal quantity of redundant packets for both path coding and
source coding models. 3) We design an optimal algorithm to
determine the optimal combination of the routing path and the
quantity of redundant packets in the path coding model. 4) We
design distributed implementations for a single source-destination
pair and all source-destination pairs. 5) Through experimental
studies, we compare the performance of the erasure-coding based
utility routing with that of non-erasure coding routing under
different settings, and the performance of different forwarding
schemes in the path coding model.
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Fig. 1. An example of a simple network.

II. PRELIMINARIES
A. Utility-Based Routing

In [6], a unicast routing problem is considered, where a source
s intends to send packets to a destination d through relays
in a multi-hop wireless network. Each packet is assigned a
benefit value, v. The transmission cost and probability of success
(reliability) for transmitting a single packet from s to d are c
and p, respectively. If a transmission is successful, s will obtain
benefit v, consume cost c, and its utility is v — c. Otherwise, its
utility is 0 — c¢. Since the probability of success is p, and the
failure probability is 1 — p, the expected utility is as follows:

U=p-(v=0)+(1=p)-(0=¢)=p-v—-c (D

In general, consider a multi-hoppath R=<s=1,2,--- ,m—
1,d = m >. The corresponding expected utility is as follows:

m—1 m—1 1—1
U= (][] psjr1)-v=> ciiri [[prss1 =Pr-v—-Cr (2
j=0 i=0 j=0

where Pp is the path reliability and Cp is the path cost. For-
mula (2) can be derived from Formula (1) in a backward fashion.
For example, in Figure 1, four paths exist: 71 :< s,1,d >,7r9 :<
$,2,d >,r3 :< s,1,2,d >, and 74 :< s,2,1,d >. Each link is
labeled with its cost/reliability. Considering path r1, by applying
Formula (2), we have U = (0.8-0.9-20) —2—(3-0.8) = 10. We
can also view node 1 as the virtual source and apply Formula (1)
to link (1,d): u; = 0.9-20 — 3 = 15. We use u; to represent the
residual expected utilities (REU) of node 7 because node ¢ is not
the real source, and its utility is an intermediate value. Then, we
can apply Formula (1) to link (s,1) by viewing 1 as the virtual
destination: U = 0.8 - 15 — 2 = 10.

The REUs of nodes on each path are listed in the table at the
bottom of Figure 1, where in each cell, two values separated by
“/” represent the REUs under benefit of 20 and 30, respectively. If
the benefit v = 20, the optimal path is < s,1,d >, and if v = 30,
the optimal route is < s,2,d >. This reflects the property of the
utility-based routing: the optimal route depends not only on the
network topology, but also on the benefit value. The search for
the path with maximal expected utility can be executed backward,
starting from the destination, similar to Dijkstra’s shortest-path
algorithm.

B. Erasure Coding

Erasure coding [4] is a coding technique that converts a
message into a set of coded packets such that any sufficiently
large subset of the coded packets can be used to reconstruct
the original message. In this paper, we assume that the original
message has been split into k equal-sized packets. From the angle
of linear algebra, each packet split from the original message can
be regarded as a variable, and an erasure-coded packet is a linear
combination of the k original packets. This can be expressed as
a linear equation where the left hand side of the equation is
the linear combination of the k original packets, and the right
hand side is the erasure-coded packet. As long as k linearly
independent coded packets are given, the original message can
be reconstructed by solving the £ linear independent equations
associated with the k£ coded packets.

In order to increase the reliability of packet delivery in multi-
hop wireless networks, ¢ (¢ > k) erasure-coded packets will be
sent by the source. If any & out of ¢ packets are received by the
destination, the original message can be reconstructed. Obviously,
the increment of the value of ¢ can increase the reliability of
packet delivery, but it is at the expense of transmission cost.
Hence, a trade-off exists between reliability and cost. The quantity
of erasure-coded packets is the key to balancing the trade-off
between reliability and cost.

III. BASIC MODEL

Considering a source-destination pair (s, d), s sends a message
block instead of a single packet to d. d will only obtain a benefit
if it receives the whole message. Otherwise, d obtains nothing.
We intend to study the routing algorithm that can integrate
erasure coding into route discovery in order to determine the
most efficient method of delivering the message. We measure
the efficiency through expected utility, which is defined as the
expected benefit minus the expected cost.

We first consider a simple case, where source s can directly
communicate with destination d, but packet loss exists. In order
to increase the chance that d will receive the message block, s
breaks the message block into %k (fixed) packets and generates
ts — k (adjustable) redundant packets through erasure coding. As
long as d can receive at least k packets from the ¢, packets sent
by s, d can restore the original message block through decoding.

According to Formula (2), to calculate the expected utility,
we first need to calculate the path reliability/cost. Based on the
definition of p and c introduced in Section II-A, we can derive the
expression for the path reliability (denoted as Psq(t5)), which is
the probability of success that destination d will receive sufficient
packets (k packets) to restore the message block from source s.
Since the path reliability is the probability that d receives at least
k packets, we can first calculate the probability that d receives
exactly ¢ (t > k) packets, and then sum up all such probabilities.

Without loss of generality, we assume that the probability
of success of each transmission is independent. Therefore, each
transmission can be regarded as a Bernoulli experiment; hence,
the probability of receiving ¢ packets follows binomial distribu-
tion, (tts) -pt - (1 = p)ts—t, where (tf) is binomial coefficient,



denoting the number of ways that exactly ¢ out of ¢, packets are
received by d, regardless of their order. By summing up the total
ts—k+1 probabilities that exactly ¢ out of ¢, packets are received
by d (k <t <t4), we can derive the path reliability:

ts

R wYAZAW ts—t

Pualts) =Y <t>p(1p) : €)
t=k

Since s needs to transmit ¢, packets and each packet consumes

cost ¢, the corresponding path cost is

Csd(ts) = ts - C. (4)
Hence, the expected utility is

Usd(ts) = Psd(ts) U — Csd(ts)- (5)

We observe that an optimal value of ¢, exists, with which the
expected utility can be maximized. We formalize this property in
the following theorem.

Theorem 1: For a single link, an optimal quantity of erasure-
coded packets exists such that the expected utility through the
link can be maximized.

The optimal quantity of erasure-coded packets can be computed
using Newton’s method [7].

IV. THE PATH-CODING MODEL

We study here a general case - a multi-hop path. In the path
coding model, we consider two types of forwarding schemes:
conservative forwarding and aggressive forwarding. In the con-
servative forwarding scheme, intermediate nodes will not forward
packets until they receive enough packets to reconstruct the orig-
inal message. In the aggressive forwarding scheme, intermediate
nodes immediately forward each received packet.

A cost-delay trade-off exists between these two schemes.
Compared to conservative forwarding, aggressive forwarding has
shorter delay, but it is at the expense of larger expected cost.
If there is no information loss among intermediate nodes during
message transmission (i.e., each intermediate node can reconstruct
the original message based on received packets), the energy
costs of these two forwarding schemes are the same. Otherwise,
aggressive forwarding will have a higher energy cost because
intermediate nodes forward erasure-coded packets that cannot be
used to reconstruct the original message.

A. Conservative Forwarding Scheme

We first consider path reliability, which is a function of the
quantity of erasure-coded packets. Without loss of generality, we
consider a path R =< 1,2,--- ,m >, where s =1 and d = m
in the rest of the paper, and assume that each node j # d sends
t;(t; > k) packets if it receives enough packets from its upstream
neighbor j — 1. We use Pj;(t;) to denote the reliability of the
sub-path from j to ¢ along R. Since no intermediate nodes will
send erasure-coded packets until they receive enough packets
to effectively reconstruct the original message, path reliability
Pj;(tj) can be decomposed as the product of P;;.1(t;) and
Pji1,i(tj+1). More specifically, path reliability Pjq is:

Pja(t;) = Pjj1(ts) - Pit1,a(tj+1), (6)

where P; j11(t;) can be obtained through Formula (3). Hence, by
recursively applying Formula (6), we can compute the reliability
of any sub-path of R.

Then, we consider the cost in the conservative forwarding
scheme. Considering path R, the cost of link (m — 1,d) is
Cri—1,d(tm-1) = tm—1 - ¢m—1,4. The cost of the sub-path from
m — 2 to d, ie., Cp—2,q(tm—2), consists of two parts: the cost
of link (m —2,m — 1), ie., tym—2 - Gm—2,m—1, and the expected
cost of link (m — 1, d). The latter is the product of the reliability
of link (m —2,m — 1), Py—2,m—1(tm—2), and the cost of link
(m —1,d), Cp—1,4(tm—1) since m — 1 will not send packets
unless it receives at least k packets. In general, the cost of the
sub-path from j to d is as follows:

Cjalty) =t - i1 + Pijt1(ty) - Cigr,a(tj+1). @)

Through Formulas (6), (7), and the recursive calculation of
Formula (2) in Section II-A, we have:

Uja(t;) = Pjj41(t;) - Ujrr,a(tivn) —t5 - ¢j 41 ®

By comparing Formula (8) with Formula (1), we can identify
their similarities. Hence, the routing problem from source s to
destination d can also be decomposed into two sub-problems:
the sub-problem from s to its next-hop 2 and the sub-problem
from node 2 to d. This decomposition is similar to the recursive
definition of the shortest path. The major difference is that
our solution needs to determine the number of erasure-based
packets sent by each intermediate node, and the next-hop as well.
Another difference is that our model measures the distance to the
destination through expected utility instead of cost.

The calculation of the REU starts from the destination with
the initial REU equal to the benefit value (the REUs of all other
nodes being —o0). The REU will be reduced at each intermediate
node going backwards from the destination to the source. In each
iteration, our algorithm not only finds the node that reduces the
expected utility to the least, but also identifies the optimal number
of erasure-coded packets that should be transmitted by that node.

Our algorithm is presented in Algorithm 1, where () represents
the set of nodes, the REUs of which have been maximized, and
N denotes the set of remaining nodes, the REUs of which have
not been maximized. Initially, N contains all nodes and Q is
empty. ¢; represents the number of erasure-coded packets sent
by node j, and ¢ is the corresponding optimal value of ¢;. The
existence of the optimal value is guaranteed by Theorem 1. We
also use U}, to represent Uq(t]). Algorithm 1 is optimal in terms
of maximizing the expected utility from s to d. The proof of the
optimality is similar to that of Dijkstra’s shortest path algorithm.

After route discovery, the source breaks its message into k
packets, generates t; — k redundant packets, and sends these ¢
packets to its next hop on the optimal path. After receiving packets
from the previous hop, each intermediate node counts the received
packets. If the number of received packets ¢ < k, the intermediate
node will not forward the packets. Otherwise, intermediate node j
will forward the received packets. In that case, node j also needs
to check whether the number of received packets is larger than
or equal to ¢7. If k < ¢ < ¢}, node j will generate additional
t7 —t erasure-coded packets, and forward these newly-generated



Algorithm 1 MaxREUConservative(N, s, d, v)

1: Initialization;

2: while s ¢ Q do

3:  Find node | € N with the largest REU;

4:  Remove [ from the N into Q;

5:  For each neighbor node j € N of I, Relax(l, 7);
Relax(l, j)

1: Find t} to maximize P (t;) - Uy — Cji(t);

2: Update t; and U, if Uy < Pu(t]) - Uy — Ciu(t])s

packets along with the received packets to its next hop. If ¢ >
t5, node j simply forwards any ¢ packets from the ¢ received
packets.

To illustrate Algorithm 1, we give an example as shown in
Figure 2, where the benefit v is set to 50 and k is set to 2.
Initially, node d is selected and removed from the set of nodes .
Its two neighbors 1 and 2 are relaxed. After relaxation, the REUs
of nodes 1 and 2 are updated from 0 to 36 and 46.6, respectively.
The number of erasure-coded packets are 2 and 3 for nodes 1 and
2, respectively. Then, node 2, which is the node with the largest
REU among the remaining nodes in N, is selected and removed
from N. Node 2 relaxes its neighbor s and 1. Only source s’
REU can be updated from 0 to 22.8 and its quantity of erasure-
coded packets is 3. Then node 1 will be selected and removed
from N . Node 1 will also relax source s. After relaxation, s’
REU will be updated from 22.8 to 23 and its quantity of erasure-
coded packets will be updated from 3 to 4. Hence, the optimal
path is < s,1,d >, where the quantities of erasure-coded packets
of nodes s and 1 are 4 and 2, respectively. Note that the optimal
path with no erasure coding is < s,2,d >. This verifies our
argument in the introduction that separated optimization does not
necessarily ensure the optimality of the whole problem since the
optimal path without erasure-coding is not necessarily the optimal
path with erasure-coding.

B. Aggressive Forwarding Scheme

The aggressive forwarding scheme can expedite the packet de-
livery process by allowing intermediate nodes to directly forward
each received packet without waiting to check the information
loss, which occurs if any intermediate node eventually receives
less than k packets. Although intermediate nodes in the aggressive
forwarding scheme will not generate new erasure-coded packets
unless they receive at least k packets, an extra cost is still
introduced in the case of information loss, compared with the
conservative forwarding scheme. For example, for a path with
only two links: (s,2) and (2,d), the extra cost is introduced at
node 2 in the event that less than k packets from s are received
by node 2. If node 2 receives exactly ¢ (t < k) packets, the extra
cost is ¢ - cog since node 2 will not forward these packets in the
conservative forwarding scheme. There are a total of £k — 1 in
such cases. By summing them up, the total expected extra cost
is:

k—1

* t: *—
Céd(tS) = Z <t>pi2(1 —psz)t"‘ b t-coq.

t=1

Fig. 2. The illustration of the conservative forwarding scheme.

For a general path R with m nodes, where s = 1 and d = m,
if node I (1 < I < m) is the first failure node (receiving less
than k packets), the extra costs will occur on all downstream
intermediate nodes of node [, i.e., any node j (I < j < m).
Note that the extra costs are all expected values. By enumerating
all first-failure nodes, we can enumerate all possible cases of
failure. Supposing that t;_; (t;_1 < k) is the number of packets
transmitted by node j’s upstream neighbor j — 1, the sum of the
expected extra costs of node j and all its downstream nodes can
be expressed as:

tj_1
Clalti-1) =Y (tJtJ)pt(l =) te+ Chiaa(®), 9
t=1

where p;_1 ;, and c; ;11 are abbreviated as p and c. We assume
that C/,,(t) = 0 because d will not forward packets. By recur-
sively applying Formula (9), we can derive the expression for the
total expected extra cost that occurs in the event that node [ is
the first failure node:

k—1
Cia(ti-1) = ; <t1t1>pt(1 =p)" 7 (et Clia(), (10)
where ;1 > k, and p;_1; and ¢; ;41 are abbreviated as p and c,
respectively. Since any two different intermediate nodes cannot
be the first failure node at the same time, the total extra cost is
simply the sum of all C];(¢;,—1), where 1 <[ < m.

We observe that the precondition of node [ being the first failure
node is the same as the precondition that node [ —1 spends energy
on transmitting packets in the conservative forwarding scheme,
i.e., all upstream nodes of [ have no information loss. Hence, we
can integrate the extra cost Cj,(t;—1) into the cost of node I — 1,
i.e., the cost of link (I —1,1). By doing so, we can still apply a
Dijkstra-based algorithm.

More specifically, in the Relax procedure of Algorithm 1,
C’jl(tj) is equal to t; - ¢;; in the conservative forwarding scheme,
while, in the aggressive forwarding scheme, it is Cji(t;) =
tj-cji+Ciq(t;), where C},(t;) is calculated based on Formula (10),
in which [ — 1 is replaced by j, if [ # d. If | = d, C},(t) = 0 for
any t > 0. Moreover, after relaxation, node j needs to calculate
and record C},(t) (0 < ¢t < k) based on Formula (9), where j is
replaced by . The formal description of the algorithm is presented
in Algorithm 2. Algorithm 2 is optimal in terms of maximizing
the expected utility in the aggressive forwarding scheme. Hence,
we have the following theorem.

Theorem 2: Algorithm 2 is optimal for the aggressive forward-
ing scheme.



Algorithm 2 MaxREUAggressive(N, s, d, v)

1: The same as Algorithm 1
Relax(!, j)
Lo Ci(ty) — t; - cji + Cra(ty);
2: Find ¢} to maximize Pj;(t;) - Uy — Cji(t5);
30 if Uiy < Py (t5) - Ujy — Cju(t}) then

4:  Update t; and Ujy;
50 for0<t<kdo
6: if [ = d then

7: Chq(t) < 0;
8: else

9:

Cla(t) — 23:1 (E)P;L(l — i)' (e + Cli1,a(9);

Compared with the conservative forwarding scheme, the ag-
gressive forwarding scheme has a shorter delay. Now, we will
formally analyze their delay difference. If the data rate is r, one
packet will be sent out every 1/r seconds. In this scheme, if there
is no packet loss, the destination will receive one packet every
1/r seconds after the arrival of the first packet. In the conservative
forwarding scheme, an additional (k—1)-1/r delay is introduced
at each intermediate node because each intermediate node will
not forward the first £ — 1 packets received until it receives
the k-th packet. Hence, the aggressive forwarding scheme saves
m - (k—1)-1/r seconds through a path with m intermediate
nodes in the event of no packet loss. In the event of packet
loss, each event of packet loss incurs an additional 1/r second
delay, but it is the same for both forwarding schemes. Hence, the
saved delay is also m - (k — 1) - 1/r in the event of packet loss.
Note that we count the saved delay only when the destination
receives at least k packets, the probability of which is the same
for both forwarding schemes. The above delay analysis depends
on the assumption that intermediate nodes will not generate new
erasure-coded packets until they receive at least k packets. This
assumption is used to ensure that any k erasure-coded packets
out of the packets sent by any intermediate node are linearly
independent.

C. Distributed Implementation

In the case of a single source-destination pair, we develop a
distributed implementation that computes REU in a distributed
manner. REU could be treated as the summary of local link
state information. Each node needs not propagate all available
local link state information to its neighbors. Instead, it propagates
summarized routing information. In the conservative forwarding
scheme, the summarized routing information is simply the REU
to the destination, while in the aggressive forwarding scheme, it
further includes the cost to the next-hop node, and the extra cost
calculated based on Formula (9).

The distributed implementation can be gracefully integrated
in a reactive routing protocol, such as AODV [8] or DSR [9],
where two phases are used. In the route discovery phase, the
source broadcasts a RREQ (route request) to its neighbors. The
RREQ is propagated in the network until it gets to the destination,
which then initiates a RREP (route reply) containing relevant
information following the reverse link leading to the source.

1) The source sends out a message to inform the destination
of its benefit.

2) The destination broadcasts its REU to initialize a route
discovery phase that will form a global directed flooding
tree rooted at the destination.

3) Upon receiving the first REU, each node ¢, including the
source, calculates its initial REU (i.e., u;) and sets a timer
w;, which is proportional to v — u; and time period, since
the original message was sent out at the destination.

4) Before timeout, each node improves its REU based on the
received REUs of its neighbors and adjusts its timer.

5) After timeout, each intermediate node computes and sends
out its summarized routing information to all neighbors.

The initial value of the timer is a function in which w; is
proportional to v — u; and is adjusted by z* — x (time period),
where z* is the current time and x is the time the message was
sent out at the destination. We also assume the initial time
is attached when the destination initiates the priority discovery
phase. The higher the w; is, the shorter the amount of time that
node ¢ will back-off before it sends out its priority. Whenever
a node j receives messages from its neighbors that improve its
REU, it will reduce the remaining back-off time accordingly.
Once the timer is properly set, the node with the maximum REU
among all back-off nodes will send out its reply first, which
includes its REU.

Although the distributed implementation is an approximation
due to transmission delay, it has two desirable features. First,
the calculation is distributed and each node decides its own
transmission cost and relay set. Second, it greatly reduces the
transmission overhead, as only the REU that summarizes the link
state information will be propagated.

We use Figure 2 to illustrate the distributed implementation.
After the route request phase, d broadcasts RREP(50) imme-
diately. Assume path < d,1,s >’s traffic is heavy, so (d,1)
delays 1ms (milliseconds) and (1,s) delays 4ms. But path
< d,2,s >’s traffic is light, where (d,2)’s delay is 0.3ms
and (2, s)’s delay is 0.2ms. The delay between (1,2) is 0.1ms.
Assume that the time d broadcasts RREP(50) is Oms. At time
0.3ms, node 2 receives the RREP(50), updates its REU to 46.6,
and backs off 0.34 — 0.3 = 0.04ms. At time 0.34ms, it will
broadcast RREP(46.6) to its neighbors. At time 0.44ms, node
1 receives RREP(46.6), updates its REU to 1.65, and backs off
4.84 — 0.44 = 4.4ms. At time 0.54ms, s receives RREP(46.6),
updates its REU to 22.8, and backs off 3.72 — 0.54 = 3.18ms.
At time 1ms, node 1 receives RREP(50), updates its REU to 36,
and backs off 1.4—1 = 0.4ms. At time 1.4ms, node 1 broadcasts
RREP(36) to its neighbors. At time 3.72ms, s ends its back-off
time and finds the path < s,2,d >. In this example, the potential
optimal path is missed due to transmission delay.

V. EXTENSIONS

A. All Source-Destination Pairs

We adopt a modified distributed Bellman-Ford algorithm for the
case of all source-destination pairs. In the traditional distributed
Bellman-Ford algorithm [10], each node exchanges cost and



routing information with its neighbors on an interactive basis
until the routing table at each node converges to the appropriate
shortest path entries. In our modified version, nodes also exchange
reliability information. Each node computes the maximum REU
path to every other node based on exchanged routing information.
For a specific benefit value, each entry of our routing table is
(destination, next-hop, packet quantity) instead of (destination,
next-hop).

Once a node finds a new path (to a destination) that has a larger
REU than the current path, it will update the current path with the
new path by modifying the corresponding next-hop and quantity
of erasure-coded packets. After updating, the node will broadcast
this new path to its neighbors. When its neighbors receive the
updated routing information, they will check whether the new
path has a larger REU than their current paths. If so, they repeat
the same update and broadcast process. Otherwise, they simply
discard it.

The distributed implementation consists of two parts: an initial-
ization step and a maximum-REU calculation step that is repeated
until the algorithm has been completed. Here, the maximum REU
represents the one between a given node and the destination
node for a specific benefit value. The distributed implementation
ends with all nodes labeled with their maximum REUs, the
corresponding next-hop nodes, and quantity of erasure-coded
packets to each destination node. For each destination, each node
Jj has the label (I, Uj,t;) where [ is the next-hop node along with
the current maximum-REU path, U; represents the current value
of the REU from j to the destination, and ¢; is the quantity of
erasure-coded packets sent by node j.

o Initialization: With node d being the destination node, set
Uy = v and label all other nodes (-, —o0, 0).

o Labeling of all nodes: For each node j # d does the
following: Upon receiving new routing information from
neighbor {, j will update (i,Uj,t;) if the REU through [
is larger than the REU through ¢. j broadcasts its updated
routing information to its neighbors thereafter.

The routing information is different between conservative and
aggressive forwarding schemes. In the conservative forwarding
scheme, a node only needs to broadcast its updated REU to its
neighbors, while in the aggressive forwarding scheme, a node [
further needs to broadcast the cost ¢; 41, and C 41, 4(t) forall ¢
satisfying 0 < t < k.

For the update, node j calculates the optimal value of %;
(denoted as ¢%) that maximizes Pj;(t;)-U;—Cj(t;). If Uj is less
than P;(37) - Up — Cj(t5), j sets Uj = Pu(t5) - Up — Cj(t5),
and ¢ = [. In the conservative forwarding, C;;(t;) = t; - ¢;,,
while, in the aggressive forwarding, Cj;(t;) =t; - ¢ji + CJ4(t;),
where CJ,(t;) is obtained through Formula (10).

B. Source Coding Model

The source coding model is different from the path coding
model in that only the source itself can generate erasure-coded
packets in the source coding model. In the source coding model,
we consider only the conservative forwarding scheme because
the aggressive forwarding scheme can be solved based on the

solution to the conservative forwarding scheme as in the path
coding model.

We first consider the path reliability and still use path R as
an example. Unlike the path coding model, in the source coding
model, path reliability Ps4(ts) cannot be simply decomposed into
reliability of the link from s to its next-hop node 2 and reliability
of the sub-path from node 2 to d because the sub-path reliability
depends on the exact number of packets received by node 2. For
example, if node 2 receives t packets, the number of packets
sent by node 2 must be less than ¢ since only the source can
generate erasure-coded packets. If node 2 receives less than k
packets, node 2 and its downstream nodes (including d) cannot
reconstruct the original message. The sub-path reliability is O in
that case. Hence, we only count the case ¢ > k. For each value of
t, suppose that the sub-path reliability is Paq(t). Supposing that
Ps2 is the probability of success of transmitting a single packet
from s to node 2, the probability of exactly ¢ packets (out of
packets) received by node 2 is (%)pl,(1 —ps2)'*~t. By summing
up the total ts — k + 1 cases (¢ counted from k to t5), we obtain
the following recursive form for Ps4(ts):

Poa(ts) = Z (t;>p§2(1 —ps2)"* " Paa(t).

t=k

In general, for any node j, the reliability of the sub-path (from
J to d with ¢; packtets forwarded by node j) can be expressed as:

Pia(t;) =) <t5>p3',j+1(1 —pig+1)?  Pirralt), (1)
t=k
where j + 1 is the next-hop node of j on path R.

Then, we consider the cost of path R, the cost of link
(m — 1,d) is Cm—l,d(tm—l) = tm—l * Cm—1,d> if node m — 1
forwards t,,—1 (> k) packets. Similarly, if node m — 2 forwards
tm—2(> k) packets, the cost of the sub-path from m — 2 to d
is Cm—?,d(tm—Z) = tm—? Cm—2,m—1 +Ziz;§2 (tm{z)pgn—27m—1
‘(1 = pm—2.m-1)""2"%Cp—1.4(t). In general, the cost of the
sub-path from j to d is in the following recursive form:

tj
t; .
Cialty) =tj-c+ Yy (Z)pt(l —p)" " Ciralt),  (12)
t=k

where ¢; ;41 and p; ;41 are abbreviated as c and p, respectively.
The expected utility of the sub-path from j to d with ¢; packets
forwarded by j should be Uj4(t;) = Pja(t;) - v — Cja(t;). Com-
bining Formula (11) and Formula (12), we obtain the following
recursive form of the expected utility

t;

Ujalts) = <ttj)pt(1 =) Ujprat) = tj-¢,  (13)
t=k

where t; > k, and p and c are the abbreviation of p; ;11 and
¢j.j+1. respectively. For ¢t; < k, we define Uj4(t;) = 0. Similar
to Theorem 1, we can also prove that an optimal value of ¢, exists
in the source coding model.

Theorem 3: In the source coding model, an optimal quantity
of erasure-coded packets generated by the source exists so that
the expected utility through a given path can be maximized.



@
o
S

EC(range=50m) —&—
NonEC(range=50m) ---&---

L EC(range=20m) < B 500 -
NonEC(range=20m) e

Expected Utility
N w Py o
o o o o
o o o o
Expected Utility
N w B
o o o
o o o

.
o
S
=
o
=]

h

P Y W S

2000

EC(benefit=1000)
NonEC(benefit=1000) -2
EC(benefit=2000) <
NonEC(benefit=2000) .

1500 -
e
Lo

1000 & 0,.»'@ B

Expected Utility

0 L L L L [ S
30 40 50 60 70 80 90 100 110 120 130 140 150 30 40 50
Number of Nodes

(a) Effect of transmission range

Fig. 3.

Theorem 3 ensures that the optimal quantity of erasure-coded
packets exists for any given path. A straightforward solution to
the source coding model is to first compute the optimal path
without erasure coding, and then determine the optimal quantity
of erasure-coded packets. This solution is not necessarily an
optimal solution of the source coding model because the separated
optimization is not necessarily the optimization of the combined
problem. It is still an open problem regardless of whether an
efficient solution exists other than enumerating all possible paths
and calculating the optimal quantities for all paths.

VI. RELATED WORK

The existence of low quality links incurs a low packet delivery
ratio, and hence reduces the performance of multi-hop wireless
networks [1], [11], [12]. A common fault-tolerant technique is
redundancy, such as retransmissions or erasure coding. Banerjee
and Misra [13] modeled the link cost as a function of energy
consumption for a single transmission attempt across the link
and the link error rate, and proposed several retransmission aware
routing schemes. Banerjee et al. [14] further extended their work
by relaxing the assumption of the perfect reliability (zero error
rate) in the link layer. Li et al. [15] integrated the power control
techniques into the routing problem proposed in [14]. In [6], we
further relaxed the assumption of perfect end-to-end reliability,
and adopted the expected utility to balance the trade-off between
maximization of the packet delivery ratio and minimization of the
effective energy consumption.

It has been verified that erasure coding is better than retrans-
missions in terms of cost and delay [4], [16], [17]. Erasure coding
can be used for both inter-flow routing [18] and intra-flow routing
[19]. The network coding methods use replication (redundancy)
and send identical copies of a message simultaneously over
multiple paths to mitigate the effects of a single path failure [20].
Jain et al. [21] and Wang et al. [22] applied erasure coding to
delay tolerant networks (DTNs). Cui et al. [23] proposed a jointly
opportunistic source coding and opportunistic routing (OSCOR)
protocol for correlated data gathering in wireless sensor networks.
Cristescu and Beferull-Lozano [24] considered a sensor network
measuring correlated data, where the task is to gather all data
from the network nodes to a sink.

60 70 80 90 100 110 120 130 140 150
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(b) Effect of reliability
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(c) Effect of benefit

The effect of (a) transmission range, (b) reliability, and (c) benefit value on both erasure-coding based routing and retransmission-based routing.

VII. SIMULATION

We compare routing schemes with and without erasure coding.
For comparison purposes, we calculate the redundancy ratio in our
erasure-coding based utility routing scheme, and use this ratio as
the average number of retransmissions for each packet at each
node (excluding the destination) in the routing scheme without
erasure coding. We set up the simulation in a 100m x 100m target
field. We assume nodes are homogeneous and can be deployed in
this area arbitrarily. We fix the position of source s and destination
d at locations (15m,50m) and (85m,50m), respectively, and
randomly deploy the intermediate nodes. The cost of any link
(i,7) is generated according to ¢; ; = dist];, where v = 2. The
stability of any link (7,j) is a function of the received power at
node j (denoted as R;). In the simulation, we consider n, the
number of nodes as a tunable parameter. We vary the number of
nodes from 30 to 150. We also vary the maximum transmission
range. The connectivity of the network is controlled solely by
the node quantity and maximum transmission range. We use a
homogeneous maximum transmission range for simplicity, and
evaluate two maximum transmission ranges: 20m and 50m. We
also evaluate two benefit values: 1,000 and 2,000. The default
benefit value is 1, 000.

We first evaluate the impact of the network connectivity on
utility-based routing schemes with and without erasure coding.
The experimental result is shown in Figure 3(a), where EC and
NonEC are used as abbreviations for utility-based routing with
and without erasure coding, respectively. The EC scheme has
better performance than that of NonEC. The reason is that erasure
coding provides redundancy for a whole message and not for a
single packet, and thus reduces the redundancy ratio. We also
observe that increment of the network connectivity can improve
the expected utility obtained through the optimal paths under
both schemes. The reason is that the increment of the network
connectivity provides more available paths. Since the maximum
transmission range has little impact on the increment of expected
utility compared with the node density, we set the maximum
transmission range to 20m in the rest of the simulations.

We also evaluate the impact of reliability on both schemes. We
evaluate two reliability ranges [0.7,1] and [0.9, 1]. The experi-
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mental results are shown in Figure 3(b). From our results, we can
conclude that the reliability range has a significant impact on the
expected utility. This is because reliability has a direct impact on
the quantity of erasure-coded packets and the route selection. We
also observe that the EC scheme has better performance than that
of the NonEC scheme under various reliability ranges. We then
evaluate the impact of the benefit value on both schemes. We
use two benefit values: 1,000 and 2,000. From the simulation
result shown in Figure 3(c), we can conclude that the benefit
value can increase the expected utility for both routing schemes
because the benefit value is strongly correlated to the expected
utility according to Formula (2). From Figure 3, we can conclude
that the EC scheme is better than the NonEC scheme in terms of
maximizing the expected utility.

To illustrate that the utility can be used to efficiently allo-
cate energy cost over networks, we compare it with two other
metrics, cost and reliability. For these two metrics, we design
the corresponding erasure-coding based cost/reliability routing
schemes as follows: 1) we first calculate the redundancy ratio
in the erasure-coding based utility routing scheme; 2) we use this
ratio as the average redundancy ratio of the erasure-coded packets
for each node in the network; 3) we compute the corresponding
lowest cost path and the highest reliability path based on the
above determined ratio. The simulation results are illustrated in
Figure 4, where the lowCost path, maxUltility path, and highSTA
path represent the lowest cost path, the maximum expected utility
path, and the highest reliability path in the erasure-coding based
routing framework, respectively.

Figure 4 compares the three optimal paths under three metrics:
expected utility, path cost, and path reliability. Figure 4(a) shows
that maxUltility path has the best performance in terms of expected
utility. From Figures 4(b) and 4(c), we can see that maxUltility
path’s performance is second best in terms of path cost and
reliability, respectively. The results show that our expected utility
metric is useful for evaluating routing performance in multi-hop
wireless networks because it achieves a good trade-off between
cost and reliability.

In Figure 4(a), in terms of expected utility, highSTA path has
better performance than lowCost path because reliability has a
greater effect on expected utility than on cost. In Formula (2), if

benefit v is large enough, the expected utility will decrease by half
with the reliability Pr decreasing by half. However, the expected
utility will not decrease too much when the cost C'r is doubled.
Figure 4(a) also shows that the expected utilities of maxUtility
path and highSTA path increase as the number of nodes increases,
but it decreases for lowCost path. With more nodes, more paths
are available. As the number of nodes increases, the selected
lowCost path might have more hop counts and hence have lower
reliability. The impact of cost decrement cannot make up for the
impact of decrement in reliability.

In Figure 4(b), both maxUtility path and lowCost path decrease
as the number of nodes increases, but highSTA path does not. As
we have argued above, with the increment of node number, the
available paths increase, and hence more lower-cost paths will be
available. However, the cost of highSTA path does not necessarily
decrease. The expected utility metric adequately balances the
trade-off between reliability and cost. In Figure 4(c), except for
lowCost path, the path reliability of the paths increases with the
increasing number of nodes. We have discussed the reason for this
in the above arguments. The desirable result is that maxUtility
path shows good path reliability. LowCost path is the worst of
the three paths in terms of reliability. The result is not surprising
because the lowest-cost path usually has more hops in multi-hop
wireless networks. The experimental results shown in Figure 4
illustrate that expected utility is an efficient metric to assess the
utilization of network resource.

We also compare the performance of the conservative for-
warding scheme and the aggressive forwarding scheme through
simulation studies. We set v = 1,000, « 09, B =1,
the maximum transmission range to 20m, and k 5. The
simulation results are presented in Figure 5. We first compare the
expected utilities of both schemes, the result of which is shown
in Figure 5(a). It is not surprising that the expected utilities of
the conservative forwarding scheme is higher than that of the
aggressive forwarding scheme since the latter consumes more
energy cost in order to reduce delay. From Figure 5(b), we observe
that the conservative forwarding scheme has a higher redundancy
ratio when the number of nodes is less than 100. The redundancy
ratio of the aggressive ratio increases faster and is almost the same
as that of the conservative scheme when the number of nodes is
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larger than 100. The reason is that the cost of each link in the
conservative forwarding scheme is less than that in the aggressive
forwarding scheme. When fewer nodes exist, the average node-to-
node distance is relatively long, and so the average transmission
cost will be higher. Hence, the aggressive forwarding scheme
tends to use fewer redundant packets. When more nodes are
available, the average transmission cost decreases quadratically.
The impact of the extra cost can be compensated by selecting
paths with a shorter average hop-by-hop distance.

The simulation results can be summarized as: 1) The EC
scheme has better performance than the NonEC scheme. 2) The
EC scheme is sensitive to the range of reliability, the number
of nodes, and the transmission range. 3) The expected utility
metric based on our erasure-coding based routing scheme has
better performance than two other metrics (lowest cost and highest
reliability) because it adequately balances the trade-off between
reliability and cost. 4) The conservative forwarding scheme saves
more energy than the aggressive forwarding scheme.

VIII. CONCLUSION

In this paper, we relax the assumption of unlimited redundant
erasure-coded packets for a message and integrate the quantity
of the redundant packets into the routing problem so that we can
achieve a good balance between the energy cost and reliability.
We introduce a benefit value to reflect the trade-off between cost
and reliability, and design a single metric expected utility by inte-
grating benefit value, cost, and reliability. Based on the expected
utility metric, we explore the optimality in both path coding and
source coding models. In the path coding model, we design an
optimal algorithm, and in the source coding model, we propose a
heuristic solution, which is verified through experimental study. In
the future, we will extend our study to multi-path routing, multi-
cast, and opportunistic routing schemes. We will also extend our
utility metric to include delay and other parameters, such as data
rate.
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APPENDIX

Proof of Theorem 1 We use U(t), P(t), and C(t) to represent
the utility, reliability, and cost with ¢ packets, respectively. We
define AU(t) = U(t+ 1) — U(t) expressed as follows.

Lemma 1: AU(t) = (,')pF(1 —p)tti-F.v—c.
Proof: According to Equations (3), (4), and (5), we have

ut)=y (E)pi(l -p)'u—t-c

i=k
Based on Formula (14), we have U(t + 1) = 32/°, ("hpi(1 -
p)Hw — (t+1) ¢, where S0 ("THpi(1 —p)* 1 can be
rewritten as

(14)

Zk((i—t1> * (Z))pi(lp)”“wt“. (15)
Since (3)p*(1 = p) "1+ (p" (1 - p) = ()p'(1 —p)* 7,

Formula (15) is equal to (,*,)p*(1 —p)H*=F+ 30, (pi(1 -
p)t~". Therefore, we have U(t +1) = (" )p"(1 — p)iT1=F +
U(t) — c. This lemma is then proved. [ ]

Proof: Based on Lemma 1, to prove the existence of the

optimal ¢ is equal to proving that a t* exists so that AU (t*—1) >
0 and AU(t*) <0

AU(t) = (Zi 11>pk(1 —p) e —c
t((}:: f)'+ 2)pk(1 _p)ttiE Ly ¢
= %pk(l —p)T v —c
= D G e
Since k,g)ﬁkﬁp) +— and c are constant, and the decreasing rate

of (1 —p)? is higher than the increasing rate of ¢, as ¢ increases,
t-(1 *go)t . (k:72)%)(1‘fp T C will be l.e.ss tl}an or equal to O for
a sufficiently large ¢. Thus, this proposition is proved. |

Proof of Theorem 2 We first prove that the extra cost expressed in
Formula (10) is complete and non-redundant. Because we assume
that node [ (1 < I < m) is the first failure node (receiving less
than k packets), it enumerates all possible cases of failure. Also,

Formula (10) only enumerates the case for which the number of
received packets ¢ is less than k, since failure occurs only when
node [ receives less than k packets. Since Formula (10) recursively
counts all the extra costs introduced at downstream nodes of node
l, if node [ fails, it exhaustively includes all possible extra costs
in the event of the failure at node /. Hence the counted extra
cost is complete and non-redundant. The optimality is thereby
straightforward by following the proof of Dijkstra’s shortest path
algorithm since our model also satisfies the sub-path optimality,
i.e., the sub-path of an optimal path is also optimal. It can be
proved through simple contradiction. We omit it due to space
limitation.

Proof of Theorem 3 Similarly, for sub-path from j to d of path
R, we define AU,4(t;) = Ujq(t; + 1) — Ujq(t;), which can be
expressed as:

tj

AUja(t; ( > 1 — ) TP AU 1 a(t) — ¢, (16)
1

t—k—
where p and c are the abbreviation of p; ;41 and ¢; ;4 1, respec-
tively.
Lemma 2: Formula (16) is correct.
Proof: In this proof, we use t;- to denote ¢; +1 to save space.
According to Formula (13), we have

’ . tl‘ - ’
Uja(ty) = Z (;)I)t(l =) U 1,a(t) =t - c (17)
t=k
Since (') = (,%,) + (%) (Pascal’s rule), the right side of
Formula (17) is

;e(<tt—j1> + (trf))pt(l—p)t;—tum,d( )+ P Ussnalth) (8)

- ¢. Formula (18) can be rewritten as the sum
tit+l (¢ j— ,
t=k (tt—l)pt(l - p)t] t+1UJ+1,d(t) and
— p)t U, 41 4(t). The former can be rewrit-
ten as >, - LGPt (1 = )T Uj 41 a(t 4 1), which s
equal to >, 1 (7)p! "1 (1 = p)~H(Uj11a(t) + AUj11.a(t)
by replacing U]H at + 1) with Ujpq4(t) + AUjtq1,4(2).
Hence, we obtain >;7, | (7)p"" (1 — p) 'Ujir.alt) +
Zt w1 ()P — p)TtAU 41,4(t), which is equal to
Ujalt;) + S ilp_y ()P (1 = p)' "' AU;41.a(t) according to

minus t;
of two formulas:

il (p'

Formula (13) and the fact that U1 ¢(k — 1) = 0. Based
on the above discussion, we have Ujq(t;) = Uja(t;) +
Sy ()P (1 = )t AU;41.4(t) — c. Thus, this lemma
is proved according to the definition of AUjq4(t;). ]

Proof: We prove this by induction over the number of
hops to the destination. For the inductive basis, a ¢} _; exists
such that AU,,—1,4(t},_1 —1) > 0 and AUp,—1,4(t,_1) < 0,
which can be directly derived from Theorem 1. By the inductive
hypothesis, a ¢_; exists such that AU;_1 4(t;_; — 1) > 0 and
AUj-1,4(t;_;) < 0. Based on Lemma 2, for a sufficiently large
tj > 15 1, AUjd( ;) < 0. Therefore, an optimal ¢} exists. This
theorem is then proved. |



