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Summary & Conclusions — This paper presents a new

routing policy, maximum-shortest-path (MSP), within the class

of shortest-path routing policies for mesh-connected topologies
which include popular 2-D and 3-D meshes, 2-D and 3-D tori,
and n-dimensional binary hypercubes (n-cubes). In MSP, the
routing message is always forwarded to a neighbor from which
there exists a maximum number of shortest paths to the desti-
nation. The optimal routing (defined in this paper) maximizes
the probability of reaching the destination from a given source
without delays at intermediate nodes, assuming that each link
in the system has a given failure probability. The results show
that: :

- the optimal e-cube routing in n-cubes is a special implemen-
tation of MSP, .

- MSP is.equivalent to the Badr & Podar zig-zag (Z?) routing
policy in 2-D meshes which is also optimal.

- the Z? routing policy is not optimal in any N x N torus,
where N > 4 is an even number, .

A new routing algorithm implements MSP in 2-D tori and is at
least suboptimal. T'wo examples are used in 6 x 6 and 8 X 8 tori
to demonstrate that MSP is optimal for some 2-D tori. This is
the first attempt to address optimal routing in the torus net-
work, which still is an open problem.

INTRODUCTION

Acronyms
aka

also known as

MSP  maximum shortest path (routing)
n-D  n-dimensional
Z?  yig-zag
Notation}

number of dimensions

number of eligible neighbors for a node
number of nodes in each dimension

a source or intermediate node

a destination node in a given network topology

g e »3 3

}Other, standard notation is given in “Information for Readers &
Authors” at the rear of each issue.

V  (v1,v2,...um): ‘eligible neighbor vector’ of v with
respect to destination w
p Pr{message is successfully forwarded to a neighbor
along a given link}
p 1-p
S(v,u) maximum Pr{delivery of a message from
v to u}

P(v,u) number of shortest paths from v to u

Recent microprocessor developments have sparked in-
terest in large scale multiprocessors composed of 100s or
1000s of processors and in data communication networks
allowing for delivery of advanced digital services. In a mul-
ticomputer system, a collection of computing nodes (com-
puters) work in concert to solve large application prob-
lems. These nodes communicate data and coordinate their
efforts by sending & receiving messages through the un-
derlying data communication network. Thus, the perfor-
mance of such a multicomputer system depends on the
end-to-end cost of communication mechanisms. Routing
time of messages is one of the key factors that are critical
to the performance of multicomputers. Basically, routing
is the process of transmitting data from one node (source)
to another node (destination) in a given system.

Direct-networks have become a popular means for inter-
connecting components of multicomputers. In a direct net-
work, nodes are connected to only a few nodes, its neigh-

" bors, according to the topology of the network.

Mesh-connected topology is one of the most thoroughly
investigated network topologies for parallel processing. It
is important due to its simple structure and its good per-
formance in practice. Mesh-connected topologies, also
called k-ary n-cube based networks, have an n-dimensional
grid structure with k& nodes in each dimension such that
every node is connected to two other nodes in each dimen-
sion by a direct link. Mesh-connected topologies include:

. n-dimensional mesh,

- torus (a mesh with wrap-around links),

- hypercube. , .
These topologies have desirable properties of regularity,
balanced behavior, and many alternative paths. Examples
of commercial products based on binary n-dimensional
hypercubes (n-cubes) include: the Ncube’s nCUBE and
the Thinking Machine’s Connection Machine, which is a
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hypercube interconnected bit-serial SIMD machine. Mul-
ticomputers that use 2-D meshes include the MIT J-
machine (3], the Symult 2010 [4], and the Intel Touch-
stone [6]. Several commercial multicomputers have been
using the toroidal network topology; eg, the Tera system
(3-ary n-cubes) [1], the CRAY T3D (3-D torus) [5], and
the CRAY T3E (3-D torus) [8].

As more components are placed in a multicomputer,
'the system becomes more complex, and this.increases the
chances of having one or more component failures. On
the other hand, many applications (such as real-time ap-
plications) demand timeliness of communication service.
To meet such a demand, routing messages can be routed
through a shortest path between the source and destina-
tion. In a shortest-path routing, only shortest paths (to
the destination) are acceptable. This paper:

- focuses on a shortest-path routing policy that can deliver

routing messages through a shortest path (many might ex- -

ist) in the presence of faulty components;
- considers only the case of link faults.

In a shortest-path routing, only shortest paths are accept- ;

able. If a routing message can not be forwarded to the
destination through a shortest path, then it is simply dis-
carded. A shortest-path routing policy is optimal [2] if it
maximizes the probability of reaching the destination from
a given source without delays at intermediate nodes. It is
assuned that some of the outgoing links at a node may
be unavailable due to competing traffic or physical link
failure. -

This paper presents MSP, a new routing policy, within
the class of shortest-path routing policies for mesh-con-
nected topologies. In MSP, the routing message is always
forwarded to a neighbor from which there exists a max-
imum number of shortest paths to the destination. The
optimal e-cube routing in n-cubes is a special implemen-
tation of MSP, and MSP is equivalent to the Badr & Podar
Z? routing policy in 2-D meshes which is also optimal. The
Z? routing algorithm is proved to be not optimal in any
N x N torus, where N > 4 is an even number. This ex-
tends a result [9], where only one counter example is given
for a 6 x 6 torus. A.routing algorithm that implements
MSP in 2-D tori is presented, and proved to be at. least
suboptimal (optimal for the cases that we check). MSP is
the first attempt to achieve optimal routing in the torus
network which is still an open problem.

A future research direction is to extend MSP to systems
with node faults.

+ Section 2 overviews basic definitions, including shortest-
path routing, Z?2 routing, and optimal routing; and pro-
poses the MSP.

- Section 3 demonstrates the use of MSP in various mesh-
“connection networks, including n-cubes, 2-D meshes, and
2-D tori; and shows that MSP is optimal in both n-cubes
and 2-D. meshes.

« Section 4 discusses the relationship between MSP and
optimal routing in 2-D tori. MSP is proved to be an ap-
proximation of the optimal routing policy, and shown to

be optimal in 6 x 6 and 8 x 8 tori.

2. PRELIMINARIES
Definitions
- Wraparound link: A link that connects two neighbors
whose addresses differ by k& — 1 in a dimension.
+ (k,n)-torus: k-ary n-dimensional torus
- (k,n)-mesh: A (k,n)-torus without wraparound links. .
- Eligible neighbor of v with respect to destination: A
neighbor closer to « than from v to u in the network. <«

Assumptions

. 1. pis uniform across the whole network.
2. 0<p<1;since p=0and p=1 are trivial cases. <

2.1 Mesh-Connected Topologies

Mesh-connected topologies include (k, n)-tori and (k, n)-
meshes. A (k,n)-torus has k™ nodes, each of which is
uniquely indexed by an n-tuple:
(E],..,,Ei,...,xn),OSZEiSk—l. -

Each node connects to 2 neighbors in each dimension:
(15 s Zim1, T + 1, Zigq, ..., Tn),
(mlr ey &1, T — 1azi+1a v axn);
addition & subtraction are modulo &.
Two commonly used tori are:
- (k,2)-tori aka 2-D tori,
- (2, n)-tori aka n-dimensional binary hypercubes

.(n-cubes).

Two commonly used meshes are:
- (k,2)-meshes aka 2-D meshes,
- (k, 3)-meshes aka 3-D meshes.
This paper focuses on:
+ 2-D tori, figure 1a,
+ 2-D meshes, figure 1b,
- n-cubes, figure lc.

2.2 Shortest-Path Routing

Use assumptions 1 — 2.

The m varies from node to node depending on the dis-
tance between the current node and the destination node
(see figure 2). If a priority order is defined among the v’s
eligible neighbors, V, to which the routing message is for-
warded, this order can be represented by

(k) (k) (k)

(viyvp 7l U )
which is a permutation of V; & (1 < k < m!) represents
permutation k based on a permutation generator.

The probability vector associated with the eligible
neighbor vector is: -

(p,p ‘15>Ij'2527 e ’p_pm—-l)

p- P~ is element i of this probability vector, where

P = probability that the routing message is successfully
forwarded to neighbor i in the given order of eligible neigh-
bors, ' :

P*~! = probability that the first ¢ — 1 tries fail.
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Figure 1: Sample mesh-connected-networks

network topology

source node destination node

eligible neighbors
Figufe 2: Eligible Neighbor Vector for a Given v & u

Again, (v§k) vék), . 1),(”)) is a priority order (out of m!)

. of m eligible neighbors of v with respect to destination u.

S(v,u) satisfies the recursive equations:
S(v,u) =
i1 o ®) |
m?}'( ;p-pll-S( wl<k<ml|, u#v,
S(v,v)=1.

2.3 72 Routmg

The Z?2 routing policy [2] is a shortest-path routmg al-
gorithm and is optimal for 2-D meshes. Informally, the
Z? policy states that the routing message should be sent
towards the diagonal which denotes the set of nodes that
have an equal number of rows and columns away from the
destination node. Z? is optimal in 2-D meshes.

Without loss of generality, let the:

- source node be (i, 7),
- destination node be (0, 0).

Z? routing works as follows:

1. Build a rectangle that contains v and w as two oppo-
site corners.

2. Derive a line L that crosses the u and equally divides
the angle between two boundary lines (of the rectangle)
that both cross u.

3. Route the message toward line L: each intermediate
node is selected based on its distance to L; the closest one
is selected from the eligible ones. <

Figure 3 is an example of Z? routing, with 7, j > 0. Line
L crosses u and (4, 7). The Z? routing goes along the line
connecting s = (¢, j) and (4, ) until it reaches node (3, j);
then follows the line connecting (4, 7) to u = (0,0).

source v=(i,j)

VJ% 4s°

destination u=(0,0)

Figure 3: Zig-Zag Routing

2.4 Maximum Shortest-Path Routing

MSP is another shortest-path routing policy. The goal
is to show that MSP is optimal for many mesh-connected
networks. In MSP, the routing message is always for-
warded to an eligible neighbor from which there exists
a maximum number of shortest paths to the destination.
These shortest paths can overlap by sharing some links.
P(v,u) satisfies:

P(v,u) =

ZPU” ), v#u

P(v,v) = 1

As an example, consider routing in a 2-D mesh. Let
- source v = (1,5),%,§ > 0,
- destination u = (0, 0),
- P(v) replace P(v,u).
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The equations become:

P(’Lv]) =.P(i_laj).+ P(l:.j - 1), ('L:]) 7é (030)
P(0,0).=1 '

3. OPTIMAL SHORTEST-PATH ROUTING
BASED ON MSP-
3.1 n-Cube .
An n-cube [7] consists of N = 2™ nodes and n : (N/2)

links. {0,1}™ is the set of nodes, where u and v are con- ’

nected iff © and v differ in exactly one bit. The conven-
tional e-cube routing is an example of MSP. In an n-cube,
eligible neighbors of each node have the same number of
shortest paths to the destination. Any selection policy of
an eligible neighbor is MSP, because all eligible neighbors
are indistinguishable; any shortest-path routing (includ-
ing e-cube) is optimal: selection of a neighboring node to
which the routing message is forwarded can be random.

3.2 2-D Mesh
Prove that MSP is an optimal shortest-path routing in
a 2-D mesh. Let
-v=(%7), ¢t,j 2 0, be the source node
« u = (0,0) be the destination node
It suffices to prove that

P(i—1,§) < P(i,j - 1) iff S(i—1,5) < S(i,j—1),

because for v = (4, j) there are at most 2 eligible neighbors:
(i,7—1) and (i—1, ). Use dummy values for S(—1,5) =0
and S(i,—~1) = 0. .

Lemma 1: In a Z-D mesh, P(i,7) = (1 —:J)
Proof: See appendix A.1

Based on lemma 1, plot each P(%, ) in a given 2-D mesh
with source node (0, 0); these values form a Pascal triangle
(see figure 4). '

In general, the expression for S(i,j) is rather complex;
however, the difference between S(i — 1, j) and S(4,5 — 1)
can be represented by the simple expression in theorem 1.

Theorem 1: In a 2-D mesh with source v =
3,7 21,

S(i-1,7) =80, -1) =

(7))

Proof: See appendix A.2.

Corollury 1: In a 2.D mesh, MSP is an optimal shortest-
path routing. :
Proof. See appendix A.3

Corollary 2: In a 2-D mesh, the Z2 routing policy is an
optimal shortest-path routing.
Proof: See appendix A.4

(4,5) and

Gj)

©.0

Figure 4: The Pascal Triangle of P(i, j)

This is a simpler proof for corollary 2 than the proof in
[2]. Because Z2 is an MSP, it can be used to’implement
the MSP routing policy in a 2-D mesh.

3.3 2-D Torus

A 2-D torus is a 2-D mesh with wraparound links at
the ends. Therefore, for some destination-source pairs,
there are more than 2 eligible neighbors. Specifically, for
an N x N torus where N is even, there is 1 node that
has 4 eligible neighbors and 2(N — 2) nodes (N/2 rows
or columns away, but not both) for which 3 directions lie
along a shortest path. Without loss of generality, consider
only source nodes that are N/2-column away (see figure
5); nodes that are not on column or row N/2 in a 2-D°
torus, are equivalent to the one in a 2-D mesh. Therefore,
any optimal routing in a 2-D mesh is also optimal in a 2-D
torus. When either ¢ or j in source node (4,5) is larger
than N/2, then the shortest path uses wraparound links.
To simplify the discussion, let:

- the destination node always be (0,0);
- the source node be (%, 7).

Theorem 2 shows that Z2 is not optimél for any N x N
torus, N > 4 is an even number. It generalizes the result
in (9], where only one counter example is given for a 6 x 6
torus. '

Theorem 2: The Z2 routing algorithm is not optimal in
any N x N torus, N > 4 is an even number.
Proof: See appendix A.5.

MSP routing on a 2-D torus works as follows: Find a
location k (at the y dimension) along column 4 (column

' N/2), such that for any source whose j value is larger than

k, the routing message should be forwarded along column

. i until reaching ¢ = (¢, k). Then the remaining part is
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destination: (0,0) \/

Figure 5: An N x N 2-D Torus

(N/2)th column
@,N-1) q ' ' (-1 N-1) : ]
©. N2y NLND) (N2)th row
+
source: (i,j) -
€
(__('3 ™20 .r <N-l.0)+

equivalent to the touting in a 2-D mesh. Therefore, Z2
routing can be used. For any source node whose ‘value at
the y dimension’ < k, the optimal routing is equivalent to
the one in a 2-D mesh. This special point t = (3, k) is a
‘turning point’. Clearly, ¥ < i = N/2. The goal is to find
the value of k in turning point ¢t = (4, k).

Let P(i,j) be the number. of shortest paths from node
(1,7) tonode (0,0). Theorem 3 shows the number of short—
est paths from (i, 7) to (0,0).

Theorem 3: In a 2-D torus,
P(i,5) = (Z -;]> , for (4,j) at neither column nor row
N/2; o ’
o i+ o ‘
- P(i,j)=2( .7, for (i,5) at column or row N/2 but
7
not both;

- P(3,j) = 4(1_;]) for (i,7) at both column and row.

N/2.!
Proof: Sée appendix A.6.

Theorem 4: If the source is at column (N/2) and N > 2 is
an even number, then the turning point at column (N/2)
ist = (N/2,k), where N/2 =2k + 1 or N/2 = 2k.

Proof: See appendix A.7.

" MSP routing on a 2-D torus works as follows:
A. Let the source be at column N/2 (this algorithm also
applies when the source is at row N/2). Let j be the value
at dimension y. Consider two cases.

1. j > k: The routing message should be forwarded
along the y dimension until it reaches row k; then follow
z? routlng

2. j < k: Follow Z2 routing d1rect1y

B. If the source is not at column or row N/2 then follow
Z? routmg <

Figure 6 shows two cases where the source is on column
N/2 and it has 3 eligible neighbors:

Case 1: The source is above the turning point.
Case 2: The source is (or below) the turning point.

When the source has 4 eligible neighbors, step #1 can be
along either row (z dimension) or column (y dimension),
then the remaining steps are the same for situations where
the source is on row or column N/2.

(N/2)th column

case |
source: (i§)

@)  wuming point

case 2

source: (i4)

" (1,0)

destination: (0.0) x
Figure 6: Two Optimal-Routing Examples

4. DISCUSSION

The optimal routing policy and the MSP are shown to
be the same in mesh and hypercube routing. The Z? al-
gorithm is shown to be not optimal in a general 2-D torus
network. An MPS routing dlgonthm for a general 2-D
torus network is presented.

The next question is how close the MSP is to the optimal
routing policy in a 2-D torus network. Ref [9] predicts

* that the optimal policy for the torus seems unlikely to be

of a simple closed form. Theorem 7 shows the relationship
between S(v) and P(v).
Theorem 5: Let

S()=ap-p?+a1 - p™ tag-pt 4

ag is a positive integer; d is the distance between v and
the destination.

Then P(v) = ao.

Proof: See appendix A.8. <

Basically, MSP can be viewed as an approximation of
the optimal policy where high order terms of p are elim-
inated. The question is whether these two policies are
equivalent in a 2-D torus network. That is, it is not known
that S(v) > S(u) iff P(v) > P(u), where v = (4,7 —1) and
u=(i—1,7). .

For at least some cases, MSP routing is shown to be
optimal in a 2-D torus. Table 1 shows the P & S for all
the nodes in a 6 x 6 torus, where (0,0) is the destination
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Tablel: P& S for Each Node of a 6 x 6 Torus

v (00 (10 (200 (11 (3,0) (2,1) (3,1) (2,2)
Py | 1 1 1 2 2 3 8 6
Sw) | 1 p P 2p-p 2p°-p' 3p°-2p* 8p'—12p° +6p°—p" 6p! — 7p® + 20

node. S(v) > S(u) iff P(v) > P(u) holds in this case. For

" example,

S(3,1) - 8(2,2) =p* - p* < (2-p) >0,
P(3,1) - P(2,2)=8—-6>0;
5(2,1)—5(3,0)—103 * B,

P(2,1) - P(3,0)=3-2>0.

Therefore, the MSP in section 3 is an optimal routing in
a 6 x 6 torus; the turning point is at node (3,1), where
N =6 and k = 1. Table 2 shows S values for all the nodes
in an 8 x 8 torus, where (0, 0) is the destination node.

S(3,2)~S(4,1)=p6-ﬁ2 > 0;
S5(3,1) — 8(4,0) = 2p* - 5 > 0; v
S(4,2) - 5(3,3) =55+ (2 p) - (§? — 5p+5) > 0.

Therefore, the turning point is node (4,2), where N = 8
and k£ = 2.

It is still an open problem whether MSP is optimal in a
general torus network. I conjecture that MSP is optimal
in a general 2-D torus.

Table 2: S Values for Each Node of an 8 x 8 Torus

5(0,0) |1
5(1,0) | p
S(la 1) 2172 - p3
5(2,0) | p? :
S(Za 1) 3p3 - 2P4
SE2 2; 6§4 — 7p5 + 2p8
S(3,0) | 1
5(3,1) | 4p® - 3p°
S(3,2) | 10p® — 14p° + 5p7 .
SE3, 3;_ 20§6 — .‘38;07 + 24p8 — 5p°
S(4,0) | 2p* —p
S(4,1) | 10p® — 15p°® + 7p7 — p®
5(4,2) | 30p% — 73p” + 71p® — 35p° + 9p!0 — p!!

APPENDIX
A.1 Proof of Lemma 1
Use induction to prove this lemma. When node (7, j) has
1 eligible neighbor then either 4 = 0 or j = 0; there is only
1 path and this lemma is true in this case. Therefore, only

cases when both ¢ and j are not 0, need to be considered.

When i+ j = 2, (”]"7) = (3) = 2, this lemma is true.

Assumie that this lemma holds for i + j = k. Consider
P(i,j) = Pli~1,4) + P(i,j — 1) for i +§ = k+ 1.
Based on the induction, then P(i — 1,5) = (”’g"l) and
P@,j—1)= (’“ 1). Therefore, '

o= () (35 (49

A.2 Proof of Theorem 1

Use induction on ¢+ j, where i and j (both are positive)
are coordinates of v = (3,j). When ¢ + j = 2, then S(i —
1,§) - 8(i,5 — 1) = (0,1) - S1,0) = p—~ p = 0.

Assume that the theorem holds for i + 7 = k. When
i+ j=k+ 1, consider the 3 cases: i = 7,7 > j,1 < J.

When i = j, S(i—1,j) = S(i,j — 1), since S is symmet-
ric. On the other hand,

(7= (7)) oo

Therefore,

StE—1,5)-S6E,j—-1)= :
(47323 e
When 7 > 4, based on the induction assumption,
S(i-1,7-1)-8(i-2,5)= .~

(52)- (e

71 J :

That is, S(i — 1,5 — 1) < S(i — 2,7). Similarly, |
S(i—1,j—1)—S(,j—2) =

(559 - (55 om0
Thatiis, S(i—1,5—1) > S(i,j — 2). Therefore,

S(i—-1,j)=p-S(i—2,j)+p-p-S(i—1,j—1),
S(,j~1)=p-S(i~1,j-1)+p-p- S(H—Z)

Based on the mductlon assumptlon,

S(i-1,7)-83G,5-1)=
p-1S(i-2,5)-SGE—-1,j-1]
-HO'ﬁ' [S(i_l’j_ 1)_5(17.7_2)]

=57 (5 e
o (1) () e
- -0
1032 (52 [
(5 ()
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When i < j, based on the induction assumption,

S(i—1,j—1)—S(i—2,5) =

e | B T e
S(i—[l(,j]—.l)1>>5(i§2,j;- >] p ]

Similarly,

i+ =2\ (i+5~2\] iijea o1
K j—l) (j—z H Tl
S(i—1,5-1) < S(i,j —2). '
Therefore,
S(i~1,4)=p-8G—1,j—1)+p-p-56—27),
S(t,j~1)=p-8(,j—-2)+p-p-S(i—1,5-1).
Ba§ed on the induction assumption,
S(i-1,7) - S6,j—1)=p-[S(,5 —1) - S(4,j - 2)]
+p-ﬁ-[3(i—2,j)~5(i—\l,j~1)]

(500 (55 )] oo
+pf) [(’+§“2> _ ('ji;2>] piHi=2 i1
L))
)7 0
S G P

A.3 Proof of Corollary 1
Based on theorem 1 —

S(i-1,4)=S(j—-1) =

(77)- () e

Based on Lemma 1, this equation is rewritten as:
[P(i—1,5) = P(i,j — 1)) - p"*7 = . .

That is, S(i—1,5) > S(i,5 - 1) iff P(i—~1,5) > P(4,j—1).
Therefore, MSP is an optimal shortest-path routing for
2-D meshes.

A.4 Proof of Corollary 2

In the Z2 routing policy, the eligible neighbor closer to
line L (see figure 3) has more selections (larger P value)
of shortest paths. That is, the Z2 routing policy is. the
same as MSP in 2-D meshes. Based on corollary 1, the Z2
routing policy is an optimal shortest-path routing for 2-D
meshes. - '

A.5 Proof of Theorem 2

It suffices to show one counter example for any given N x
N torus, where N > 4 is a1l even number. Let node (k, k—
1) be at column the (N/2) with respect to the destination
(0,0), ie, k = N/2. This node has 3 eligible neighbors:
(k—1,k-1), (k,k—2), (k+ 1,k —1). (A neighbor is
eligible if it is along one of the shortest paths from the
current node to the destination node.) Now, show that
S(k—1,k—1) < S(k,k — 2): the diagonal node is not the
neighbor that has the largest S value. Because N > 6,
k= % > 3, the node (k,k — 2) has 3 eligible neighbors:
(k—1,k-2), (k+1,k—2), (k,k —3). Based on the torus
topology:

Stk—1,k—1)=
max[p.S(k—2,k—1)+p-p-Sk—1,k—2),
p-Stk—1,k=2+p-p-Sk—2k—1));
Sk,k—2)>p-Sk—1,k—2)+p-p-S(k+1,k—2)
+p-p2- Sk, k- 3).

Because nodes (k—2,k—1),(k—1,k—2), and (k+1,k~2)
are identical with respect to the destination (0,0), then
S(k—2,k—1) = S(k—1,k—2) = S(k+1,k—2). Therefore,

Stk—1,k—1) =
p-Stk—2k—1)+p-p-Sk—1,k~2)
=p-Sk—1,k—2)+p-p-Sk+1,k~2)
<p-Stk-1,k-2)+p-5-S(k+1,k—2)

+p-p°- Sk, k- 3)
< S(k, k —2).

A.6 Proof of Theorem 3

Use the same approach as in the proof of lemma #7? to
show that when node (Z, ) is not at column or row N/2
and it has 2 eligible neighbors then P(i,7) = (H;] )

When (%,7) is at row or column N/2 (but not both),
then there are 2 eligible neighbors (where either 4 = 0 or
j = 0) or 3 eligible neighbors (where ¢ £ 0 & j # 0). For
the ‘2 eligible neighbors case’ there are 2 shortest paths;
and 2(*17) is equal to either 2(;) or 2(¢). In either way,
the result is 2. Therefore, we only need prove the ‘3 eligible
neighbors case’.

Wheni=j=1ina2x N oran N x 2 torus, then

S 9 _
P(i,j) = 2(z + j) = 2(1> = 4. Assume this result holds
J

Cforidj=k>2

Consider the case where (4,7) (i = N/2) has 3 eligible
neighbors (¢—1,5), (§,7—1), (i+1, 7). Then nodes (i1, j)
and (7 + 1,7) are not at column N/2 and node (z,7 — 1) is
still at column N/2. Based on the induction assumption
and the result for nodes not at column or row N/2, then

i+ 5 —1
Pi—1,5) = P(i+1,5) = (”9, >and
’ J
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P(i,j — 1) = 2<z T i ) Therefore,
Jj-

P(i,§) = P(i —1,5) + P(i + 1,7) + P(i,§ — 1)

So(PH T (I (M),
J Jj—1 J

Similarly, the same result can be obtained for the case:
(4,5) is at row N/2; ie, j = N/2.

For node (,j) that has 4 eligible neighbors:
G—1,7),G+1,9), (3,7~ 1), (4,7 + 1), each neighbor is at
column or row N/2; and
P(i+1,5) = P(i—1,j) and P(i,j — 1) = P(3, + 1).
~ Based on the result for nodes with 3 eligible neighbors: -
P(i,j) =

P(i~1,5)+ P(i,j — 1)+ P(i+1,5) + P(i,j + 1)

:2<1+j‘—1> +2<z+y—1>
J j-1 /-
)5
J . Jj—1
:4<“'ﬂ')‘
J
A.7 Proof of Theorem 4

It suffices to prove that: at the turning point ¢ = (3, k),
where i = N/2, then

"k =max[l|P(i,l - 1) < P(i - 1,1)].

Based on the properties of binomial numbers, it is equiv-
alent to show that
P@i, k) > P(i— 1,k + 1) and P(i, k:—l) < P(i— 1,k):

5 k+1 S k+1
k kE+1
5 k+i—1 < k+i—1 '
k-1 )~ k
For i = 2k,
ki) _gf k) _ 2k (3%
E+1) “\k+1 *k+1 k
' 3k k4 4\ '
2 =2 ;
<(f)=2()
k+i—1\ _ [3k-1 _y 3k—1 — k+i—1
k N\ k - k-1) k-1 !
For i =2k +1,
k+i\ _ (3k+1 2+1 (3k+1 <9 k+1
k+1/  \k+1 k1 k k
k+i—1\ _ (3k 2k+1 [ 3k 9 E+i-1
k “\k k E—1 k-1

I
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A.8 Sketch of Proof of Theorem 5

This is proved using induction on the distance between
the source and destination nodes. Let (v, vs,... ,vm) be
the priority order of neighbors of v that corresponds to
the maximum probability of delivery of a routing message
from v. Based on the induction assumption, assume that

S(v;) = a(t‘) pd—l + agi) _pd + agi) .pd-b-l +...
P(v;) = a(() ), 1<i<m, a((]i) is a positive integer.

Then

Sv) = b S(v)

m : ]
Zp-ﬁ“
(a§ m +a<2>

P(v) =
~a(()1>+a(()2)+...+a

myapd 4
P(v) + P(vz) + ...+ P(vm)
(m)

0 -

Therefore, ag = a((,l) + a((,z) +...+ ag"') = P(v) and ap is a
positive integer.
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