Dual of a Complete Graph as an Interconnection Network *

S.Q. Zheng
Department of Computer Science
Louisiana State University
Baton Rouge, LA 70803
zheng@bit.csc.lsu.edu

Abstract

A new class of interconnection networks, the hyper-
networks, has been proposed recently. Hypernetworks are
characterized by hypergraphs. Compared with point-to-
point networks, they allow for increased resource-sharing
and communication bandwidth utilization, and they are es-
pecially suitable for optical interconnects. In this paper,
we propose a scheme for deriving new hypernetworks using
hypergraph duals. As an ezample, we investigate the dual,
K, of the n-vertex complete graph K., and show that it
has many desirable properties. We also present a set of
fundamental data communication algorithms for K. Our
results indicate that the K, hypernetwork is a useful and
promising interconnection structure for high-performance
parallel and distributed computing systems.

Key Words: algorithm, communication, hypernetwork,
interconnection network, optical interconnect, parallel and
distributed computing.

1 Introduction

The interprocessor communication performance is one
of the most critical aspects of high-performance parallel
and distributed computing systems. Designing high band-
width, low latency and scalable interconnection networks
is a great challenge faced by architecture designers. It is
well known that VLSI computing systems are wire lim-
ited [4, 12, 14]. The connecting devices take up most
chip area, and dictate the cost of the system. The system
performance is limited by interconnection delays caused
by resistance, capacitance, and inductance. Point-to-point
networks, which are characterized by graphs, have been
extensively investigated. High-dimensional point-to-point
networks (e.g. the hypercube) have communication perfor-
mances better than that of low-dimensional point-to-point
networks under the constant-delay model that has no re-
striction on the bisection-size (and therefore no restric-
tion on wire density). However, they are hard to imple-
ment and have excessively high cost. In a low-dimensional
network (e.g. the 2-D mesh) the number of links is rel-
atively small, the diameter large, and consequently, more

*Work supported in part by NSF grant ECS-9626215 and
Louisiana grant LEQSF(1996-99)-RD-A-16.

0-8186-7683-3/96 $05.00 © 1996 IEEE

Jie Wu

Department of Electrical & Computer Engineering

433

Florida Atlantic University
Boca Raton, FL 33431
jie@sunrise.cse.fau.edu

congestions tend to occur. However, it is easier to imple-
ment. Dally [4] showed that, under the assumption of same
wire bisection, low-dimensional networks outperform high-
dimensional networks because they provide lower latency,
less contention, higher hot-spot throughput and more re-
source (mainly wires) sharing. In recent years, we have
seen the trend of seeking interconnection alternatives that
combine the best features of low-dimensional networks,
such as lower wire densities and higher wire sharing, and
best features of high-dimensional networks, such as smaller
network diameters and higher potential scalability. Evi-
dently, such alternatives are no long pure point-to-point
networks.

One of the major driving forces of these changes is
the advance of optical interconnection technologies. Pho-
tons are non-charged particles, and do not naturally in-
teract. Consequently, there are many desirable charac-
teristics of optical interconnects: high speed (speed of
light), increased fanout, high bandwidth, high reliability,
supporting longer interconnection lengths, exhibiting low
power requirements, and immunity to EMI with reduced
crosstalk. These characteristics have significant system
configuration and complexity implications [6, 7, 8]. For
example, multiple-bus configurations with increased scal-
ability are possible because of relaxed fanout and distance
constraints. The optical fanout (which is the maximum
number of processors that can be attached to an optical
connecting device) is not bound by capacitance but by the
power that must be delivered to each receiver to main-
tain a specified bit-error-rate, referred to as optical power
budget. Processors can be arranged at increased physical
distances. Resource sharing, achieved by multiple accesses
of optical interconnect devices using time-division multi-
plexing (TDM), wavelength division multiplexing (WDM),
code division multiplexing (CDM), space division multi-
plexing (SDM), or hybrid multiplexing [9, 10], is a funda-
mental advantage of optical networks.

Realizing that conventional graph theory is no longer
adequate for the design and analysis of the new generation
interconnection structures based on optical interconnect
devices, a new class of interconnection networks, the hy-
pernetworks, was proposed recently [15]. The class of hy-
pernetworks is a generalization of point-to-point networks,
and it contains point-to-point networks as a subclass. In



a hypernetwork, the physical communication medium (a
hyperlink) is accessible to multiple processors. The relax-
ation on the number of processors that can be connected
by a link provides more design alternatives so that greater
flexibilities in trade-offs of contradicting design goals are
possible. The underlying graph theoretic tool for investi-
gating hypernetworks is hypergraph theory [3]. Interested
readers may refer to [15, 16, 17] for more justifications,
design issues, implementation aspects, and some hyper-
network design examples.

In this paper, we propose a scheme for constructing a
new hypernetwork from an existing one using the concept
of dual graph in hypergraph theory. We show that the
dual H* of any given hypergraph H is a hypergraph that
have some properties related to the properties of H. Thus,
based on the properties of H, one can investigate the prop-
erties of H*. Since the structure of H and its dual H* can
be drastically different, finding hypergraph duals can be
considered as a general approach to the design of new hy-
pernetworks. We demonstrate this approach by investigat-
ing the structure of the dual K, of an n-vertex complete
point-to-point network K,. We discuss topological, fault-
tolerance and data communication aspects of the K, hy-
pernetwork. The scalability and expandability of the K
are also addressed. Our results indicate that the K, hyper-
network is a useful and promising interconnection network
for high-performance parallel and distributed computing
systems.

2 Preliminaries

Hypergraphs are used as underlying graph models of
hypernetworks. A hypergraph [3] H = (V, E) consists of
aset V = {vi,vs,---,vn} of vertices, and a set E =
{e1,e2, +,em} of hyperedges such that each e; is a non-
empty subset of V and Ui~ e; = V. An edge e contains
a vertex v if v € e. If e; C e; implies that ¢ = j, then H
is a simple hypergraph. When the cardinality of an edge
e, denoted as |e|, is 1, it corresponds to a selfloop edge.
If all the edges have cardinality 2, then H is a graph that
corresponds to a point-to-point network. In this paper, we
only consider simple hypergraphs (and graphs).

For a subset J of {1,2,---,m}, we call the hypergraph
H'(V',E') such that E' = {e;}i € J} and V' = U,,crrei
the partial hypergraph of H generated by the set J. For a
subset U of V, we call the hypergraph H"(V",E") such
that E” = {e;NU|1 <i < m,e;NU # ¢} and V" = Ugeprre
the sub-hypergraph induced by the set U.

The degree dg(vi) of v; in H is the number of edges in
V that contain v;. A hypergraph in which all the vertices
have the same degree is said to be regular. The degree
of hypergraph H, denoted by A(H), is defined as A(H) =
maxy,;cv di (v;). A regular hypergraph of degree k is called
k-regular hypergraph. The rank r(H) and entirank s(H) of
a hypergraph H is defined as r(H) = maxi<j<m |e;| and
s(H) = mini<j<m |e;|, respectively. We say that H is a
uniform hypergraph if r(H) = s(H). A uniform hyper-

434

graph of rank k is called k-uniform hypergraph. A hyper-
graph is vertez (resp. hyperedge) symmetric if for its any
two vertices (resp. hyperedges) v; and v; (resp. e; and e;)
there is an automorphism of the hypergraph that maps v;
to v; (resp. e; to ej).

In a hypergraph H, a path of length ¢ is defined
as a sequence (vij,€j;,Viy, €55, ", €jq,Vigy,) Such that
(1) viy,vig,-+-,vi,,, are all distinct vertices of H; (2)
€j1,€ip, " 165, are all distinct edges of H; and (3)
Vi, Vg, € ej, for k = 1,2,---,q. A path from v; to
vj, ¢ # j, is a path in H with its end vertices being
v; and v;. A hypergraph is connected if there is a path
connecting any two vertices. We only consider connected
hypergraphs. A hypergraph is linear if |e; Ne;| < 1 for
i # j, le., two distinct hyperedges share at most one
common vertex. For any two distinct vertices v; and vj
in a hypergraph H, the distance between them, denoted
by dis(v;,v;), is the length of the shortest path connect-
ing them in H. Note that dis(vi,v;) = 0. The diame-
ter of a hypergraph H, denoted by 6(H), is defined by
6(H) = maxy;,»;en dis(vi,v;). More concepts in hyper-
graph theory can be found in [3].

A hypernetwork M is a network whose underlying struc-
ture is a hypergraph H, in which each vertex v; corre-
sponds to a unique processor P; of M, and each hyperedge
e; corresponds to a connector that connects the processors
represented by the vertices in e;. A connector is loosely
defined as an electronic or a photonic component through
which messages are transmitted between connected proces-
sors, not necessarily simultaneously, in constant time. We
call a connector a hyperlink. We restrict our discussions
on hyperlink implementations to the optical domain.

The simplest implementation of a hyperlink is by a bus.
Basically, there are three bus configurations: bidirectional
bus, dual-bus and folded bus. Dual-bus and folded bus
are unidirectional; they are particularly suitable to be im-
plemented in optical domain. In a duel-bus system, every
processor is connected to two unidirectional buses, and
one bus attachment consists of a pair of transmitter (e.g.
laser diode) and receiver (e.g. photo diode). The two buses
transmit in opposite directions so that there is a path from
every processor to every other processor in the system. In
a folded bus system, each processor is attached to the bus
twice, one attachment for reading and the other for writ-
ing. The bus is divided into two portions, the up-stream
for processors to send data, and the down-stream for pro-
cessors to receive data. With TDM or CDM, the perfor-
mance of dual-bus and folded bus can be improved. A
hyperlink can also be implemented by a ring which trans-
mit data in pipelined fashion. Switches, which implement
SDM, can be considered as hyperlinks. Free-space optical
or optoelectronic switching device such as a spatial light
modulator (SLM) [10] belongs to this class of hyperlinks.
A star coupler {10, 13], which uses WDM, can be consid-
ered either as a generalized bus structure or a photonic
switch, is another implementation of a hyperlink. Simi-
larly, an ATM switch, which uses TDM, is also a hyper-



link. In rest of this paper, the following pairs of terms are
used interchangeably: (hyper)edges and (hyper)links, ver-
tices and processors, point-to-point networks and graphs,
and hypernetworks and hypergraphs.

The problem of designing efficient interconnection net-
works can be considered as a constrainted optimization
problem. For example, the goal of designing point-to-point
networks is to find well-structured graphs (whose ranks are
fixed, as a constant 2) with small degrees and diameters.
In hypernetwork design, the relaxation on the number of
processors that can be connected by a hyperlink (i.e. the
rank of the hyperlink) provides more design alternatives
so that greater flexibilities in trade-offs of contradicting
design goals are possible.

3 Dual Hypernetworks and K Hyper-
network

The dual of a hypergraph H = (V,E) with ver-
tex set V = {v1,v2,---,un} and hyperedge set E
{e1,e2, -, em} is a hypergraph H* = (V*, E*) with ver-
tex set V* = {vf,v3,---,vy} and hyperedge set E* =
{ei,e3,---,en} such that v} corresponds to e; with hy-
peredges e} = {vjjv; € ¢; in H}.

Proposition 1 H is r-uniform if and only if H* is r-
reqular.

Proposition 2 The dual of a linear hypergraph is also lin-
ear.

Proposition 3 A hypergraph H is verter symmetric if
and only if H* is hyperedge symmetric.

Proposition 4 The dual of a sub-hypergraph of H is a
partial hypergraph of the dual hypergraph H*.

Since (H™)* = H, all the above propositions still hold
after interchanging H with H"*.

Proposition 5 §(H) -1 < §(H*) <6(H)+1.

Propositions 1 - 5 show that some properties of the dual
hypergraph H* of a given hypergraph H can be derived
from properties of H. For example, if H is a ring, then H*
is isomorphic to H. However, in general, the structures of
H and its dual H* can be drastically different. Finding
hypergraph duals can be considered as a general approach
to the design of new hypernetworks.

We consider using the duals of point-to-point graphs
as hypernetworks. Among all the hypergraphs derived
from duals of point-to-point graphs, the dual, K, of the
n-vertex complete graph K, has the smallest m/N ratio
when N is fixed, and smallest diameter, where m and N are
the number of hyperedges and vertices, respectively. Prop-
erly labeling the vertices and hyperedges in a hypergraph
can greatly simplify its use as a communication network.
Vertex labels are used as processor addresses. Similarly,

435

hyperedge labels are used as the unique names of hyper-
links. There are many ways to label the vertices and hy-
peredges of K. Although all different labeling schemes of
K are equivalent because the symmetries of K, (Propo-
sition 3), we choose to define the K;; hypernetwork using
an interesting scheme by which the connectivity of K;; can
be concisely derived.

Definition 1 Let N, = n(n —1)/2 for n > 0. The K,
hypernetwork, n > 3, is a hypergraph that consists of N,
vertices, V1, V2, ..., UN, , and n hyperlinks, e;, ez, ...,en. The
connectivity of K, can be recursively defined as follows:

(1) K3 consists of three vertices v1, vz, and va, and three

hyperlinks e1 = {vi,v2}, e2 = {v1,v3}, and e3 =
{v2,v3}.
(2) K, is constructed from K_, by adding n — 1 more

vertices UN, _1+1;UN, 142+ UNp_14n—1 = UN, , and
one more hyperlink en, such that all the newly added
n — 1 vertices are connected to e, and UN,_;+m 18
connected to hyperlink e, 1 <m <n~-1.

For a vertex v; in K;, we use 1 as its vertex label. Sim-
ilarly, we use j as the label of hyperedge e; of K. By a
simple induction on n, it is easy to show that (K;;)* is a
complete graph of n vertices. By the properties of K, and
above Propositions, we observe the following fact:

Fact 1 K, is 2-regular, (n—1)-uniform, linear, and vertex
and hyperedge symmetric; the diameter of K, is 1 ifn =3,
and 2 if n > 3.

In the following alternative definition, the connectivity
of K hypernetwork is explicitly specified.

Definition 2 Let N, = n(n — 1)/2 for n > 0. The
K, hypernetwork, where n > 3, is o hypergraph that
consists of Nn wvertices, vi,v2,---,vn,, and n hyperlinks,
e1, €2, +,en. For any two distinct vertices v; and v;, let
w; = min{r|N, > i}, u; = min{s|N; > 5}, li =i — Ny;-1,
andl; = j—Ny;_1. v; and v; are connected by a hyperlink
if and only if one of the following conditions holds: (1)
wi = uj; (2) wi =1;; (8) li = wuj; or (4) I; = 1;. Further-
more, if (1) or (2) holds then vi,vj € eu,, and if (3) or (4)
holds then vi,v; € ey,.

By a simple induction on n, one can easily see that
Definitions 1 and 2 use the same vertex and hyperedge
labeling schemes and they are equivalent. It is easy to
verify that any vertex v; of K, is connected to exactly
two hyperedges e; and e, where u = min{r|N, > i}, and
l =1 — Ny-1. We call hyperedges e; and e, the lower
and upper hyperedge of v, respectively. For any [ and u
such that 1 < I < u < n, there is a unique vertex v; that
is connected to hyperedges e; and e,, and furthermore,
t = Nyu—1+1. Therefore, a vertex v; of K, can be uniquely
identified by an ordered pair ([,u), 1 <l < u < n.

The notion of {I,u) can be interpreted in another way.
If we group those vertices that share the same upper hyper-
link, n—1 groups (also called blocks) are formed. The k-th



(k > 0) block contain k vertices. Vertices within each block
are labeled based on the location of their lower hyperlinks
in the block. Given vertex {l,u), v —1 is the block number
of of the block it resides, and [ is the rank of this vertex
within the block. As shown in the next section, being able
to address processors by hyperlinks is a useful property of
the K, hypernetwork for the design and analysis of paral-
lel algorithms. Figure 1 shows the bus implementation of
the K§ hypernetwork, whose corresponding Kjs is shown
in Figure 2.

block 11 block 2 1 block 3 block 4 block 5

€ v +
| '

|

H

es

.
e t

D169 9169191191019

‘
<L2> '<ld> Q3 '<ldy 24> <A I<LE> <25 <BS5> <45 '<16> 26> <B6> <46> <56

Figure 1: Bus implementation of Kg.

Figure 2: Complete graph Kg corresponding to K.

The uniformity ( i.e. all hyperlinks consist of the same
number of processors), regularity (i.e. all the processors
are included in the same number of hyperlinks), and lin-
earity (i.e. no two hyperlink share more than one proces-
sor) of the K, hypernetwork have important implications.
Consider the bus-based implementations of hypernetworks.
Here, uniformity and linearity imply that the bus loads are
evenly distributed and minimized, and regularity implies
simplified processor design since all the processors have
the same interface circuitry. Vertex (hyperedge) symmetry
is important for a hypergraph to be used as a hypernet-
work, since it allows for all the processors (hyperlinks) to
be treated as identical. Both Definitions 1 and 2 can be
used to expand an existing K, hypernetwork to a K; ;
hypernetwork without modifying the connections in K.
The property that a larger hypernetwork can be easily
constructed using smaller hypernetworks in the same class,

436

when enhancement is desired, is call the the ezpandability
of a hypernetwork. Clearly, the K, hypernetwork is easy
to expand. The incremental expandability of K is dis-
cussed in Section 5. Proposition 4 indicates that K, can
be partitioned into several smaller hypernetworks in the
K family. This property is useful in designing paralle] al-
gorithms for K, using the divide-and-conquer paradigm.
Consider the fault tolerance aspect of the K, hyper-
network. We say that a hypernetwork H is x-processor
fault-tolerant (vesp. y-hyperlink fault-tolerant) if it remains
connected when no more than any z processors (resp. y-
hyperlinks) are removed. We have the following claim.

Theorem 1 K, is (2n — 3)-processor fault-tolerant and
1-hyperlink foult-tolerant.

The K, hypernetwork may become infeasible when n is
large. To improve scalability, we can use K as a building
block to construct more complicated hypernetworks. For
example, we may arrange N = n’(n — 1)?/4 processors as
an [n(n—1)/2] x[n(n—1)2] grid, and connect each row and
column as a K. The resulting “two-dimensional” hyper-
network is regular, uniform, and linear. Both the degree
and diameter of this hypernetwork are 4, and the rank of
this hypernetwork is n — 1, which is O(N*/4). Similarly,
we can construct a “three-dimensional” regular, uniform
and linear hypernetworks of IV processors with degree and
diameter 6, and rank O(N'/®). Compared with the K, hy-
pernetwork, these “multidimensional” hypernetworks have
decreased processor failure tolerance and improved hyper-
link failure tolerance.

4 Data Communication Algorithms for
the K Hypernetwork

In this section, we demonstrate how to use the vertex
and hyperedge labels to design data communication algo-
rithms for the K hypernetwork. For simplicity, we as-
sume bidirectional bus implementation of hyperlinks. We
also assume that transmitting a word between two pro-
cessors connected by a bus takes constant time. Since a
bus is shared by all its connected processors, at most one
pair of processors can communicate at any time instance.
Bus communications can be either synchronous and asyn-
chronous. In asynchronous mode communication, arbiters
are needed to allocate the bus to processors in an on-
line fashion. We assume a synchronous mode communica-
tion. Bus allocations, although operated dynamically, are
predetermined by an off-line scheduling algorithm. This
bus operational mode has been used in [5] for analyzing
a multiple-bus interprocessor connection structure. We
consider four types communication operations: one-to-one
communications, one-to-many communications, many-to-
one communications and many-to-many communications.
We show that the performances of our algorithms are either
optimal (ROUTE and BROADCAST) or optimal within



a constant factor (PERMUTATION, REDUCTION, TO-
TAL_EXCHANGE and PREFIX). These communication
algorithms constitute a powerful set of tools for designing
paralle] algorithms on the K, hypernetwork.

4.1 One-to-One Communications

We consider two fundamental one-to-one communica-
tion operations, shortest path routing between two pro-
cessors, and data exchange using a permutation.

4.1.1 Shortest path routing

The following algorithm can be used for data routing from
vi = (L, u;) to v; = (I;,u;) in K.

procedure ROUTE({l;, u:), (I;, u;))
begin
if u; = u; or u; =I; then
(I;, ui) sends the message to (u;,l;) using
hyperlink e,
else if l; = u; or l; = l; then
(l;,u;) sends the message to (I;, u;) using
hyperlink ey,
else
/* (l;,u;) and (l;,u;) do not share a hyperlink */
! =min{l;,1;};
ifl; =1 then
{l;,u;) sends the message to {I;,u;) through the
path ((lia“i)v €5 (lh 'U'J')r €uj, (lja UJ))
else (I;, u;) sends the message to {I;,u;) through
the path ((lia Ui), €u;s (ljv 'lLi), €, (ljv Uj))
end

Theorem 2 For any given pair of processors v; and vj in
the K, hypernetwork, algorithm ROUTE routes a message
from v; to vj, or vise verser, along a shortest path.

Example 1 For v; = vz = (2,3) and v; = via = (4,6) in
K, ROUTE finds a path (vs,es,vis = (3,6),e6,v14). O

4.1.2 Permutation

Permutation is a bijection on the set of processors in K.
In a permutation communication operation, each proces-
sor (a,b) sends a message to another processor {a',b'),
and each processor receives a message from exactly one
processor. We use a set of N, ordered processor pairs
({a,b), {a’,b'}) to represent an permutation. In each pair
({a,b), {a',b')), {a,b) and (o', b") are called the source pro-
cessor and destination processor of the pair, respectively.
We use A((a,p),(a’,4')) t0 denote a message to be sent from
{a,b) to (a’,t’). A permutation is called a total permuta-
tion if {a,b) # (a’,b’) for all pairs; otherwise, it is called a
partial permutation. We only consider total permutations,
since a partial permutation can be carried out using a to-
tal permutation by masking out those processors which are
mapped to themselves.

437

(————)
{4

Figure 3: Routing paths used by algorithm PERMU-
TATION for messages A((ap,(a',p))- (1) b = V', (ii)
b< ¥, and (ii) b > V.

Phase 2

(iii}

We present an algorithm PERMUTATION which per-
forms a permutation operation efficiently. Depending on
the values of b-and ¥, algorithm PERMUTATION routes
messages A((a,b).(a’,b)) 2long different paths of length at
most 2. There are three cases: (1) b = b, (ii) b < ¥’
and (iii) b > b’. For each of these three cases, algorithm
PERMUTATION routes the messages strictly along paths
shown in Figure 3. Based on these path patterns, we call
a message a two-step message if it follows a path of length
2 (cases (ii) and (iil)) ; otherwise, it is called a one-step
message (case (i)). Note that the source and destination
processors of a two-step message may be distance 1 apart.
Algorithm PERMUTATION consists of two phases. In the
first phase, all one-step messages are sent to their destina-
tions, and all two-step messages are routed to the inter-
mediate processors of their routing paths. In the second
phase, all two-step messages are sent to their destinations.
In each phase, a hyperlink may be used to transmit more
than one message. By our synchronous mode assumption,
we know that the multiple accesses of the same hyperlink
can be scheduled before the execution of the algorithm.
Hence, transmissions on different hyperlinks can be per-
formed in parallel, and transmissions on the same hyper-
link are performed sequentially following a fixed schedule.
Note that we can achieve the same effect if arbiters are
used to allocate hyperlinks in an on-line fashion.

procedure PERMUTATION
begin
/* Phase 1 */
for all hyperlinks e; do in parallel
Use e, to sequentially transmit those messages with
ex assigned for their first step
endfor
/* Phase 2 */
for all hyperlinks e; do in parallel
Use e}, to sequentially transmit the two-step
messages with ey assigned for their second step
endfor
end



Theorem 3 Assuming bus hyperlinks of K, , algorithm
PERMUTATION carries out o permutation in at most
2(n — 1) parallel message transmission steps, which is op-
timal for K, within a constant factor. If transmitiing a
message on a hyperlink takes O(1) time, the time complez-
ity of PERMUTATION is optimal.

Careful readers may notice that hyperlink e; is not used
in PERMUTATION. If we let e1 to share some communi-
cation load, the permutation performance can be slightly
improved. In fact, by evenly distributing the communi-
cation load among hyperlinks, the performances of all al-
gorithms presented in this paper, excluding ROUTE and
BROADCAST, can be slightly improved. However, the
modified algorithms will be more complicated.

4.2 One-to-Many Communication
Consider the following algorithm for broadcasting a

message from any processor v (I,u) to all the other
processors in K.

procedure BROADCAST({l,u))
begin
{1, u) broadcasts the message to all the processors
connected by ey;
for all the processors (a,b) such that a =norb=1u
do in parallel
if ¢ = u then (a,b) broadcasts the message to
processors in {{z,b)|s > a} using es;
if b = u then (a,b) broadcasts the message to
processors in {{a, 7)|j # b} using eq
endfor
end

Theorem 4 Algorithm BROADCAST broadcasts a mes-
sage from any processor to all the other processors in the
K, hypernetwork in two steps, which is optimal. Further-
more each destination processor receives one and only one
copy of the broadcast message.

4.3 Many-to-One Communication

A reduction (or census, or fan-in) function is defined as
a commutative and associative operation on a set of values,
such as finding maximum, addition, logic or, etc. It can be
carried out using a many-to-one communication operation.
The following is an algorithm for performing a reduction
operation specified by the operator 4+ on a set of N, values
Ay, As, -, AN, stored in vy, ve,- -, vn, , and putting the
final result in v;. We assume that each processor »; has
a working register B; (which is initialized to A4;). Again,
we use an ordered pair (l,u) of hyperlinks to represent
a processor. A,y and B ,) represent A and B values
associated with (I, u), respectively. Given any processor
(I, u), procedure TRANSFORM is used to transform (I, u)
to (1,2) and all the other (a,b) in K, to {a’,¥').

438

procedure TRANSFORM ({I,u))
begin
for all (a,b) do in parallel
ifa=1and b=2 then (a,¥') := (I,u)
else if a = 1 then {a',}') := (min{l, b}, max{l, b})
else if ¢ = 2 then (a',¥") := (min{u, b}, max{u, b})
else if a = then {(a’, V') := (1,b)
else if b = u then (a/,b') := (2,a)
endfor :
end

By the symmetry of the K hypernetwork, we know
that the new identities (a,b’) assigned to processors of
K; satisfy the connectivities of K;. We use v1 = (1,2) to
collect the final result.

procedure REDUCTION ((1,2), +)
begin
for all (1,3) such that j > 3 do in parallel
(1, 7) receives Ay jy from (2, ) using e; and
performs By jy := B,y + A¢z,5)
endfor;
for k = 3 to n do in parallel
for all (1,7) do in parallel
if j = 2 then (1, j) receives B(; xy from e; and
performs By jy := B jy + Bk
else if j > k then (1, j) receives A ;) from e;
and performs B, = B(l,j) + A(k,j)
else do nothing

endfor
endfor
end

step 5

Figure 4: Communication pattern used by REDUC-
TION on Kg.

Theorem 5 Assuming bus hyperlinks of K, the data
communication of elgorithm REDUCTION takes n—1 par-
allel communication steps. which is optimal for K, within
a constant factor. Assuming each + operation takes con-
stant time, the time complezity of algorithm REDUCTION
is O(n), which is optimal for K.

Similar performance can be achieved by a two-
dimensional mesh point-to-point network of the same size.



However, the number of links in such a mesh M is a
quadratic function of the number of hyperlinks in K}, the
degree of a M is 2 times the degree of K}, and the data
broadcasting time in M is O(n) times that of K.

4.4 Many-to-Many Communication

We consider two cases: all-to-all communication and
prefix computation. In ali-to-all communication, each pro-
cessor sends a message to all the other processors. It is also
called the total ezchange operation. The prefix computa-
tion can be considered as a many-to-many operation since
many results are computed using many operands.

4.4.1 All-to-all communication

We can obtain an all-to-all communication by modify-
ing the algorithm REDUCTION. The operator used is set
union. After n — 1 steps, vi receives all messages. Then,
using two additional steps, v1 broadcast all the N, mes-
sages to all processors in K. A drawback of this algo-
rithm is that each step transmits O(N,) messages along a
hyperlink. We give another algorithm with improved per-
formance. This algorithm consists of two phases: the first
phase performs total-exchange within each block (intra-
block) and the second phase performs total-exchange be-
tween blocks (inter-block).

procedure TOTAL_EXCHANGE
begin
/* Phase 1: intra-block total-exchange */
for j = 3 to n do in parallel
fori=1toj—1do
Processor (i, j) broadcasts its message to
processors in {(a,j)|a # i}
using e;
endfor
endfor;
Denote the set of messages processor (i, j) has by S j);
/* Phase 2: inter-block total-exchange */
for i =2 to n do
(1,%) broadcasts Sy ;) to processors
in {(1,b)|b # ¢} using e1;
for all processors in {(1,b)|b # i} do in parallel
(1,b) broadcasts Sy ;) it received to processors
in {(a,b)ja # 1} using e
endfor
endfor
end

Theorem 6 Assuming bus hyperlinks of K,,, the algo-
rithm TOTAL_EXCHANGE requires 3(n—1) parallel com-
munication steps, each hyperlink is used to transmit at
most n — 1 messages per step. If all the messages have the
same length, this performance is optimal for K, within a
constant factor.

439

] — — ]

MU \J ¥ ——— =
Gy G 71N B S a—]
MU A A T E—] i=4
Eary esf L) ¥ ¥ ©of T Y ¥ Ll
K, T T T — i=3 Phase 2
L7y m— Y Y n ) A T ¥ v
o T T T — i=2
STy ¥ % BT ) ¥ Y o Y \j A Al
ar A T T -— =1
6 ie3
. :s: A) L] 1 :u ¥ Y T Yi=4 P 1
po 3 S | s L) | 1 al L] T T ¥ i=3
S T e T T Y L af [ it
e l~—v 94 r———v——v 1 =1

Figure 5: Communication patterns used by TO-
TAL_LEXCHANGE on K}.

4.4.2 Prefix Computation

Given a sequence S = (a1,a1,---,an) of N elements in a
domain D, and an associative operation ® on D, the prefix
problem is to compute z; == a1 Qa2 ®---Ra; for 1 <i < N.
The prefix computation is a fundamental problem in par-
allel computing. It has a wide range of applications such
as processor allocation, data distribution and alignment,
data compaction, job scheduling, sorting, packet routing,
matrix computation, linear recurrence, polynomial evalu-
ation, graph algorithms, and general arithmetic formulae
[11]. We use A; to denote the operand value a; initially
stored in processor v;.

procedure PREFIX (®)
begin
/* Phase 1 */
for j = 3 to n do in parallel
fori=1toj—1do
Processor (i, j) broadcasts Ay; ;) to processors
in {(a,7)|a > 1} using e;
endfor
endfor
Each processor (a,b) performs ® operation on all the
A-values received, including its own A-value, and let
the result be X, py;
/* Phase 2 */
for j = 2 to n — 1 do in parallel
Processor {j — 1, j) broadcasts X(;_; ;y to
processors in {(j — 1,b)|b > j} using e;_1
endfor
Let the value received by processor (a,b) is Y4 zy;
/* Phase 3 */
for j = 3 to n do in parallel
fori=1toj—2do
Processor (4, j) broadcasts Y; ;y to processors
in {(a, )l # i} using e;
endfor
endfor
for all the processors (a,b) do in parallel
{a,b) performs ® operation on X, ;) and all the
Y -values it received
endfor
end



ST} =
2% I
STy e T TR

CRCRCRORCACAD

J

T Sl

© @
Figure 6: Communication patterns used by PREFIX
on K.

Theorem 7 Assuming bus hyperlinks of K, algorithm
PREFIX carries out a prefit computation on K, with each
processor initially contains one operand, in 2n — 3 paral-
lel communication steps, which is optimal for K, within
a constant factor. Assuming each ® operation takes con-
stant time, the time complezity of algorithm PREFIX is
O(n), which is optimal for K.

5 Incomplete K Hypernetwork

We observe that the gap, N, — Np—1 =n — 1, between
K, _, and K7, is not a constant. It is desirable that hyper-
networks can be expanded with incremental size increases.
For any given N such that N,_1 < N < N,, we can con-
struct a sub-hypergraph H of K, such that [V(H)| =N
and |E(H)| = n. Such a sub-hypergraph is called an in-
complete K, hypergraph.

Definition 38 The incomplete K, hypernetwork, where
n > 3, of N vertices such that Np_1 < N < N, s the sub-
hypergraph of K. induced by vertex set {v1,vs, -, vn}.

The vertices in an incomplete K can be divided into
n —~ 1 blocks. The i-th block has i vertices for 1 < ¢ <
n —1 as in K7, and the (n — 1)-th block has at least one
vertex and at most n — 2 vertices. For convenience, we call
the (n — 1)-th block of an incomplete K, its incomplete
block. We use k, to denote the number of vertices in the
incomplete block of an incomplete K. An incomplete
K is linear and 2-regular, but it is not uniform, and not
(vertex and hyperedge) symmetric. It is not difficult to
prove that the diameter of incomplete K hypernetwork,
where n > 3, is 2.

It is easy to verify that the shortest path routing com-
munication algorithm ROUTE and data broadcasting al-
gorithm BROADCAST presented in the previous section
can be directly used for the incomplete K, hypernetwork.
Therefore, Theorem 2 and Theorem 4 hold for shortest
path routing and data broadcasting operations on an in-
complete K, hypernetwork, respectively.

Algorithm PERMUTATION cannot be used for permu-
tation operations on an incomplete K. We present a mod-
ified algorithm PERMUTATION_INC. Depending on the
values of b and ¥', algorithm PERMUTATION_INC routes
messages A((a.b),(a,b'y) along different paths of length at
most 3. There are seven cases: (i) b b, (i) (i)
b<b #mn,(ii) ¥ <b#mn, (iv)t =nand b < [k./2], (v)

440

J

Phase 2 Phase 3

@

T
®

I3
L

o
B

@

o
£

ONONO

o
B

@i

o
B

ORONO

3
o

ONONO,

(3]

,
:
®

™

®
®
® ®

®

o
3
~ N

®

o
=

I

(i)

Figure 7: Routing paths used by algorithm PERMU-
TATION_INC for messages A((a,py,(a’ b)) (1) b=V,
(i) (i) b < b #n, (i) ¥ <b#mn, (iv) b =n and
b< [ky/2], (v) b=nand V' < [kn/2], (vi) b’ = n and
b> [k,/2], and (vii) b=n and V' > [k,/2].

b=nand b < [kn,/2], (vi) ¥ = n and b > [k,/2], and
(Vii) b=mnand b > fkn/2-|. Any message A((a,b),(a’,b’))
in a total permutation satisfies one and only one of these
seven conditions. For each of these cases, algorithm PER-
MUTATION_INC routes the messages strictly along paths
shown in Figure 7. Algorithm PERMUTATION_INC is
similar to PERMUTATION. It consists of three phases.
In the first phase, all one-step messages are sent to their
destinations, and all two-step and three-step messages are
routed to the next processors on their routing paths. In
the second phase, all two-step messages are sent to their
destinations, and all three-step messages are sent to the
third processors on their routing paths. Then, in the third
phase, all three-step messages reach their destinations. As
in algorithm PERMUTATION, in each phase of algorithm
PERMUTATION_INC, messages are transmitted on dif-
ferent hyperlinks in parallel, and messages are transmitted
on the same hyperlink sequentially. In the next theorem,
we give a simple upper bound for the number of parallel
message transmission steps of PERMUTATION_INC. Its
actual performance can be much better.

Theorem 8 Assuming bus hyperlinks of an incomplete
K, algorithm PERMUTATION_INC carries out a permu-
tation in ot most n—2+max{n—2,kn+1}+k. <3n—5
parallel message transmission steps, where ky, is the num-
ber of processors in the incomplete block. The performance
of this algorithm is optimal for the incomplete K, within
a constant factor. If transmitting a message on a hyper-
link takes O(1) time, the time complezity of PERMUTA-
TION_INC is optimal.

Consider the reduction operation. Since an incomplete
K, is not symmetric, we cannot use procedure TRANS-
FORM to relabel the processors. We adapt REDUCTION
given in the previous section to an incomplete K, by



adding one operation: send the final result from (1,2} to
the final destination (I, u) using hyperlinks in at most two
steps.

Corollary 1 Assuming bus hyperlinks of the N-processor
incomplete K hypernetwork, where Npn_1 < N < Ny,
algorithm REDUCTION can be extended to carry out a
reduction operation on an incomplete K, hypernetwork in
n+1 parallel communication steps, which is optimal for the
incomplete K, within a constant factor. Assuming each
+ operation takes constant time, the time complezity of
this estended REDUCTION algorithm is O(n), which is
optimal for the incomplete K.

It is simple to verify that the all-to-all data commu-
nication algorithm TOTAL_EXCHANGE presented in the
previous section can be used for the incomplete K, hyper-
network. This is done by treating all the processors v; such
that j > N in the K, hypernetwork as dummy processors
that do not participate in communications.

Corollary 2 Algorithm TOTAL_EXCHANGE carries
out an all-to-all communication on an incomplete K, hy-
pernetwork in 3(n — 1) parallel communication steps, each
hyperlink is used to transmit at most n — 2 messages per
step. If all the messages have the same length, this perfor-
mance is optimal for the incomplete K, within a constant
factor.

The algorithm PREFIX given in the previous section
also cannot be directly applied to an incomplete K, hy-
pernetwork. We have to modify it to obtain an algorithm
with similar performance.

procedure PREFIX_INC (®)
begin

/* Phase 1 */

Same as the Phase 1 of PREFIX;

/* Phase 2 */

for j =2 to n — 2 do in parallel
Processor {j — 1, ) broadcasts its X-value to
processors in {(j — 1,b)1b > j} using e; -1

endfor

Assume that the value received by processor {a,b)

is Y(a.,b) )

/* Phase 3 */

for j =3 to n — 1 do in parallel
fori=1toj—2do

Processor (i,j) broadcasts its Y-value to
processors in {{a, j)|a # i} using e;

endfor

endfor

for all the processors (a,b) such that b # n

do in parallel
(a,b) performs ® operation on X, ;y and all the
Y -values it received, and let the result be Z(q 5y

endfor

441

/* Phase 4 */
Use ROUTE to send Z,_3 1) from (n —2,n —1) to
(1,n);
{1,n) broadcasts Z(,_3,n—1y to processors in {a,nja # 1}
using eq;
for all the processors {(a,b) such that b =n
do in parallel

Zapy = X(a,p) ® L(n—2,n-1)

endfor
end
A7] p E—]
:;;:'| Phase 4
St T 1] :::_ T ¥ 1] ::: Phase 3
E3 ¥ Sl ¥ ¥oesT ¥ A\ A\l =1
. °1 f T — 1 Phase 2
1 F ¥ T Al
. it — R i=3
oy e ¥ Y ey v A y ini Pt
POOVWOOOOOOL®

Figure 8: Communication patterns used by PRE-
FIX_INC on an incomplete K¢ of 13 processors.

Theorem 9 Assuming bus hyperlinks of K;,, algorithm
PREFIX_INC carries out a prefiz computation on an in-
complete K, hypernetwork, with each processor initially
contains one operand, in 2n — 2 parallel communication
steps, which is optimal for the incomplete K, within a
constant factor. Assuming each ® operation takes con-
stant time, the time complezity of algorithm PREFIX_INC
is O(n), which is optimal for the incomplete K,.

6 Discussions

We say that a linear hypernetwork is non-trivial if it
has at least 4 vertices, at least 2 hyperlinks, and each hy-
perlink contains at least 2 vertices. Let HT = {H| H is
a non-trivial linear, regular hypergraph of degree 2 }. We
call the hypernetworks in H™ the class of degree-2 linear,
reqular hypernetworks. For any H in HY, its dual H* is a
point-to-point network. However, the dual of a point-to-
point network may not be in H*. For example, if a vertex
v of a point-to-point network G has degree 1, then its cor-
responding hyperlink e* in G* contains exactly one vertex,
and consequently, G* is not in H*. Let Gt = {G| G is
a point-to-point network such that it has at least 4 edge,
and each vertex of G has degree greater than 1 }. Clearly,
for any point-to-point network G in G*, we can obtain a
non-trivial, linear, degree-2 hypernetwork H in H* by ap-
plying the dual operation to G. It is easy to prove that
for any hypernetwork H in H™, §(H) > 2. Those degree-2
hypernetworks that are excluded from H™ are not inter-
esting.

Among all the hypergraphs derived from duals of point-
to-point graphs, the dual, K, of the n-vertex complete



graph K, has the smallest m/N ratio when N is fixed
and smallest diameter, where m and N is the number of
hyperedges and vertices, respectively. We have discussed
the K, hypernetwork in much detail. Between the high
cost/performance of fully connected network K, and low
cost/performance of linearly connected network (a ring)
are a set of point-to-point networks that constitute a wide
range of trade-offs in cost and performance. For example,
H can be point-to-point networks such as hypercubes, star
graphs [1], chordal rings (including barrel shifters) [2], etc.
The duals of these point-to-point networks also constitute
a wide range of trade-offs in cost and performance.

In any point-to-point network, the number of links is at
least equal to the number of processors (except a tree, in
which the number of links is one less the number of pro-
cessors). A trivial lower bound on the time complexity of
parallel algorithm on a point-to-point network is the best
sequential time divided by the number of processors. But
in a hypernetwork, it is desirable that the number of hy-
perlinks is less than the number of processors due to cost-
effectiveness consideration. In such a situation, the num-
ber of hyperlinks, the rank of hyperlinks and the hyper-
network degree are important factors in determining the
lower bounds of time complexities of parallel algorithms,
as demonstrated in our algorithm analysis. If we replace
each bus by a crossbar switch, more efficient algorithms
for the communication and computing problems we con-
sidered are possible. For example, using crossbar switches
as hyperlinks of K, reduction and prefix operations can
be implemented in O(log n) time, which is optimal. The
O(n?) time complexity of total-exchange operation on the
K hypernetwork cannot be improved because of the con-
stant degree of K. We do not know if the time complexity
of permutation operation on the K, hypernetwork with
crossbar switch hyperlinks can be reduced to O(log n).

Most discussions in this paper are restricted to con-
stant degree (more specifically, degree 2) linear hypernet-
works. Our approach can be easily generalized to the de-
sign and analysis of variable-degree and/or non-linear hy-
pernetworks. Such networks may have better communi-
cation and fault-tolerance performances. Hypernetwork
design is formulated as a constrainted hypergraph con-
struction optimization problem. Hypergraph theory plays
a central role in hypernetwork design and analysis. Sim-
ple hypergraph theory concepts, such as Steiner triple sys-
tems and hypergraph duals, have led to several interesting
hypernetwork topologies as demonstrated in [17] and this
paper. We would like to point out that hypernetwork de-
signs are also related to block design problems in combi-
natorial mathematics, which in turn are related to algebra
and number theory. We expect many new hypernetwork
designs under the guidance of these theories.

References

[1] S. Akers, D. Harel, and B. Krishnamurthy, The Star
Graph: an Attractive Alternative to the n-Cube, Pro-

442

(6]

(8]

[16]

(17]

ceedings of 1987 International Conference on Parallel
Processing, pp. 393-400, 1987.

B.W. Arden, and H. Lee, Analysis of Chordal Ring
Network, IEEE Transactions on Computers, 30, pp.
291-295, 1981.

C. Berge Hypergraphs, North-Holland, 1989

W.J. Dally, Performance Analysis of k-ary n-cube In-
terconnection Networks, IEEE Trans. on Computers,
Vol. 39, pp. 775-785, 1990.

O.M. Dighe, R. Vaidyanathan, and S.Q. Zheng, The
Bus-Connected Ringed Tree: A Versatile Interconnec-
tion Network, to appear in Journal of Parallel and
Distributed Computing.

P.W. Dowd, Wavelength Division Multiple Access
Channel Hypercube Processor Interconnection, IEEE
Trans. on Computers, Vol 41, No. 10, pp. 1223-1241,
1992.

M.R. Feldman, S.C. Esener, C.C. Guest and S.H.
Lee, Comparison Between Optical and Electrical In-
terconnects Based on Power and Speed Considera-
tions, Appl. Opt., Vol. 27, pp. 1742-1751, 1988.

M.R. Feldman and C.C. Guest, Interconnect Den-
sity Capabilities of Computer Generated Holograms
for Optical Interconnection of Very Large Scale Inte-
grated Circuits, Appl. Opt., Vol. 28, pp. 3134-3173,
1989.

P. E. Green, Jr., Fiber Optical Networks, Prentice
Hall, 1993.

J. Jahns and S.H. Lee (editors), Optical Computing
Hardware, Academic Press, Inc., 1994.

F. T. Leighton, Introduction to Parallel Algorithms
and Architectures: Arrays - Trees - Hypercube , Mor-
gan Kaufmann Publishers, Inc., 1992, pp. 78-82, 239-
244.

C. Mead and L. Conway, Introduction to VLSI Sys-
tems, Addison-Wesley, 1980.

C. Partridge, Gigabit Networking, Addison-Wesley,
1994.

C.L. Seitz, Concurrent VLSI Architectures, IEEE
Trans. on Computers, Vol. 33, pp. 1247-1265, 1984.

S.Q. Zheng, Hypernetworks - A Class of Interconnec-
tion Networks with Increased Wire Sharing: Part I -
Part IV, Technical Reports, Department of Compute
Science, Louisiana State University, Baton Rouge, LA
70803, Dec., 1994.

S.Q. Zheng, Hypercube Hypernetworks : Implemen-
tations of Hypercube with Increased Wire Sharing,
Proc of the 8th International Conf. on Parallel and
Distributed Computing Systems, pp. 452-457, 1995.

S.Q. Zheng, Sparse Hypernetworks Based on Steiner
Triple Systems, Proc of 1995 International Conf. on
Parallel Processing, pp. 1.92 - 1.95, 1995.



