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Abstract - We present a new routing policy, called
mazimum shortest paths (MP) routing policy, within
the class of shortest-path routing policies for mesh-
connected topologies which include popular 2-D and
3-D meshes, 2-D and 3-D tori, and n-dimensional hy-
percubes (n-cubes). In this policy, the routing message
is always forwarded to a neighbor from which there ez-
ists a mazimum number of shortest paths to the des-
tination. An optimal routing defined in this paper s
the one that mazimizes the probability of reaching the
destination from a given source without delays at in-
termediate nodes. We show that the MP routing policy
is equivalent to the e-cube routing in n-cubes which is
optimal, and it is also equivalent to the Badr and Po-
dar’s zig-zag (Z2) routing policy in 2-D meshes which
is also optimal. We prove that the Z2 routing policy
is not optimal in any N x N torus, where N is an
even number larger than four. A routing algorithm is
proposed to implement the MP routing policy in 2-D
tori and it is proved to be at least suboptimal (optimal
for some cases). Our approach is the first attempt o
address optimal routing in the torus network which is
still an open problem.

Keywords: Mesh-connected topologies, multicom-
puters, shortest-path routing.

1 Introduction

Efficient routing of messages is critical to the per-
formance of multicomputers. Basically, routing is the
process of transmitting data from one node, called the
source node, to another node called the destination
node in a given multicomputer. The mesh-connected
topology, which includes meshes, tori and hypercubes,
is one of the most thoroughly investigated interconnec-
tion topologies for multicomputers.

In a shortest-path routing, only shortest paths (to
the destination) are acceptable. A shortest-path rout-
ing policy is optimal [1] if it maximizes the proba-
bility of reaching the destination from a given source

without delays at intermediate nodes. It is assumed
that some of the outgoing links at a node may be un-
available due to competing traffic or physical link fail-
ure. In this paper, we present a new routing policy:
mazimum shortest paths (MP) routing policy within
the class of shortest-path routing policies for mesh-
connected topologies. In this policy, the routing mes-
sage is always forwarded to a neighbor from which
there exists a maximum number of shortest paths to
the destination.

We show that the MP routing policy is equivalent
to the e-cube routing in an n-cube which is optimal,
and it is also equivalent to the Badr and Podar’s zig-
zag (Z?) routing policy [1] in the 2-D meshes which is
again optimal. We formally prove that the Z2 routing
algorithm is not optimal in any N x N torus, where N
is an even number larger than four. By this we extend
a result from [2] where only one counter example is
given for a 6 x 6 torus. We also present a routing
algorithm that implements the MP routing policy in
2-D tori and it is proved to be at least suboptimal.
Our approach is the first attempt to achieve optimal
routing in the torus network which is still an open
problem.

2 Preliminaries

In a shortest-path routing, only shortest paths are
acceptable. That is, each routing message is forwarded
to a destination through a shortest path. If this mes-
sage cannot be forwarded to the destination through
a shortest path, it is simply discarded.

Let p be the probability that an acceptable outgoing
link is healthy. Assume that this p is uniform across
the whole network, it represents the probability that a
message may successfully be transmitted to a neighbor
along the selected link. (1 — p) represents the proba-
bility that a link fails. We denote V = (vq,v2,...Um)
the eligible neighbor vector of node v with respect to
destination u in a given network, where an eligible
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neighbor of v is a neighbor closer to the destination u
than node v in the network and m is the number of
eligible neighbors. Note that m varies from node to
node depending on the distance between the current
node and the destination node. If a priority order is
defined among v’s eligible neighbors to which the rout-
ing message Is forwarded, this order can be represented
by (vgk), vgk), ey v,(,)f)) which is a permutation of the el-
igible neighbor vector V, where k (= m!) represents
the kth permutation based on a permutation genera-
tor. Let (p,p(1 = p),p(1 = p)®,....,p(1 — )™ ') be a
probability vector associated with the eligible neighbor
vector. In the ith element p(1 — p)*~! of the prob-
ability vector, p represents the probability that the
routing message is successfully forwarded to the ith
neighbor in the given neighbor order and (1 — p)i~!
represents the probability that the first ¢ — 1 tries fail.
A shortest-path routing is optimal if it maximizes
the probability of reaching the destination from a
given source without delays at intermediate nodes.
Let S(v,u) be the maximum probability of delivery
of a routing message from node v to node u. Then
S(v, u) satisfies the following recursive equations:

S(v,u) = m‘w"{zp(l—P)i_lS(vgk),u)}

1=1

S(u,u) = 1

The mazimum shortest paths (MP) routing pol-
icy proposed in this paper is a shortest-path routing
policy. Our goal is to show that the MP routing pol-
icy i1s optimal for many mesh-connected networks. In
the MP routing, the routing message is always for-
warded to an eligible neighbor from which there exists
a maximum number of shortest paths to the desti-
nation. Again we denote (vy,vy,...,v,) the eligible
neighbor vector of node v (with respect to a given
destination node u), where each v; is a neighbor of v.
P(v,u) represents the number of shortest paths from
v to u. Then P(v,u) satisfies the following equations:

P(v,u) = ZP(v;,u)
P(u,u) = 1

As an example, we consider routing in a 2-D mesh.
Assume source v = (i,7) and destination u = (0,0),
we use P(v) to replace P(v,u), the above equations
become: P(i,5) = P(i —1,7)+ P(i,j — 1) and P(0,0)

The zig-zag (Z?) routing policy proposed by Badr
and Podar [1] is another shortest path routing algo-
rithm which is optimal in the mesh topology. Infor-
mally, the Z? policy states that the routing message

should be sent towards the diagonal which denotes the
set of nodes that have an equal number of rows and
columns away from the destination node. It has been
shown in [1] that Z? is optimal in 2-D meshes.

3 MP-based Routing

In {3], we show that the conventional e-cube rout-
ing is an example of MP routing in hypercubes and the
MP routing policy is an optimal shortest-path routing
in a 2-dimensional (2-D) mesh. It has been shown [1]
that the Z2 routing is optimal in a 2-D mesh; there-
fore, it can be used to implement the MP routing pol-
icy in a 2-D mesh. Here we foucs on optimal shortest-
path routing on a 2-D torus which is a 2-D mesh with
the wrap-around at the ends. Therefore, for some
destination-source pairs there are more than two el-
igible neighbors. Specifically, for a N x N torus where
N is even, there is one node that has four eligible
neighbors and 2(N — 2) source nodes (N/2th rows or
columns away, but not both) for which three directions
lie on the shortest path. Without loss of generality, we
only consider source nodes that are N/2-column away.
Note that nodes that are not at the N/2th column or
row in a 2-D torus are equivalent to the one in a 2-D
mesh. Therefore, in this case any optimal routing in a
2-D mesh is also optimal in a 2-D torus. Also, when ei-
ther 7 or j in the source node (3, j) is larger than N/2,
the shortest path uses wrap around links. To simplify
our discussion, we assume that both ¢ and j satisfy the
constraint 0 < i, < N/2. We also assume that the
destination node is always (0,0) and the source node
is denoted by (7, j).

In the following theorem, we show that Z?% is not
optimal for any N x N torus, where N is an even num-
ber larger than four. It is a generalization of Weller
and Hajek’s result [2], where only one counter example
is given for a 6 x 6 torus.

Theorem 1: The Z? routing algorithm is not optimal
tn any N X N torus, where N is an even number larger
than four.

Proof. It suffices to show one counter example for
any given N X N torus, where N is an even number
larger than four. Assume that node (k, k—1) is at the
(N/2)th column with respect to the source. That is,
this node has three eligible neighbors: (k — 1,k — 1),
(k,k —2), and (k+ 1,k — 1). Recall that a neighbor
is said to be eligible if it is along one of the short-
est paths from the current node to the destination
node. We show that S(k — 1,k — 1) < S(k, k ~ 2),
i.e., the diagonal node is not the neighbor that has
the largest S value. Because N > 3, k = 1—;’- > 3, node

1-268



1996 International Conference on Parallel Processing

(k, k — 2) has three eligible neighbors: (k — 1,k — 2),
(k+1,k—2), and (k, k—3). Based on the torus topol-
ogy, we have S(k — 1,k — 1) = max{pS(k — 2,k — 1)+
p(1—p) S(k~ 1,k —2),pS(k — 1,k — 2) +p(1 - p)
S(k—2,k—1)} and S(k,k—2) > pS(k—1,k — 2)+
p(1—p)S(k+1,k—2) +p(1 — p)2S(k, k — 3). Because
nodes (k—2,k—1),(k—1,k—2),and (k+ 1,k —2)
are identical with respect to the destination (0,0),
Sk—2,k-1)=8Sk-1,k—-2) = Sk+1,k-2).
Therefore, S(k—1,k—1) = pS(k—2,k—1)+ p(1-p)
S(k—1,k—2) < pS(k—1,k—2) +p(1-p)S(k+1,k— 2)
+p(1 - p):S(k,k—3) = S(k k- 2)

The MP routing on a 2-D torus works as follows.
We need to find a location k (at the y dimension)
along column i (the N/2th column), such that for any
source whose j value is larger than k, the routing mes-
sage should be forwarded along column ¢ until reach-
ing t = (i, k), then the remaining part is equivalent to
the routing in a 2-D mesh; therefore, the Z? routing
can be used. For any source node whose value at the
y dimension is equal to or smaller than k, the opti-
mal routing is equivalent to the one in a 2-D mesh.
This special point ¢ = (4, k) is called a turning point.
Clearly, k < i = N/2. Our goal is to find the value of
k in the turning point ¢ = (¢, k).

Let P(i,j) be the number of shortest paths from
node (4, j) to node (0,0). The following lemma reveals
the number of shortest paths from (4, §) to (0,0).

Lemma: In a 2-D torus, P(i,j) = (‘}), P(i,j) =
2(ijfj), and P(i,j) = 4(‘?), where (i,5) is not at the
N/2th column or row, at the N/2th column or row but
not both, and at the N/2th column and row, respec-
tively.

Proof: We use induction to prove that when node (¢, 5)
is not at the N/2th column or row and it has two
eligible neighbors then P(i,j) = (";."). When node
(i,7) has one eligible neighbor then either ¢ or j is
zero, there is only one path and the theorem clearly
holds true in this case. Therefore, we only need to
consider cases when both 7 and j are not zero. When
i+ j = 2 the theorem clearly holds true and assume
it holds for i +j = k. We now consider P(i,j) =
P(i—1,j)+ P(i,j—1) for i+ j = k+1. Based on the
induction assumption, we have P(i — 1,5) = ('+§‘1)

and P(,j — 1) = (“}77"). Therefore,

PliLj) = (i+ﬁ—1> N (w;:l) _ (t-;-])

When (i, ) is at the (N/2)th row or column (but
not both), then there are two eligible neighbors (where
either 7 or j is zero) or three eligible neighbors (where
neigher 7 nor j is zero). For the two eligible neighbors

cases there are two shortest paths. Also, 2("“;" ) is
equal to either 2(’) or 2(0) In both cases the result
is two. Therefore, we only need to prove for the three
eligible nelghbors cases. Wheni=j=1ina2x N
or a N x 2 torus, clearly P(i,j) = 2(';’) =20 =
4. Assume this result holds for i +j = k > 2. We
consider the case where (z ]) (i = &) has three eligible
nelghbors (1-1,7), (6,7 —1), and (z+ 1,7). So nodes
(i—1,j) and (i + 1,_7) are not at the N/2th column or
row and node (7,7 — 1) is still at the N/2th column.
Based on the induction assumption and the result for
nodes not at the N/2th column or row, we have P(i -
1,7) = P(i+1,5) = (*571) and P(i,j-1) = 2(*+3Y).
Therefore,

PG,j) = P(G-1,7)+P(Gi+1,5)+ P@G,j-1)
2(i+j—1)+2(i+j—1>

j j—1
_ 2(i+j>

7).

Similarly, the same result can be obtained for the
case where (4, 7) is at the N/2th row, i.e., j =

For node (%, j) that has four ellglble nelghbors (1—
1,4), (i+1,7), (3,7—1), and (¢,5+1), each neighbor is
at the N/2th column or row and neighbors and P(i +
1,7) = P(i—1,5) and P(,5~ 1) = P(z,j + 1). Based
on the result for nodes with three neighbors, we have

P(i,j) = P(i-1,j)+P(5-1)+PE+1,5)+ P@E,5+1)

2C+{“1)+2C+’ >+2C+1_1)
7 -1 J

m]
Theorem 2: If the source is at the (N/2)th col-
umn and N is an even number larger than two, then
the turning point (1) at the (N/2)th column is t =
(N/2,k), where N/2=2k+1 or N/2 = 2k.

Proof:. It suffices to prove that at the turning point
t = (i, k), where i = N/2, we have

k= max{z|2(’+' ) )s (Hj_l)}

Note that 2(*}*7') = P(4, k— 1), where node (i, k — 1)
is an eligible neighbor of the turning point (i, k), and
(H' 1) = P(i — 1,k) is another eligible neighbor of
ik

¢ B)ased on the properties of binomial numbers, it is
equivalent to show that 2P(i,k) > P(i—1,k+1) and
2P(i,k — 1) < P(i — 1,k). That is,

k+i k+i
(1) ()
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and
k+1-1 k4+:-1
(1) < ()

For i = 2k, we have

ki) _ 3k ) _ 2k (3K _ (3K) _ (k+i

k+1) \k+1) k+1\k k) 3

and

k4i-1) _ (3k-1) _,(3k—1) _ (k+i-1
k - k T \k~-1) E-1

For ¢ = 2k + 1, we have

E+i) _ (3k+1) _2k+1(3k+1 <2 k+i
k+1)  \k+1/) k+1 k k

and

kti=1) _ (k) _2k+1( 3k, k+i-1
Eo) T \k)TTE k-1 k-1

)
The MP routing on a 2-D torus works as follows: If
the source is at the N/2th column (the same algorithm
applies to the case where the source is at the N/2th
row) then we consider the following two cases. Case
1: If j (the value at the y dimension) is larger than k,
then the routing message should be forwarded along
the y dimension until it reaches the kth row and then
follow the Z? routing. Case 2: If j is smaller than k
then follow the Z? routing directly. If the source is
not at the N/2th column or row, then follow the Z2
routing.

4 Discussions and Conclusions

We have shown that the optimal routing policy and
the MP routing policy are the same in mesh and hy-
percube routing. We have also proved that the Z2 al-
gorithm is not optimal in a general 2-D torus network
and have proposed a routing algorithm on a general
2-D torus network based on the MP policy. The next
question is how close the MP policy is to the optimal
routing policy in a 2-D torus network. Weller and Ha-
jek [2] predict that the optimal policy for the torus
seems unlikely to be of a simple closed form.

The following theorem reveals the relationship be-
tween S(v), the maximum probability of delivery of a
routing message at node v, and P(v), the number of
shortest paths from node v.

Theorem 3: Let S(v) = a1p* + azp*+' + ... + a,p™,
where a; is a positive integer. Then P(v) = a;.

Table 1: The P and S values for each node of a 6 x 6 torus

node v (0,0) (1,0) (2,0) (1,1)
P(v) 1 1 1 2
S(v) 1 P p p° —p°
node v (3,0) (2,1) (3,1) (2,2)
P(v) 2 3 8 6
S(v) [ 20" —p" [ 3p° —2p" | 8p" —12p° | 6p" — 7p°
+6p° — p” +2p°

Basically, the MP policy can be viewed as an ap-
proximation of the optimal policy where high order
terms of p are eliminated. The question is whether
these two policies are equivalent in a 2-D torus net-
work. That is, it is not known that S(v) > S(u) iff
P(v) > P(u), where v=(4,j — 1) and u = (i — 1, ).

We show that, for at least some cases, the MP rout-
ing is optimal in a 2-D torus. Table 1 shows the
P’s and S’s for all the nodes in a 6 x 6 torus, as-
suming that (0,0) is the destination node. Clearly,
S(v) > S(u) iff P(v) > P(u) holds in this case. For
example, S(3,1) — S(2,2) = p*(1 —p)?>(2—p) > 0 and
P(3,1)~ P(2,2) = 8—6 > 0. Also, S(2,1)—5(3,0) =
p*(1—p) and P(2,1)~ P(3,0) = 3—2 > 0. Therefore,
the MP-based routing algorithm proposed in Section 3
is an optimal routing in a 6 x 6 torus, the turning point
is at the node (3,1), where N = 6 and k = 1. It is
still an open problem whether the MP routing policy
is optimal in a general torus network. We conjecture
that our MP-based routing algorithm is optimal in a
general 2-D torus.
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