A Uniform Approach to Software and Hardware Fault Tolerance

J. Wu, Y. Wang and E. B. Fernandez
Department of Computer Science and Engineering
Florida Atlantic Unversity
Boca Raton, FL 33431

Abstract

In recent years, various attempts have been made
to combine software and hardware fault tolerance in
critical computer systems. In these systems, software
and hardware faulls may occur in many different se-
quences. The problem of how to incorporate these
sequences in a fault-tolerant system design has been
largely neglected in previous work. In this paper, a
uniform software-based fault tolerance method is pro-
posed to distinguish and tolerate various sequences of
software and hardware faults. This method can be
based on the recovery block or the n-version program-
ming scheme, two fundamental software fault toler-
ance schemes. The concept of fault identification end
system reconfiguration (FISR) tree is proposed to rep-
resent the procedure of fault identification and system
reconfiguration in a systematic way.

1 Introduction

During the past years, a good deal of progress has
been made in the development of fault tolerance tech-
niques that improve the ability of computer systems
to cope with software or hardware failures separately.
Two of the most widely used techniques for software
fault tolerance are recovery block [2] and n-version pro-
gramming [1] which have been applied to several situa-
tions [8]. These two mechanisms assume that the pro-
cessor will not fail when executing software or hard-
ware faults will be handled by a complementary mech-
anism.

A recovery block (RB) consists of a set of versions
and an acceptance test. The acceptance test is ap-
plied to the result of the primary version. Control
exits from the recovery block if the execution result
passes the acceptance test, otherwise the next alter-
nate version is executed. This process is repeated until
some version passes the acceptance test or all versions
fail. A possible situation is that all alternate versions
cannot pass these acceptance tests due to faulty hard-
ware and this fault may be erroneously identified as
a software fault. N-version programming (NVP) also
uses design redundancy, but all versions of an algo-
rithm execute in parallel on different processors. The

1066-6192/92 $3.00 © 1992 IEEE

409

result of each version is then sent to a decision mecha-
nism which outputs the final result. A generally used
decision method is majority voting, which can mask
erroneous results from some versions provided that re-
sults from correct versions constitute a majority. As
a matter of fact, an erroneous result may be either
caused by a fault in a software version or by a hard-
ware fault. The identification of the cause of the fault
is needed when replacement of faulty components and
reconfiguration are performed in order to provide con-
tinuous availability of the system.

Moreover, there are many other possible cases when
software and hardware faults occur in the same proces-
sor, and also faults may appear in any sequences and
combinations. This can make fault tolerance quite
complex. If software and hardware fault tolerance
techniques are only used separately, it may not be
possible to reach a high level of reliability. There is
therefore a need to develop a unified method for toler-
ating both software and hardware faults in combina-
tion. Some attempts have been made to deal with this
problem in [9], [10], and [13]. But different sequences
and combinations of software and hardware faults were
not addressed, and no systematic approach for their
combined detection and handling was presented.

In this paper, we first define a fault patiern as a
set of possible fault combinations and then propose
a uniform method for detecting, locating and toler-
ating predefined fault patterns by repeated execution
and reconfiguration actions. The method is developed
by using RB or NVP methods for software fault toler-
ance and by using comparison and voting for hardware
fault tolerance. In addition, a fault identification and
system reconfiguration (FISR) tree is proposed to il-
lustrate the procedure of detecting and locating fault
patterns, reconfiguring the processors and changing
software assignments to increase availability of the sys-
tem. In a FISR tree, each internal node represents a
system state which may indicate that some faults ex-
ist in the system. Each leaf in the FISR tree repre-
sents a system state interpretation in which fault-free
results are obtained, or where a fault pattern is iden-
tified. Possible reconfiguration actions are associated
with edges in each path from the root to one of the
leaves. Each fault pattern can be tolerated by follow-
ing the path from the root to the corresponding leaf.

An application can be considered as a sequence of sys-
tem reconfiguration periods such that faulty software
versions and processors are identified and removed (ei-
ther physically or by reconfiguration of the system).
In case no fault occurs, each system reconfiguration
period corresponds to a regular execution of a pro-
gram unit or a frame in a real-time system. A FISR
tree represents a system reconfiguration period and
the depth of the FISR tree represents the maximum
reconfiguration steps within the period. To simplify
the discussions, we assume that the execution of the
FISR tree is fault-free. Although creating such an en-
vironment is not a trivial task, it is beyond the scope
of this paper.

In general, the ability of a system for fault detection
and location is based on the available set of fault toler-
ance or fault detection methods. Different fault toler-
ance methods may generate different FISR trees. Two

general questions can be addressed, although they are

not considered here. One is how to find a minimum
(or convenient) set of fault tolerance methods for a
given set of fault patterns such that all the fault pat-
terns can be identified and tolerated. The other one
is how to find a minimum set of fault tolerance mech-
anisms such that all the faults can be identified and
tolerated in a given number of (reconfiguration) steps.
In this paper, we concentrate only on the construc-
tion and analysis of the FISR tree as well as neces-
sary actions to be performed based on the given set of
fault patterns under the given fault tolerance methods.
To make our discussion more general, the selection of
fault patterns and fault tolerance methods is not tar-
geted to any particular application, e.g. real-time ap-
plications. However, the scheme can be tailored to
specific applications by selecting an appropriate set of
fault patterns and fault tolerance methods.

The rest of the paper is structured as follows: In
Section 2, basic notation, definitions and assumptions
are given. In Section 3, an RB-based method is pro-
posed, while in Section 4 an NVP-based method is
discussed. An analysis of the system based on FISR
trees is discussed in Section 5. Some conclusions are
stated in Section 6.

2 Notation and Assumptions

For simplicity we make the following assumptions:

o A software fault is permanent, which makes a
software version fail for some specific inputs. A
hardware fault may be either transient (denoted
as H,) or permanent (denoted as Hj).

o Coincident errors may occur among software ver-
sions, thus several software versions fail at the
same time under the same input. But they are
assumed not to generate identical erroneous re-
sults, that is, there are no correlated errors [6].

410

Similarly, two faulty processors will not produce
correlated errors either.

o There are enough software versions and proces-
sors in the backup pool when replacement and
reconfiguration actions are performed.

The first assumption has to do with failure seman-
tics [5], that is, the type of faults to be covered. A
software version or a processor with permanent faults
should be made passive, i.e., removed from the sys-
tem once identified. Although our methods can be ex-
tended to cover faulty software versions or processors
which generate correlated errors, it will be more ex-
pensive to implement the scheme since more software
versions, processors and time are required [3], [14].
The selection of fault models to be included is depen-
dent on the applications. In general, the stronger a
specified failure semantics is, the more expensive and
complex their recovery. In our discussions, a hard-
ware fault is treated as permanent if it occurs in two
consecutive executions, although it may actually be a
transient fault.

Table 1 lists possible fault sequences assuming a
maximum of two faults occurring within a reconfigu-
ration period.

Table 1: Possible fault sequences

Notation | Meaning
(F1) one fault
(F1, F2) | two consecutive faults
(F1&F3) | two concurrent faults

In Table 1, F;, and F» can be either a soft-
ware fault (S) or a hardware fault (H). For exam-
ple, (F1, F3) actually represents four fault patterns:
(S,H),(H#,S),(H,H), and (S,S). Two faults in each
pattern occurs in consecutive execution periods. Two
concurrent faults in (F1&F;) occur in the same exe-
cution period.

A fault pattern is said to be fully covered by a
method if it can be distinguished from other patterns
and can be tolerated by using the method. A fault
pattern is said to be partially covered if it can be tol-
erated but can not be distinguished from other fault
patterns. In some real-time applications only partial
covering of fault patterns may be needed as long as a
correct result is provided because of time and cost con-
straints. But the designers of fault-tolerant systems
need to locate which software versions or processors
are faulty, so that they can reconfigure the system by
replacing faulty components. Note that the time of
delivery of a result normally occurs before the time of
completing a diagnosis or a reconfiguration. This fact
will be illustrated in Sections 3 and 4.

A fault set is defined as a set of fault patterns. For
simplicity, only some special types of fault sets are
considered in this paper. In the first type of fault
set, the maximum number of hardware and software

faults in each fault pattern is limited. In the sec-
ond type the maximum number of total faults in each
pattern is limited, but any possible sequence of soft-
ware and hardware faults is included. The notation
(m/n) is used for the first type of fault set which
stands for a maximum of m software faults and n
hardware faults within a reconfiguration period, e.g.
(1/1) indicates a fault set {(S,H),(H,S),(S&H)}.
The notation (m) represents the second type of
fault set in which the maximum number of faults
is m, e.g. the fault set (2) includes fault patterns:
(S),(H),(S,H),(H,5),(5,5), (H, H), (S&S), (H&H)
and (S&H). In addition, these faults may be dis-
tributed on several processors or in several software
versions. Clearly fault set (2) includes fault set (1/1).

Three fault detection methods are used in the ap-
proach: acceptance tests, result comparison and vot-
ing. The selection of fault detection mechanisms here
is by no means optimal but this use is just to illustrate
our approach. In general the selection of fault de-
tection mechanisms depends not only on the selected
fault tolerance scheme but also on the underlying ar-
chitecture. For example, in the eztended distributed
recovery block scheme [13], two fault detection meth-
ods are used. One is the acceptance test used to de-
tect software faults. The other one is heartbeats which
check the operational node pair to detect hardware
faults with the help of a central supervisory node.

In general the acceptance test is a boolean function
without side effects which can test whether the result
satisfies the specification and is assumed to have a
perfect fault coverage. (While in general this is not
the case, it is however, a reasonable starting approx-
imation.) A comparison checks whether two results
produced by the same software version running on dif-
ferent processors match each other. A voting mecha-
nism called double voting (denoted as Rg) is defined in
terms of majority voting (denoted as R,). V;; denotes
the result produced by software version V; executing
on processor PE;. The result delivered by the ma-
jority voting on (..., V;j, ...) with more than three
elements is represented as:

R, = majority(..., Vij, ...)

If R,, produces a result this must be correct because
no correlated faults are assumed to occur. Otherwise,
no result is produced (denoted as “”). A double vot-
ing is defined by the tuple (Viz, Viy, Vj:, Viw) where
version V; is assigned to two PEs (PE, and PEy),
and versions V; and V; are assigned to PE, and PE,
respectively. Assuming that R.1= majority (Viz, Vj,
Viw) and Rma = majority (Viy, Vjz, Viw), the result
delivered by double voting R4 is defined in Table 2.

Clearly, for the fault sets (1/1) and (2), the situa-
tion that (Rm1 # “—=") # (Rm2 # “—7) will never
happen, therefore whenever there is a result in Ry, it
must be a correct one.

411

Table 2: Definition of double voting

Rmi vs. Rma | Result of Double Voting
Roi=Rn2 | Ri=Rmi= Rm2

Ry = 7 Ri= Rma

Rma = “7 Ry = Rm:

X-Y(FS) represents the fact that methods X and
Y are used for software and hardware fault tolerance
respectively to identify and tolerate the fault set F'S.

In this paper, we consider the following four types of
X-Y(FS):

e RB-C(1/1)

e NVP-C(1/1)
o RB-C(2)

o NVP-C(2)

Here RB stands for recovery block, C for compari-
son, and NVP for n-version programming. Note that
the RB scheme uses acceptance test and the NVP
scheme uses majority voting and double voting. In
the proposed method, whenever a faulty software ver-
sion or a permanently faulty PE is made passive after
its identification one should assign new software ver-
sions or reconfigure PEs in order to make the system
be able to tolerate subsequent faults and thus provide
continuous availability. For this purpose, the following
actions are used:

o passive(PE or V): The specified processor PE or
software version V is made passive. If PEor V
is unspecified, the selection is based on the result
of the acceptance test or voting.

o ezec(..., Vij, ...). The execution of V; on PE;
respectively. Any PE; can be missing which is
denoted by “-” and means that it is not active in
the execution.

Each software version V or processor PE is in one
of two states: active or passive. We assume that the
system can be changed only through the above defined
actions. In order to have a convenient representation
for combinations of fault detection actions followed
by reconfiguration actions we use a FISR tree which
is a special tree where each internal node represents
a system state, determined by acceptance test, result
comparison, voting or their combinations on software
versions executing on different PEs. In general, recon-
figuration actions must be applied to those internal
nodes which indicate that faults may exist in order to
make the system reach one of leaves.

Based on the fully covering or partial covering of
fault patterns, the leaves in the FISR tree are divided
into two groups. Each leaf in the first group is unable
to distinguish fault patterns. It may (represented by
a bold square) or may not (represented by a regular
square) be able to deliver a correct result. Each leaf
in the second group (represented by a circle) is able to

provide a correct result as well as distinguish the fault
patterns. If the system reaches a square leaf, it is still
in an inconsistent system state, otherwise it is in a
consistent system state. All the internal nodes are in
inconsistent system states, although they may (repre-
sented by a bold rectangle) or may not (represented by
a regular rectangle) be able to deliver a correct result.

In the proposed method, three types of fault sets
can be identified based on the degree of difficulty in
fault identification. The first type represents that all
fault patterns can be identified and a correct result
is delivered within a given number of reconfiguration
steps (or executions). The second type is similar to
the first one but some fault patterns in the set can-
not be identified in a given number of reconfiguration
steps. However, a correct result can still be reached
for each fault pattern in the set. The worst case (the
third type) is that some fault patterns cannot be dis-
tinguished and also no correct result is obtained. The
above classification is dependent on the fault identi-
fication method used. In general, the fault identifi-
cation method should be chosen such that there will
be no third type of fault set. Depending on the na-
ture of an application, e.g., a real-time application,
where it is too costly to fully cover all fault patterns,
sometimes fault patterns are only partially covered, al-
though the method has the ability to fully cover these
fault patterns by increasing the number of reconfigura-
tion steps. The main sequence of fault identification
and reconfiguration steps is defined in the following
way:

repeat
execute versions;
obtain and analyze system state;
reconfigure system;
until (correct results are delivered or
fault patterns are identified or
time constraints are exceeded).

Normally, the above procedure stops when correct re-
sults are delivered, but the fault pattern may or may
not be fully covered, that is each leaf in a FISR. tree
is a bold square or a circle. When time constraints
are exceeded, neither correct results nor fault pattern
identification can be guaranteed.

A path from the root to one leaf in the FISR tree
is composed of several loops of the above procedure.
The time constraints used in the procedure intend to
prevent performance degradation, which is especially
critical in real-time systems [11]. We assume that
the FISR tree is executed on a hard core mechanism
which is fault free. This hard core collects execution
results, performs results checking by some error de-
tection method and perform necessary configurations.
The implementation of this hard core is beyond the
scope of the paper. The next two sections describe
the RB-C(1/1) and NVP-C(2). The detailed discus-

412

PE,4

Figure 1: System architecture for fault set (1/1)

sion on RB-C(2) and NVP-C(1/1) can be found in
[12].

3 The RB-C(1/1) Method

In this section, we study fault identification and
system reconfiguration using recovery blocks for the
fault set (1/1). The identification and reconfiguration
steps are given using the concept of FISR tree defined
in the last section. A system state is denoted as (iCP,
JAP)where iis the number of matching results of com-
parisons and j is the number of versions that pass the
acceptance test. The supporting architecture for this
method is shown in Figure 1. This architecture repre-
sents the minimum number of versions and PEs that
can be used to cover the fault patterns in fault set

(1/1).
Table 3: System states for the RB — C(1/1) method

System States | Faull Paiterns
(2CP, 2AT) no error

(2CP, 0AT) (S)

(0CP, 1AT) (H)

(0CP, 0AT) (S & H)

Initially version V; is executed on both PEs. Then
a comparison takes place between the two results pro-
vided by both PEs. If there is a fault in the version,
the comparison will not detect this fault but the ac-
ceptance tests will fail in both results. If a hardware
fault occurs in one of the PEs, the comparison and one
of the acceptance tests will fail. Finally, simultane-
ous hardware and software faults will make both the
comparison and the acceptance test fail. Therefore,
we can distinguish a hardware fault from a software
fault. Table 3 shows a list of possible system states,
while Figure 2 shows the FISR tree.

The state (0CP, 0AT) indicates a fault pattern
(S&H), which has two possible fault distributions:
the software fault and the hardware fault can be at
the same PE or at different PEs. In the RB-based
method, these two distributions produce the same ef-
fect because identical software versions are executed
on all PEs.

]

exee(Via Via)

[ﬁ:ﬁmﬂ (2CPOAT) [(ocnxru (0CP, 0AT)

pussioe(V1)

ezec (Vi Via)

,.....-(\j.)
sy GO\ erecibiaip) (SERYN ereetVanVio!

m:n.u) l(ocrme [(zcr.:m] (0CP,1AT) J IEPJ:AT) [ocr xml

passrvel PE) paserced PE)
[} E F G

Figure 2: FISR tree for RB-C(1/1)

(R}

{3CP2AT)

ereeibioban)

passme PE)

The FISR for this architecture is shown in Figure
2, where the root represents a consistent system state.
Every internal node represents a system state after an
execution of the version. The path from the root to a
leaf is a sequence of diagnosis and system reconfigura-
tion actions. Partial diagnosis are shown at the left of
edges, while reconfiguration actions are shown to the
right of edges.

In the FISR tree in Figure 2, when the state
(2CP, 0AT) is identified (which indicates a software
fault), the second version V2 is executed in both PEs:
exec(Vaa, Vap). If the system state (2CP, 2AT) ap-
pears after the execution of V3, the system reaches
leaf A with a final diagnosis result of no hardware
fault and one software fault (in V3). If the system
state (OCP, 1AT) appears after the execution of Vz,
a hardware fault is identified which occurs before or
during the execution of V; but after the execution of
V4. Because there will be no software fault due to the
assumption of fault set (1/1), the second round ex-
ecution of V, is activated to determine the nature of
the hardware fault, which is either transient or perma-
nent. After this execution, if the system state (2CP,
2AT) appears, the leaf B is then reached which indi-
cates the final diagnosis result: a software fault (in
V1) and then a transient hardware fault. Otherwise
if the system state (OCP, 1AT) appears, a permanent
hardware fault is identified and the corresponding PE
is made passive. A similar analysis can be applied to
the other leaves in the FISR tree. All the fault pat-
terns in set (1/1) are fully covered in Figure 2, thus
all the leaves (represented by circles) indicate that the
system is in a consistent state.

4 The NVP-C(2) Method

In this section we consider the identification of fault
patterns and system reconfiguration based on NVP

413

for fault set (2) together with a minimum supporting
architecture.

This approach is more complex than the method
discussed in Section 3 because of the following rea-
sons. In the NVP method a result is considered correct
when the majority of the results agree. However, an
erroneous result may be either due to a fault in a soft-
ware version or to a fault on the PE where a version
executes. Therefore, additional means are needed to
determine the source of an error. The second reason is
that when fault pattern (S&H) appears, the software
and hardware faults may occur on the same PE or on
the different PEs. These two fault distributions do not
appear at the same time as in the RB-based method.
The third reason is that several software faults may
occur concurrently in different versions executed on
different PEs while there is also no such case in the
RB-based method.

When several different software versions are exe-
cuting in parallel on different PEs, the PE or the exe-
cuting software version is considered suspicious if the
result delivered by this PE is different from the re-
sult of the majority. As shown later, by assigning two
identical suspicious software versions to two PEs and
by repeated execution, the cause of erroneous results
can be identified as software or hardware faults. As
before, reconfiguration of new software versions and
PEs is performed in order to maintain the ability to
tolerate subsequent faults.

The architecture needed for NVP-C(2) (also for
NVP-C(1/1)) is shown in Figure 3. Again this ar-
chitecture represents the minimum number of versions
and PEs that can be used to cover the fault patterns in-
NVP(2) [12]. Software versions are assigned in such a
way that after a software version is identified as faulty,
it is made passive and a back-up software version is
made active on two PEs, thus double voting can still
be performed in repeated executions. In this archi-
tecture, four software versions and four PEs are used.
On each PE, three versions are back-up versions and
all PEs are assigned the same set of versions. The or-
der of activation of each versions on each PE is based
on different execution results of versions at each PE.
Therefore, the ordering in Figure 3, except for the
primary ones (first set of versions), is irrelevant. In
Figure 3, the ordering is based on the increasing order
of their subscripts. Every time only one version is exe-
cuted on each PE, while the other versions remain idle
until they are activated when necessary. Of the four
executing software versions, two of them are identi-
cal (called duplicate version, e.g., in Figure 3, initially
V; is duplicate). After one round of execution, each
PE will produce a result. By using the double vot-
ing scheme and comparing the result of double voting
with the result of each version, the system state can be
obtained. The correct result can be obtained if Ry #
“» According to the system state some faults can
be identified immediately, but to identify other faults

=

=

Ve

;0000

A

Figure 3: System architecture for NVP-C(2) and
NVP-C(1/1)

it requires further reconfiguration of software versions
or PEs and repeated execution. Reconfiguration and
repeated execution are based on the following rules:
(1) If two copies of a duplicate version produce identi-
cal results which are different from the result of double
voting, R4, the duplicate version is identified as faulty.
(2) If two copies of a duplicate software version and
their PEs are suspicious, replace the duplicate version
by a new software version selected from the backup
pool, and execute the new version on the same PE.
(3) If only one copy of a duplicate version and its PE
are suspicious, repeat the execution using the same
configuration. (4) If a non-duplicate software version
and its PE are suspicious, assign also this version to
a non-suspicious PE. Thus the suspicious version be-
comes a duplicate, then execute both copies of the
version.

The actions following these rules are repeated un-
til a fault pattern is identified or a correct result is
delivered where only partial cover of a fault pattern
is needed. The FISR tree for NVP-C(2) is shown in
Figure 4.

There are two main differences between the NVP-
C(1/1) and the NVP-C(2) methods. In the NVP-C(2)
method, the fault patterns (S, S), (S&S), (H, H), and
(H&H) need to be covered. In addition, whenever a
correct result is obtained, no further reconfiguration
steps are activated to identify each fault pattern in
order to simplify the FISR tree for NVP-C(2) or due to
cost and time constraints. If there is a requirement to
identify each fault pattern, additional reconfiguration
steps can be applied.

In Figure 4 eight cases of fault patterns are possible
if the state (V14 = Vi¢) # Vap # Vap appears after
the execution of ezec(Via, V2B, Vic, Vap). These fault
patterns cannot be distinguished and no correct result
is obtained at this stage. If ezec(Vi 4, Vap, Vac, Vap) is
applied at the next step, a correct result is delivered.
Two fault patterns can be fully covered (leaves K and
N) and four fault patterns are partially covered (leaves
L and M). However, if the state (Vap = Vac)# Via #
Vap appears after ezec(Via, Vap, Vac, Vap), two fault
patterns (V1&PEp) and (V1&V3) still cannot be dis-
tinguished and no correct result is delivered. So by
further applying ezec(Vaa, Vam, Vac, -) after V; and

414

& Yor 2 W o Ve A
¥y} N
(= Vo m Vami 4 g 0 W) |
Y i o W) |~

. cen |
= Vo = Yaa = (Vi B %o
~ SRl preraye e
(o= Bo o Vas = Vieho Via

o (PEckrEA)

D
¥ rhddke [(FLIw(rte)
(Sher W)
e

4™ Vio » K] ¥ n

(KEPED). o (PEs)

(5) or th)
o 150)

(kP ER) (1P Eo)

(sumy
| srrarenray o (HER)

(e
- ne)

WGP PERt PLE)

(sa0)
o 1051

RUPEFERPEL

(sa)
- (hEN

()i PRl PECKPED)

e v i)
A

)
(VaPEDNPEAPLS)
[

RTTRE
CAC A T

Rembian
[T

V)8 Ve h s

\ pm(PEs)

pusmen (P L]
WEr Lo
Mokl

stn

Van Vo Ve ws | 1

e |,

(3P Il P Lok TER) oun

DEHO

Ve s Val# s
(kv Vap = Ve # ValF pronm

racerd PEw). reameit)
eamtVis. Vun o)
AP EQMNU)

e = Yee)Via # Yoo o
o k)

’

(Ram Vou= an o)

(e Vs e V)

Figure 4: FISR tree for NVP-C(2)

ey

PFEp are made passive, these two fault patterns can
be distinguished and we can also deliver a correct re-
sult. In Figure 4, the leaves C, E, F, G, H, I, and
J are also partially covered because each of them in-
cludes two fault patterns which are not distinguished
by the steps taken before. So the NVP-C method only
partially covers the fault set (2). However the correct
result is guaranteed to be obtainable under every dif-
ferent fault distribution.

5 Analysis and Evaluation

The dependability analysis of a system includes
concepts such as reliability, maintainability and avail-
ability. It serves, along with considerations of cost and
performance, as a major system selection criterion. In
general, the effects of a fault tolerant design strategy
on system reliability can be expressed as follows [15]:

R;ystem =

Pr{no fault} + Pr{fault pattern/fault} + Pr{fault}

where the effect of fault tolerance on reliability is rep-
resented by the second term. Markov and Markov
reward models are commonly used for quantitative re-
liability evaluation and have been extensively studied
[7], [4]. We can concentrate here the analysis based on

the FISR tree, and study the effects on dependability
of model parameters such as failure rate A when ap-
plying the proposed method.

5.1 System Reconfiguration Steps (SRS)

We define system reconfiguration steps (SRS) as a
measure of the number of steps or executions needed to
distinguish fault patterns and reconfigure the system
to a consistent state when faults occur. The maximum
number of SRS is equivalent to the depth of the FISR
tree minus one.

Max SRS = depth(FISR) — 1

If the probability of fault pattern occurrence can be
determined we can also determine the average SRS.
Let App be the probability of the occurrence of a fault
pattern and App, = Pr {F'P;/F P } be the probability
of fault pattern F P; when a fault pattern occurs. It is
clear that (1- Arp), where App = 3~ App;, is the prob-
ability of no fault. Since a fault pattern corresponds to
a combination of software and hardware faults, there-
fore each App, is a function of the failure rate of each
software version and processor. Let pathlength (FF;)
be the length of the path in the FISR that leads to
a leaf corresponding to F'P; and let noFP correspond
to the fault free case. Then, we have the following
average SRS:

AveSRS

(1— App) * (pathlength(noF P) — 1)
+ZArp; * (pathlength(F P;) — 1)

Since pathlength (noFP) = 1 which represents one
execution, therefore there is no reconfiguration step.
Pathlength (FP;) - 1 stands for the number of reconfig-
uration steps of F'P; required to detect fault patterns
which is denoted as reconfigsteps (F P;). We have then

AveSRS = XApp, * reconfigsteps(F P;)

For example, suppose we have the distribution of fail-
ure rate (Table 4) for the FISR tree of RB-C(1/1)
shown in Figure 2. We assume that the rate of tran-
sient faults is higher than the ra te of permanent faults.
The pathlength (PL) and system reconfiguration steps
(SRS) are derived directly from this FISR tree in the
figure.

Table 4: Reconfiguration steps of RB-C(1/1)
FPTAX PL T SRS
A]0.000112 I
B 0.0012 (3 |2
C 000093 |2
D | 0.0005 | 2 1
E 0.0004 | 2 1
F 0.0011 | 2 1
G |0.0007 | 2 1
OK | 0.9966 | 1 0

415

The average SRS then can be computed in the follow-
ing way:

AveSRS

0001 %1+ .0012+2+ .0009 * 2 +
.0005% 1+ .0004%1+ .0011%1
+.0007 1 + .9966 x 1 = .007

If all the fault patterns have equal probability of oc-
currence, the average SRS can be given by:

Ave SRS =

YArp; * reconfigsteps(F P;)
(Zreconfigsteps(F P;)) * App [total
number of fault patterns

In this case the average SRS of the above example is
calculated as (suppose Arp is 0.0034).

Ave SRS = (14+2+2+1+1+1+1)+0.0034/7 = .004
5.2 Scheme and Parameter Selection

In order to use the proposed model one must first
select the related parameters. These parameters can
be grouped into the following tuple:

(S,C,M, F)

where S stands for scheme, C for fault set coverage,
M for fault detection mechanisms and F for fault set.
The structure of the FISR tree depends strongly on
the selection of the above four parameters. The selec-
tion of a specific parameter in general depends on the
selection of the remaining parameters. For example,
if §, C, and F are given, how one finds a minimum or
cheapest M ? Here we focus only in the selection of the
parameters in F. As defined in Section 2, (m/n) stands
for a maximum m software and n hardware faults
within a reconfiguration period, while (m) stands for
a maximum of m faults (either software or hardware)
within a reconfiguration period. A reconfiguration pe-
riod can be measured by the longest time used from
the root of the FISR to one of the leaves. A misesti-
mation of the m and # in F would have the following
effects:

¢ An underestimation of m and n will reduce the
fault coverage and fault diagnosability of the sys-
tem. Some faults that occur within a reconfig-
uration period will remain undetected and prop-
agate to the next reconfiguration period, which
will further reduce the fault coverage and fault
diagnosability of the system.

¢ An overestimation of m and n will increase the
cost. More resources (either hardware or soft-
ware) will be used than necessary.

In general, the values of m and n are proportional
to the components’ failure rates A, and to the length

of each reconfiguration period, the depth of the FISR
tree (which in turn depends on the execution time of
the application), repair rates, etc.

Note that throughout this paper, we only concen-
trate on fault patterns with a maximum of two faults
within a reconfiguration period. Theoretically, the
identification and reconfiguration procedure can be
applied to any number of faults and the FISR tree can
be used to analyze the procedure. However, because of
time and cost constraints, especially in real-time appli-
cations, the proposed approach is efficient only when
a small number of faults is considered. This problem
can be alleviated by increasing the rate of reconfigura-
tion period, and therefore potentially the system can
tolerate more faults. In addition, if the fault pattern
cannot be covered within the time limit, system failure
occurs. In this case other mechanisms may be used to
recover the system which are beyond the scope of the
proposed scheme. The FISR tree itself can become
very large if a larger number of faults are involved.

6 Conclusions

We have presented a uniform software-based fault
tolerance method to distinguish and tolerate vari-
ous sequences of software and hardware faults. The
method can be based on recovery blocks or n-version
programming. A special tree called fault identification
and system reconfiguration (FISR) tree was proposed
to represent the procedure of fault identification and
system reconfiguration.

There are applications that require a very high level
of reliability, e.g., flight control systems, nuclear re-
actor controls, and others. This approach should be
valuable as another tool for the design of ultra-reliable
systems. As a general research direction this approach
is also valuable in showing how hardware and software
fault tolerance mechanisms can be combined in a har-
monious way.

The problems of how to consider correlated errors
among software versions, acceptance tests with no per-
fect coverage, and how to find a general method to
reconfigure the system still needs to be studied. How-
ever we believe this is a step in the direction of solving
the complex problem of combined software/hardware
faults.

References

[1] A.Avizienis. The n-version approach to fault-
tolerant software. IEEE Trans. on Software En-
gineering. 11, (12), Dec.1985, 1491-1501.

[2] B.Randell. System structure for software fault
tolerance. IEEE Trans. on Software Enginerring.
1, (2), June 1975, 220-232.

416

[3] D.E.Eckhardt and L.D.Lee. A theoretical basis
for the analysis of multiversion software subject
to coincident errors. IEEE Trans. on Software
Engineering. 11, (12), Dec. 1985, 1511-1517.

[4] D.ILHeimann, N. Mittal, and K.S. Trivedi. Avail-
ability and reliability modeling for computer sys-
tems. Advances in Computers. 31, edited by
M.C.Yovits, Academic Press, 1990, 692-702.

[8] F.Cristian. Understanding fault-tolerant dis-
tributed systems. Communication of ACM. 34,
(2), Feb. 1991, 57-78.

[6] G.Pucci. A new approach to the modeling of re-
covery block structures. IEEE Trans. on Software
Engineering. 18, (2), Feb. 1992, 159-167.

[7] J.Arlat, K.Xanoun, and J.C.Laprie. Dependabil-
ity modeling and evaluation of software fault-
tolerant systems. IEEE Trans. on Computers.
39, (4), April 1990, 504-512.

[8] J.C.Knight and N.G.Leveson. An experimental
evaluation of the assumption of independence in
multi-version programming. IEEE Trans. on soft-
ware Engineering. 12, (1), Jan. 1986, 96-106.

[9] J.C.Laprie, J. Arlat, C. Beounes, and K. Kanoun.
Definition and analysis of hardware and software
fault-tolerant architectures. IEEE Computer. 23,
(7), July 1990, 39-51.

[10] J.H.Lala and L.S.Alger. Hardware and software
fault tolerance: A unified architectural approach.
Proc. of 18th FTCS. 1988, 240-245.

[11] J.Kelly, T.McVittie, and W.Yamamoto. Imple-
menting design diversity to achieve fault toler-
ance. IEEE Software. July 1991, 61-71.

[12] J.Wu, Y.W.Wang, and E.B.Fernandez. A uni-
form approach to software and hardware fault tol-
erance. TR-CSE-91-1, Department of Computer
Science and Engineering. Florida Atlantic Uni-
versity, 1991.

[13] M.Hecht, J.Agron, H.Hecht, and K.H.Kim. A

distributed fault tolerant archecture for nuclear

reactor and other critical process control applica-

tions. Proc. of 21th FTCS. 1991, 462-470.

[14] D. Tang and R.K.Iyer. Analysis and modeling

of correlated failures in multicomputer systems.

IEEE Trans. on Computers. 41, (5), May 1992,

567-577.

V.P.Nelson. Fault-tolerant computing: funda-
mental concepts. IEEE Computer. 23, (7), July
1990, 19-25.

(15]

