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Abstract

We propose a fault-tolerant broadcasting algorithm
in hypercubes with link faults. This algorithm is
based on an ertended spanning binomial tree structure
whick keeps the simplicity of conventional binomial-
tree-based broadcasting. Each node keeps limited in-
formation of nearby faulty links in terms of faulty ad-
jacent subcubes. It is shown that under most circum-
stances, a broadcasting can be completed optimally in
n steps except few cases with low probability which re-
quire n + 1 steps.

1 Introduction

We investigate fault-tolerant broadcasting in hyper-
cubes [7] with faulty links. Broadcasting [3] concerns
transmitting a data set from one node to all the other
nodes in a network. Broadcasting is a very impor-
tant operation frequently used in a variety of linear
algorithms, database queries, and linear programming
algorithms. The standard broadcasting algorithm is
based on the binomial tree structure. Fault-tolerant
broadcasting deals with successful broadcasting in the
presence of faulty components (links and/or nodes),
and it can be classified based on the following pa-
rameters: (1) The way each destination receives the
broadcast data. (2) The amount of information kept
at each node. (3) The type of faulty components. (4)
The number of faulty components.

Normally, broadcasting algorithms should be de-
signed such that the broadcast data is sent to each
node once and only once. In such an algorithm, the
amount of fault information kept at each node can
be classified as local, limited, and global. Local in-
formation contains only adjacent faulty components.
Limited information contains the distribution of faulty
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components in the neighborhood. Global information
contains the distribution of all the faulty components.
There are two types of faulty components: faulty link
and faulty node. The number of faulty components
can be either bounded or unbounded.

The fault-tolerant broadcasting [1] based on local
information normally requires routing history as part
of message to be broadcasted in order to reach each
node once and only once. The fault-tolerant broad-
casting [6], [9] based on global information, although
has its merit of simplicity, requires a process which
collects global information. The broadcasting based
on limited information is a compromise of the above
two schemes. On one hand this broadcasting scheme
is relatively simple and no backtracking is required.
On the other hand collecting limited information is
much less expensive than the approaches using global
information.

In this paper, we study a broadcasting scheme
which is based on an eztended binomial tree structure
and which can tolerate at least n — 1 link faults. We
also show that under most circumstances a broadcast
can be completed optimally with n steps, and in the
worst case it can be completed in n + 1 steps. In the
proposed scheme, each node keeps limited global infor-
mation about faulty links distribution. The concept
of faulty adjacent subcube, an m-dimensional subcube
that contains at least m faulty links, is used to repre-
sent the basic unit of information. In the absence of
faulty links, no information is required at each node.
We also evaluate the length of the broadcasting path
for each destination node under the worst fault distri-
bution. Similar idea has been applied to hypercubes
with node faults [4], [10]. However, a different defini-
tion of limited global information is used.

With space limitation, all the proofs of theorems in

this paper are omitted. The details of all the proofs
can be found in [8].
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Figure 1: A 3-cube (Qs)

~

2 Notation and Preliminaries

An n-dimensional hypercube (or n-cube) @, con-
tains 2" nodes. Every node a has a binary address
GnGg_1 - - - @1, Where a; is called the ith bit (also called
the ith dimension) of the address. Every subcube Q,,
has a unique trinary address untn—3 - --uy, with u; €
{0,1,%}, and there are exactly m bits take the value *,
where * is a don’t care symbol. Fig.1 shows a 3-cube
and three of its subcubes #0#, *11 and 010. o’ is a
node that is adjacent to node a along the ith dimen-
sion. For example, if a = 1101 then a? = 1111. A Q,
with no fault is called healthy hypercube. A @Q, with
at most n — 1 link faults is called injured hypercube.

A common spanning tree used in hypercube broad-
cast is the spanning binomial tree [2]. A 0O-level bi-
nomial tree (Bp) has one node. An n-level binomial
trees (By) is constructed out of two (n — 1)-level bi-
nomial trees by adding one edge between the roots
of the two trees and by making either root the new
root. Another view of binomial tree is proposed in [5]
where a Q,, with the source node s is partltloned into
{Qn—lan—Za le,Qms}: such that d(s Qn—z) =
1,1 < i < n. The sequence {¢;,¢z,...,¢n}, a per-
mutation of bit positions in @, which take value *,
is called the coordinate sequence (es). This sequence
determines the structure of the binomial tree at first
level: Q;,_,» is connected to s along the ¢;th dimension.
Fig. 2 shows such a partition.

The partition process is also called a splitting pro-
cess. When this process is recursively applied to
each element in the partition, it is called a recur-
sive splitting process. To be more specific, given a
@m, a subcube of Q,,, with the source node s and
¢s = {e1,¢2,...,cm}, the partition can be derived
by applying the following recursive splitting process:
Qm_1 is derived by splitting the Q,, along the ¢; A di-
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Figure 2: A partition of Q, at s w.r.t. ¢s = ci¢3...¢,

mension. The other part Q,,.; which contains s will
be further split along the cth dimension. Q:,,_z is the
part whlch doesn’t contain s. This process continues
until Q1 is split into two nodes, one is Q0 and the other
is Qo = s. Then this process is recurswely applied to
each cube Q,,_; in {Q,,_1,Qin_s,...,Q:} at the node

(the new source node) which is adjacent to s in Q,,,_;.
By connecting source nodes at two subsequent splits,
a binomial tree is derived. Fig.1 shows the splitting
process of Q3 at s = 110 with ¢s = {2,1,38}, and
it generates a partition {*0x,%11,010,110}. Similarly
the splitting process is applied at s = 100 in *0* with
s = {1,3} and at s = 111 in *11 with cs = {3}.
This process continues until each subcube becomes a
0-cube. The resultant bmomlal tree is shown i in Fig.1.

Clearly, any two cubes in {Qn_l, Qn—27 ,Qo, s} are
adjacent.
Definition 1: Suppose {Q;_I,Q; 25 ,Q;,,s} is

a partition of Q, at s following the splzttmlg process
and EB;_1 1s an extended binomial tree of Q;,1 < i <
n end EBp = QO The extended binomial tree EB,, of
Qn with source node s is formed by adding (arbitrary)
n—1 edges that connect EB,_,,EBy,,_s,...,EBy,s to
form a connected graph.

Obviously the conventional binomial tree is special
extended binomial tree where all the n — 1 edges are
placed at s. In a partition {Q,',,_I,Q"_z, coy Qo 8}, if
the link that connects Q;_i, 1< i< n,to s is faulty
then Q,_; is called a disconnected cube with respect
to s; otherwise, it is a connected cube. Obviously, if
there is at least one disconnected cube generated from
a splitting process, then the extended binomial tree
cannot be a conventional binomial tree. A detourisa
dimension which is not in the relative address of two
nodes. A node is called detour node if it receives the
broadcast data from a non-Hamming distance path,
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Figure 3: Connection paths among s, Q:,_J- and Q:,_,-

i.e. detour path, initiated from the source s. In gen-
eral, a detour path contains several detours each of
which generates two extra steps.

3 The Proposed Algorithms

Suppose s is the source node, there may not exist a
binomial tree B, with s as the root node in an injured
Qn, since any faulty link that connects s destroys the
corresponding branch originated from s. Theorem 1
shows how to find those links that connect subcubes
in any given partition of an injured hypercube. More-
over, those links should be close to s so that s can de-
termine the extended binomial tree by using only lim-
ited information. Theorem 2 ensures that the above
approach can be applied recursively.

Theorem 1: There exist n — 1 healthy links
that connect cubes in any partition {Q;_l, Q:,_z,

. ,Q;,, s} of an injured cube Q.. Moreover, these
links are either adjacent to or one hop away from s.
Theorem 2: There ezists a partition {Q,_,,Q_s,

,Qo,s} of an injured hypercube Q, such that
Q,, ,,0 < i< n, is a nonfaulty subcube. Such a parti-
tion is called a safe partition.

Corollary : There ezists an extended binomial tree
for any safe partition {Q;_I,Q; 20+, @o, Qo).

Note that if a subcube Q"_ ; cannot be directly con-
nected to the source node s then another cube Qﬂ
has to be used to direct the destination set, which
reprosents the node set in Q,._J, from s to a node
in Qﬂ_J Therefore, an intermediate node (a node in

_;) would receive more than one destination sub-
cube In general, an intermediate node a receives

{Qm: (Qm; 3 bl)) (ngyb2)l REE] (ng ) bl‘:)} Where Qm is
the subcube to which a is belong. Q,,;,1 < i < k, are
disconnected nodes with respect to the parent node

of a. b;, a string consisting of either one dimension
(Fig. 4 (b)) or two dimensions (Fig. 4 (a)), is a se-
quence of dimensions along which these subcubes can
be reached. Initially only the source node s has one
destination cube Q.

Algorithm 1: {fault-tolerant hypercube broadcasting}
Broadcast Qm:

1. Find a cs such that the corresponding partition
{Qm—lme—m )QOya} is safe.

2. Send Q,,_; to node a% for all those a% such that
the link between a and a“ is healthy. Let Q:,,__,
those cubes that the link between s and s is faulty
For each Q,,,_ ; find an 1 such that one of following
two conditions is satisfied: (2) i < j and the path

— (a%)% — a% is healthy. (b) i > j

and the path s — a“ — (a%)% is healthy. If

condition (a) is true, (Q:,,_J-, {cj, ¢i}) will be sent to
node a®. If condition (b) is true, (Q:,,_j, {c;}) will
be sent to node a°.

8 — a

Broadcast (Qm,;,bi),1 < i <k:

1. If b = {cj} then send Qm,; to node a%/, a neigh-
bor along dimension c¢j. If b; = {c;,ci} then send
(Qm;,ci) to a.

The proposed scheme performs as a normal
binomial-tree-based broadcasting when the hypercube
is healthy. In this case, each intermediate node a
will only receive one destination cube Q:,., such that
a € Q. Therefore step 1 of broadcast Qy, is a nor-
mal splitting process with a random selection of ¢s. In
step 2, each Q:,,_,- will be directly sent to node s%.

4 Implementations

To determine the minimum amount of information
required at each node to implement Algorithm 1, we
keep at each node the locations of adjacent faulty sub-
cubes and dimensions in which faulty links are located
in these subcubes. Adjacent faulty links are consid-
ered as an adjacent faulty Qo. The process that col-
lects information of adjacent faulty subcubes at each
node is beyond the scope of this paper. Note that
such a information collection process is not necessary
in the absence of faulty links, i.e., this process is acti-
vated only when one or more faulty links are detected.

Let I = {(me 1d1), (Qm,, dz), (RS (Qmud’ﬂ)} be
the faulty adjacent subcube list attached to node a,
that is H(Qm,,a) = 1, 1 < i. Qm, in the tuple
(Qm;,di) represents the absolute address of a sub-
cube. d;, faulty dimensions, is a set of dimensions
along which faults in @, occur. In Fig.4, the d; for
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#0% is {3}. Apparently, when Qpm,; is a 0-cube or 1-
cube, d; is not necessary.

The basic idea used to implement the step 1 of
broadcast Q,, is as follows: Based on faulty adjacent
subcube set I, the dimensions in ¢s is determined re-
cursively in the order of ¢3, ¢z, .., ¢ using the split-
ting process defined in Section 1. Flrst ofall,if I#¢
then a nonfaulty (m — 1)-subcube (Qm_l) is selected
which is connected to s along ¢; and there is at least
one faulty link along dimension ¢;. The later require-
ment ensures that the remaining Q,,—1 cube is non-
faulty and therefore this process can proceed on Qm—1.
If I = ¢ then any partition is safe in the absence
of faulty adjacent subcubes. Similarly ¢; in es can
be derived from Qm,..1, based on an updated I which
includes only faulty adjacent subcubes within Qum—;.
Following the above procedure all the ¢;,1 < i1 < m
can be derived.

Algorithm 2: {Implementation of Algorithm 1, step 1
of broadcast Qm }

1. Copy the current [ to I !

2. I' = @ then cs will be randomly selected as in
normal binomial tree broadcasting. If I' # @ then
cs = {c1,¢2,...,6m} will be recursively defined as
follows:

(a) c1 is selected such that it is included in I, ', that
is, c; is registered as a dimension along whlch
there exist at least one fault. Update r by
deleting all the faulty cubes, together with the
corresponding faulty dimensions, which don’t
belong to Qm-1 = (Q,,.)‘j:1 1

(b) The rest of ¢;,2 < §# < m, are determined as
follows: if I' = ¢ then the rest of ¢; will be ran-
domly selected; otherwise, ¢; are determined in
sequence following step (a) by replacing appro-
priate parameters.

Theorem 3: The partition generated from Algo-
rithm 2 is safe, and it is applicable to all the injured
hypercubes.

Algorithm 3: {Implementation of Algorithm 1, step
(2) of broadcast Q. }

{Suppose a safe partition {Q‘,,,_I,Q:,._z,...,Q'l,a} is
given at node a}

1. For each Q:,,_,- with a healthy adjacent 0—cube along
¢i, send Q:,._.- to node a* along c;.

2. For each remaining Q:,,_j with a faulty adjacent 0-
cube along ¢j, find a nonfaulty 2-cube, containing
node g, that spans dimensions c; and c¢;. Such a Q:

}(@m)3:, denotes a cube generated by replacing the occur-
rence of ¢; by s, .-
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Figure 4: An injured hypercube with two faulty links

can be determined by examining all the adjacent 0-
cubes and 1-cubes at node a. Send Q,,,_J together
with {c;}, (or {¢c;,c:i}) to node a“* when i > j (when
7> 1)

Consider the @3 in Fig.4, where links 1x1 and *00
are faulty. Suppose a message to be broadcasted is
generated at node 110 with a faulty adjacent sub-
cube set I = {10«}. A safe partition of * % * with
respect to cs = {2,1,3} is {Q, = #0%,Q; = x11,Qy =
010,5 = 110}. Since all the adjacent links of s are
healthy, nodes 100, 111, 010 receive Q-_,, Ql and Qu,
spectively. At node 100 which has I = {10«} with
destination set Q; = *0x. The coordinate sequence
cs = {1, 3} determines a safe partition {00«, 101, 100}.
The resultant broadcasting tree is shown in Fig.4.
Since the link between 100 and 00= is faulty, the broad-
cast data reaches 00* via node 101.

5 Performance Analysis

In this section, we study the selection of partition
scheme to minimize the total number of detour nodes.
That is, we try to maximize the percentage of nodes
that receive the broadcast data through a Hamming
distance path from the source node. The number of
detour nodes can be controlled by the splitting pro-
cess at each node. In particular, the placement of
adjacent faulty links at each split. Since there is no
relationship between two splits and each node keeps
only limited global network information, it is impossi-
ble to global minimizing the number of detour nodes.
The key point here is the placement of adjacent faulty
links at each splitting process to achieve local opti-
mality. Suppose node s in a Qn has k adjacent faulty
links. The placement of these k adjacent faulty links
in the es = {c1,¢2,...,cn} could be arranged in the



following three approaches:

e random selection: in which k adjacent faulty links
are randomly placed in k dimensions in cs.

o right-first selection: in which faulty links are
placed in k right-most dimensions in cs, i.e., di-
Mensions: Cp—(k—-1), Cn—=(k—2)s - - -1 Cn—(k—k)-

o left-first selection: in which faulty links are placed
in the k left-most dimensions in cs, i.e., dimen-
sions ¢y, ¢z, ..., Ck.

The recursive splitting process (Algorithm 2) could
be used to implement the left-first selection and the
random selection (to a certain extend). While the re-
verse recursive splitting [8] could be applied for the
right-first selection and the random selection. The
following theorems show the relationship between the
placement of adjacent faulty links and the number of
induced detour nodes.

Theorem 4: Given a fized number of adjacent
faulty links k at node a, the minimum number of de-
tour nodes generated at node a is 2¥ — 1. This can be
achieved by using the right-first selection.

Theorem 5: Given a fized number of faully adja-
cent links k at node a, the mazimum number of detour
nodes that can be generated at a is 2"~*-1(2F — 1),
where n is the size of cube. This occurs when the left-
first selection is used.

Based on the above results, it is clear that the
right-first selection outperforms the left-first selection
in terms of the number of detour nodes generated.
The next definition defines a special safe partition that
leads to an optimal broadcasting.

Definition 2: A safe partition of {Q;-nQ;-z» -
Q;,Qo} of injured Q, is optimal if the source node s
connects Q:,_l through a healthy link. In addition, the
source node s connects Q;_z through a faulty link only
when all the faults in Q, are adjacent to s.

Theorem 6: An ertended binomial tree generated
from an optimal safe partition at each node of an in-
jured hypercube has a height of n or n+ 1.

Since the diameter of an injured hypercube is either
n or n+ 1, the above result is optimal. The algorithm
that determines an optimal safe partition can be found

in [8].
6 Conclusions
We have proposed a reliable fault-tolerant hyper-

cube broadcasting algorithm in hypercubes with link
faults. This process is based on an extended binomial
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tree structure which keeps the simplicity of conven-
tional binomial-tree based broadcasting. In addition,
it is efficient in the sense that no backtracking is re-
quired in the broadcasting process. Each node keeps
limited information of nearby faulty links in terms of
faulty adjacent subcubes in which the number of faulty
links contained is larger than the cube dimension. It is
shown that a broadcasting using this scheme requires
n steps in an n-cube for the most cases, and in the
worst case it requires n+1 steps.
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