Dynamic Snooping in a Fault-Tolerant Distributed Shared Memory

Larry Brown and Jie Wu
Department of Computer Science and Engineering
Florida Atlantic University
Boca Raton, FL 33431

Abstract

Distributed shared memory (DSM) allows multi-
computer systems with no physically shared memory
to be programmed using a shared memory paradigm.
However, as the number of nodes in a system increases
the probability of a failure that can corrupt the DSM
increases. This paper presenis a fauli-tolerant DSM
(FTDSM) algorithm that can tolerate single node fail-
ures. Each page in the DSM is assigned a snooper that
keeps a backup copy of the page and can take over if
the page owner fails. The snooper is dynamic because
the responsibility for snooping a page can migrate from
node 10 node. The FTDSM presented in this paper
is an improvement over other FTDSMs because it 1s
scalable, is based on the efficient dynamic distribuled
manager (DDM) DSM algorithm, does not require the
repair of a failed processor to access the DSM, and
does not query all nodes to rebuild the state of the
DSM. It is shown that any single node failure can be
tolerated because either the owner or the snooper of a
page can always be found.

1 Introduction

Parallel and distributed computing systems are be-
coming increasingly important. These systems can
achieve better response time and can have higher sys-
tem availability than uniprocessors. Multicomputer,
or message-passing systems without physically shared
memory can be scaled to large numbers of nodes be-
cause there is no contention for shared memory and
scalable interconnection networks can be used to con-
nect the nodes. However, programming these systems
is difficult because the interaction and movement of
data between processes must be explicitly controlled.
It is important to develop a paradigm for communi-
cations that is both efficient to implement and easy
to program. One important paradigm is distributed
shared memory (DSM) [3, 5, 6]. DSM presents the

1063-6927/94 $03.00 © 1994 IEEE

218

programmer of a scalable distributed-memory system
with a familiar shared-memory interface.

Various DSM algorithms have been developed.
Many of these algorithms use ownership-based write-
invalidate protocols to enforce consistency. However,
most DSM algorithms are not fault-tolerant. Because
the state of a DSM system is distributed among all
nodes in the system, the failure of a single node can
cause the entire system to fail. If a node fails access
to a group of pages may be lost or information may
become inconsistent. As the number of nodes partici-
pating in the DSM grows, the probability of a failure
increases, making fault-tolerance more desirable.

Other reliable, recoverable, or fault-tolerant DSM
(FTDSM) systems have been proposed. [10] describes
a FTDSM that uses a central disk server on a LAN to
store process checkpoints and the state of the DSM.
To ensure consistency, all dirty pages are checkpointed
whenever a dirty page is migrated to another node.
This ensures that all changes made by a node become
visible as soon as any changes become visible. If the
node then fails, changes that causally precede changes
to the migrated page will not be lost. The system is
based on a centralized manager DSM algorithm. In
[9] the state of the DSM is treated as a distributed
database. Each step in the DSM algorithm is treated
as a transaction which is decomposed into subtrans-
actions that can be committed unilaterally. To ensure
consistency, message logs are flushed to stable storage
whenever a dirty page is migrated to another node.
The system is based on a fixed distributed manager
DSM algorithm. In [8] a system is described in which
a node keeps a copy of page when it migrates own-
ership of the page to another node. If the migrated
page is dirty, copies of all other dirty pages owned by
the node are also sent to the new owner. This ensures
that all changes made by the old owner become visi-
ble as soon as any changes become visible. If the new
owner fails, the node with the most recent copy of the
page can be located. The system uses broadcasting to
locate page owners and control the DSM algorithm.

In these FTDSM systems recovery after a failure
may require querying all other nodes, or DSM pages
may be unavailable until a processor recovers. The
FTDSM developed in this paper differs in that it
avoids the need to consult every node to recover after
a failure and does not block until a processor recovers.
The system presented here is based on the dynamic
distributed manager (DDM) DSM algorithm [5] which
is more efficient and scalable than centralized man-
ager, fixed distributed manager, or broadcast-based
DSM algorithms.

The system developed in this paper is called the
integrated-snooper (IS) FTDSM. Each page has a
snooper node that monitors the activities of the page
owner. The responsibility for snooping a page can
migrate from node to node; the snooper of a page is
dynamic. The snooper keeps track of the page con-
tents, location of page replicas, and the identity of the
page owner. The snooper can respond on behalf of a
failed owner. The term snooper is used because the IS
FTDSM is derived from other snooper-based systems
(2] in which separate nodes are dedicated to snooping
on a broadcast network. In the IS FTDSM a node can
both snoop some pages and own other pages. Thus the
ability to own and snoop pages is integrated at every
node. The IS FTDSM is not restricted to a broadcast
network; scalable interconnection topologies such as
hypercubes and meshes can be supported.

This paper presents the IS FTDSM algorithm, dis-
cusses how the snooper of a page is located, and shows
that the IS FTDSM tolerates single node failures.
Fach node maintains knowledge of the last known
owner and snooper of each page. Properties of this
knowledge are studied and used to prove that the in-
formation stored by a failed node can always be re-
covered. Section 2 describes the DDM DSM algo-
rithm upon which the IS FTDSM is based. Section 3
presents the IS FTDSM, and recovery after a node
failure is discussed in Section 4. Section 5 summarizes
the paper and suggests future work. Due to space
limitations, not all proofs are given in this paper. The
proofs can be founds in [2].

2 Dynamic Distributed Manager DSM
Algorithm

One of the most widely applicable and better per-
forming DSM algorithms is the DDM algorithm of
IVY [5]. A DDM DSM system consists of a set of iden-
tical nodes. Each node contains a processor and local
memory. The nodes are joined by an interconnection

219

network. Regardless of the physical topology of the
interconnection network, the logical topology is fully
connected. Routing is performed by the underlying
communication system, and the details of its imple-
mentation are not considered here. A logical channel
exists between every pair of nodes. These channels are
assumed to be FIFO and error-free. Messages from the
same node arrive in the order sent, and no messages
are lost, duplicated, or corrupted.

The shared memory space is divided into a set of
fixed size pages. Before the system starts each page
is assigned to be owned by one of the nodes. Initially
there is one copy of each page, and that copy is at
the owner. All nodes can determine the initial owner
of each page. The number of copies and ownership of
pages changes as the system runs. Each node main-
tains a page table indicating the status of each page
in the DSM. The page table consists of the following
fields for each page: probowner — the probable owner
of the page, copyset — a list of nodes that have a read-
only copy of the page (kept only by the page owner),
and present — true if a copy of the page is in local
memory.

The probowner field indicates the last known owner
of a page. That owner may have since given ownership
to another node. The probable owner will either still
own the page or will be able to forward the request in
the direction of the owner. The probowner fields form
a chain from node to node that eventually leads to the
owner. Whenever a message is received from which the
owner of a page can be deduced, the probowner field
is updated.

The copyset field is used by the page owner to keep
track of the location of replicas of a page. This infor-
mation is used to invalidate the replicas before writing
to the page. Whenever the owner distributes a copy
of a page, it adds the identity of the node requesting
the page to the copyset. Figure 1 shows a snapshot of
the state of a DDM DSM and the corresponding page
tables for each node. In the figure a probable owner
chain for page p3 leads from node n; to n3 to nz. p3
is owned by nz, and the copyset for ps indicates that
there is one copy of ps at na.

When a node reads a page that is not cached in lo-
cal memory, the memory management hardware gen-
erates a read fault. The read fault handler recognizes
the page as a DSM page. A read request is sent along
the probable owner chain. When the request reaches
the owner, the owner returns a read-only copy of the
page and records the identity of the requesting node
in the copyset. When the requester receives the page,
it updates its probowner field to be the node that re-

1 1 1 empty 1 0 I 1 0 T e
2 1 1 2,3 2 1 I 2 1 O
3 0 3 - 3 1 2 3 3 1 2 -
4 0 2 e 4 1 2 empty 4 0 2 -
2] [
p2 p2 p3 p2 p3
p4d
ni n2 n3

Figure 1: Snapshot of a DDM DSM.

turned the page.

Before a node writes to a page it must first become
the page owner and invalidate all copies of the page.
A write fault is generated if the page is not present in
local memory or is present in read-only mode. If it is
not already the page owner, the node sends a write re-
quest to the probable owner. Each node that forwards
the write request updates its probowner field to be the
requester because the requester will become the new
owner. Any requests for the page which arrive at the
new owner before it actually receives ownership are
queued and serviced after the transfer of ownership is
complete. The owner returns a copy of the page and
the copyset of the page. The requester is now the new
page owner. The previous owner invalidates its copy
of the page and updates its probowner field to be the
new owner. If the copyset is not empty the owner
has read-only access to the page. To enforce sequen-
tial consistency [4], the owner must ensure that it has
the only copy of the page before writing to it. The
owner sends an invalidate message to each node in the
copyset. When a node receives an invalidate message
it invalidates the page, updates the probowner field,
and returns an acknowledgement to the owner. When
all invalidate messages have been acknowledged the
owner can write to the page.

The DDM algorithm consists of two parts, a page
fault handler which handles faults for DSM pages and
a message handler which handles incoming requests
sent by other nodes. In the DDM algorithm presented
below probowner(p), copyset(p), and present(p) refer
to the probable owner, copyset, and present bit of page

p.

220

page_fault_handler (fault f, page p)
{
switch () {
case read_fault:
send read to probowner(p);
receive read_reply;
probowner(p) = originator of read_reply;
break;
case write_fault:
if (probowner(p) != ME) {
send write to probowner(p);
receive write_reply;
probowner ME;

}
for (node in copyset(p)) {
send invalidate to node;
receive invalidate_reply from node;
}
copyset(p) = empty;
break;
}
}

message_handler (message m)
{
switch (message_type) {
case read:
if (probowmer(p) != ME)
forward read to probowner(p);
else {
copyset(p) = copyset(p) + requester;
send read_reply to requester;

}

break;
case write:
if (probowner(p) != ME) {
probowner (p)=requester;
forvard write to probowner(p);
} else {
probowner (p) = requester;
present(p) = 0;
send write_reply to requester;
¥
break;
case invalidate:
present(p) = 0;
probowner(p) = originator;
send invalidate_reply;
break;

o

The DDM algorithm requires all nodes to be opera-
tional. The failure of any node can corrupt the DSM,
causing the entire system to fail. A node failure can
result in loss of the only copy of a page, breaks in
the probable owner chain, and loss of replica location
information.

3 Integrated-Snooper FTDSM

To implement a highly-available FTDSM based on
the DDM algorithm three pieces of information must
always be available for each page: the identity of the
page owner, the copyset of the page, and the contents
of the page. If the owner fails ownership must be mi-
grated to a new owner in order for the page to remain
available to other nodes. If the owner fails when no
other node has a copy of the page, the contents of
the page are lost. To invalidate a page all nodes with
a copy of the page must be found, but if the owner
fails the copyset is lost. The owner is found by fol-
lowing a chain of probable owners. If a node in the
chain fails the chain is broken, and the nodes below
the break cannot locate the owner. It is desirable that
these failures be repaired without querying every node
and without waiting for a failed node to recover. The
IS FTDSM must maintain the coberency of each page
(read returns the latest value written) and sequential
consistency between pages (causally preceding modi-
fications are not lost).

It is assumed that the nodes of an IS FTDSM sys-
tem exhibit fail-stop failure semantics (7). The mem-
ory of a node is volatile and does not survive failures.
When a node fails the contents of its memory, includ-

221

ing DSM pages and the DSM page table, are destroyed
and are inaccessible to other nodes.

In the IS FTDSM each page is assigned a snooper
node which monitors the activities of the owner and
can respond for the owner if the owner fails. The
snooper monitors the page contents, location of page
replicas, and the identity of the page owner as own-
ership migrates from node to node. The IS FTDSM
is derived from FTDSM systems [2] in which one or
more nodes dedicated to snooping snoop traffic on a
broadcast network. The nodes that do not snoop, but
perform application processing, are called workers.

In the IS FTDSM nodes are not dedicated to snoop-
ing, but also perform application processing. Every
node can be both a worker and a snooper. Snooping
and application processing is integrated at every node.
A node may be referred to as a worker or a snooper
to emphasize its role in a particular context. To al-
low a more flexible and scalable configuration, the IS
FTDSM does not require a broadcast network. On a
nonbroadcast network a node cannot physically snoop
every message sent by every node. Messages that must
be snooped are sent twice, once to a worker and once
to a snooper. The message sent to the snooper need
not always contain all of the data in the original mes-
sage.

Initially, each node is assigned ownership of a set
of pages so that each page is owned by one and only
one node. Each node is also assigned responsibility for
snooping a set of pages so that each page is snooped by
one and only one node and no node owns and snoops
the same page. Every node knows the owner and
snooper of every page when the system is initialized.

The owner and snooper of a page must never be the
same node. Otherwise, the failure of that node could
cause the only copy of the page to be lost. Before
becoming the owner of a page it is snooping, a node
must migrate responsibility for snooping the page to
another node.

Page ownership is dynamic and pages are located
by following the probable owner chain. Like the page
owner, the page snooper is also dynamic. The snooper
of a page changes if the node that snoops a page
becomes the page owner. A probable snooper field,
probsnooper, is added to the DSM page table. When
the DSM is initialized the probsnooper field points to
the actual snooper of the page. As the computation
progresses and responsibility for snooping migrates,
the probsnooper field might not point to the actual
snooper of a page, rather it points to the last known
snooper of the page. The probsnooper fields form a
chain leading to the snooper just as the probowner

fields form a chain leading to the owner.

Before the page owner modifies a page, no other
worker has a copy of the page because all copies have
been invalidated. The snooper keeps a copy of every
page, but modifications made by the page owner are
not made visible to the snooper until the owner sends
the page to another worker. The owner’s modified
copy of the page is said to be dirty, and no other node,
including the snooper, is aware of the modification. A
bit can be added to each page table entry to indicate
if a page is dirty. If the owner fails after modifying
a page, but before sending the dirty page to another
node, the modification has no effect. ;From the point
of view of the other nodes it appears that the owner
failed before making any modifications.

A worker may modify several pages that it owns be-
fore any of the changes become visible to other nodes.
Before the worker migrates (or replicates) a dirty page
that page, and all other dirty pages it owns, must first
be backed up by the snoopers of those pages. This
ensures that all changes made by a worker become vis-
ible to the snoopers when any of the changes become
visible to another worker, even if the worker fails im-
mediately after migrating a page. Otherwise, a page
modified before the migrated page was modified, and
which causally affects the migrated page, could be lost
if the worker fails, violating sequential consistency.

All dirty pages must be backed up as an atomic
unit; either all of the pages are backed up, or none
of them are backed up. Backing up all dirty pages
owned by a worker whenever any dirty page is mi-
grated is called page flushing. The technique of atomi-
cally flushing all dirty pages is analogous to techniques
used in cache-based recovery schemes such as CARER
[1] in which a checkpoint is established and all dirty
cache lines are flushed to memory whenever any dirty
cache line must be written to memory. The FTDSM
systems [8, 9, 10] described above use similar tech-
niques.

When multiple dirty pages must be flushed more
than one snooper may need to receive pages. Atomic
agreement among the participating snoopers is neces-
sary to protect against failure of the flushing worker.
A two-phase commit (2PC) protocol can be used to
ensure that the page flush is atomic. Each dirty page
must be sent to the responsible snooper, and the par-
ticipating snoopers must agree that all the dirty pages
have been received from the worker. Several variations
of 2PC page flushing algorithms in which the worker
or one of the snoopers coordinate the 2PC protocol
are discussed in [2].

Figure 2 shows a snapshot of an IS FTDSM. The

222

probsnooper field has been added to the page table.
When a node is the snooper of a page it knows the
identity of the page owner and keeps a copy of the
page contents and the copyset. In Figure 2 node ny
snoops page p1. The copyset of p; is empty, and the
owner has modified the page. The page is dirty but
has not been flushed to the snooper. The snooper can
also be in the copyset of the page it snoops; n3 is in the
copyset of p;. Even though the snooper has a copy of
the page, it would be incorrect for the worker on that
node to access the page without executing the normal
DSM algorithm. If the snooper supplies the page to
the worker without the owner’s knowledge, the worker
will not be in the copyset. Also, the owner might have
written to the page, in which case the copy at the
snooper would be out of date.

The owner always knows the identity of the
snooper. This is necessary to coordinate page flush-
ing, to make snooping more efficient, and for recovery
after a failure. In order to determine which snoop-
ers are involved in a page flush the owner must know
the snooper of each page to be flushed. The owner
must send messages to the snooper so the snooper can
monitor the owner. This is more efficient when the
owner knows the identity of the snooper because these
messages can be sent directly to the snooper without
following the probable snooper chain.

To ensure that a new owner knows the identity of
the snooper, write reply messages are augmented to
contain the identity of the snooper. Also, when the
snooper migrates responsibility for snooping a page
to another node the owner is informed of the identity
of thie new snooper. Read reply and invalidate mes-
sages are also augmented to contain the identity of
the snooper. This is required for correctness of the
recovery algorithms described in Section 4.

The integrated snooper FTDSM algorithm is di-
vided into two threads of control. One thread imple-
ments the snooper; the other thread implements the
worker. The algorithm for the snooper thread is pre-
sented below:

snooper_message_handler(message m)
{
switch (message_type) {
case read:
case write: // probowner chain is broken
if (probsnooper(p) != ME)
forward request to probsnooper(p);
else { // I am the snooper
forward request to probowner(p);
it (failed(probowner(p)) {
probowner(p) = requester;

1 1 1 2 empty 1 0 1 2 empty 1 0 i 2 -----
2 1 1 3 2.3 2 1 1 3 - 2 1 1 3 2,3
3 0 3 2 ----- 3 1 2 3 3 3 1 2 3 3
4 0 2 1 enmpty 4 1 2 1 empty 4 0 2 1 -----
e e -
pl. p2 pl Lpz p2 p3
p4 p3 p4
nl n2 n3
Figure 2: Snapshot of an IS FTDSM. PrO-probowner, PrS—probsnooper.
send write_reply to requester; a message indicating that a node is being added to the
} copyset must be sent to the snooper; after receiving
} an invalidate reply from another node a message indi-
break; cating that a node is being removed from the copyset

case flush: // worker is flushing pages
engage in 2PC with other snoopers;
break;

case add_to_copyset: // sent by owner
//before sending read reply to requester
copyset(p) = copyset(p) + requester;
break;

case remove_from_copyset: // sent by owner
// after receiving an invalidate reply
copyset(p) = copyset(p) - requester;
break;

case new_owner: // sent by owner before
// sending write reply to requester
probowner(p) = requester;
break;

case snoop_page: // used to migrate
// responsibility for smooping
probsnooper(p) = ME;
break;

}
}

The worker thread implements the DDM algorithm
except that before migrating a dirty page all dirty
pages must be flushed; if a request is forwarded to
a failed node the request is resent to the probable
snooper; if the worker needs to write a page it is
snooping it must migrate responsibility for snooping
the page; before sending a read reply to another node

223

must be sent to the snooper; and before sending a
write reply to another node a message containing the
identity of the new owner must be sent to the snooper.
A more detailed description of the algorithm can be
found in {2].

4 Recovery

The failure of a node results in the failure of both
the worker and the snooper threads of control at that
node. When a node fails, other nodes must take over
its role, both for the pages it snooped and for the
pages it owned. This ensures that there are always
two copies of every page stored at failure independent
nodes.

Node failures are detected by timeouts in the com-
munication system. When a node detects the failure
of another node, it broadcasts a failure announcement.
There are four types of information that must be re-
covered when a node fails: new owners must be found
for pages owned by the failed node, new Snoopers
must be found for pages snooped by the failed node,
probable owner chains passing through the failed node
must be repaired, and probable snooper chains passing
through the failed node must be repaired.

A node can detect that it is responsible for snoop-
ing a page owned by the failed node because the

snooper always knows the identity of the owner. The
snooper must migrate ownership of the page to an-
other node. Similarly, a node can detect that it owns
a page snooped by the failed node because the owner
always knows the identity of the snooper. The owner
can migrate responsibility for snooping the page to
another node.

When a node fails it can also affect pages that it
does not own or snoop. All probable owner and prob-
able snooper chains passing through the failed node
are broken. When a probable owner chain is broken it
can be repaired if the probable snooper chain can be
followed to the snooper. The snooper can return the
identity of the owner, and the broken link can be re-
placed by a link pointing to the owner. When a prob-
able snooper chain is broken it can be repaired if the
probable owner chain can be followed to the owner.
This requires that the probable owner and probable
snooper chains are edge disjoint. The owner can re-
turn the identity of the snooper, and the broken link
can be replaced by a link pointing to the snooper.

The broken chain must be repaired before a second
node failure occurs, perhaps breaking the other chain.
Otherwise, it would be necessary to query all nodes to
find the owner or snooper. When a node learns of the
failure of another node, it checks the probowner and
probsnooper fields of each page in the page table. Any
fields that point to the failed node must be recovered
by sending a message along the unbroken chain. For
example, if the probable owner chain is broken a mes-
sage asking for the identity of the owner is sent along
the probable snooper chain to the snooper.

Each chain depends on the other for its recovery.
That is, no single failure should be able to isolate
a node from both the snooper and the owner of a
page. This ensures that the healthy chain can be used
to repair the broken chain. To show that this is al-
ways possible given any single node failure in the IS
FTDSM, several important properties of the probable
owner and probable snooper chains are given. Then
the concept of 1-failure independence of the chains is
defined, and the chain properties are used to show that
the chains are 1-failure independent.

The probable owner fields of all nodes for a given
page form a directed graph G,. Except for the edge
from the owner to itself, G, can be thought of as a
directed tree with the owner at the root. Let P(n;)
be the node pointed to by the probowner field of page
k on node n;. For page px, G, = (N, E,) where N,
the set of nodes, are the vertices, and E, = {e;; |
PX(n;) = n;} is the set of edges.

The probable snooper fields for a page also form a

224

directed graph, G,, that is similar to G,. Let P¥(n;)
be the node pointed to by the probsnooper field of
page k on node n;. Note that the subscript s stands
for the probable snooper and the subscript o stands
for the probable owner. For page px, G, = (N, E,)
where N, the set of nodes, are the vertices, and E, =
{eij | PE(n;) = n;} is the set of edges.

G, and G, represent the probable owner and prob-
able snooper chains for one page of the DSM. There
is a separate graph for each page. This discussion ap-
plies to all pages concurrently, but for clarity, only one
page is considered.

Let T(P¥(n;)) represent the latest time at which
the knowledge n; has of the owner of page p is known
to be correct. Let T(P¥(n;)) represent the latest time
at which the knowledge n; has of the snooper of page
pi is known to be correct. Since it is clear that re-
lations such as > apply to the time at which some
knowledge is known to be true, and not to the probable
owners or probable snoopers themselves, statements
such as T(Pf(n;)) > T(PF(n;)) are usually written as
PX(n;) > PE(n;).

The following lemmas state relationships between
the times the knowledge nodes have of the owner and
snooper of a page are known to be correct. These
lemmas are used to prove that the probable owner
and probable snooper chains are failure independent.
The first lemma states that each nonowner one step
further along a probable owner chain has more recent
knowledge of the owner than the preceding worker on
the chain.

Lemma 1 Vi, k(PF(P5(ni)) # (P5(m)) —
PE(P§(n:)) > Py(mi))

Proof: When n; discovers the identity of the owner,
P%(n;) points to the root of G,. At this time, say
timet, P¥(n;) is the owner. P¥(n;) could then migrate
ownership to a node other than n;, P¥(P¥(n;)) # n;.
This migration must take place after time ¢ since the
owner cannot inform one node that it is the owner
and migrate ownership to another node in one step of
the algorithm. Also, n; is not aware of the migration.
Therefore, the knowledge of the owner at P¥(n;) is
more recent than the knowledge of the owner at ng;
PX(P%(n;)) > P¥(ni). The restriction PY(PE(n))) #
(P%(n;)) limits n; to level 3 or greater (root is at level
1). Otherwise, there are not enough ancestors of n;
for the lemma to apply. o

An analogous lemma can be stated for the probable
snooper chain.

Lemma 2 Vi, k(Pak(Psk(ni)) # (Pak(nl')) -
PE(PE(ni)) > Pf(ni)

The following two lemmas show that some time re-
lationships hold between G, and G,. The first lemma
states that if a node was the owner, its knowledge of
the snooper must be at least as recent as the time an-
other node knew it was the owner. The second lemma
states that if a node was the snooper, its knowledge
of the owner must be at least as recent as the time
another node knew it was the snooper. The proof of
Lemma 4 is analogous to the proof of Lemma 3.

Lemma 3 Vi, k(P¥(PX(n;)) > PE(n:))

Proof: n; knew that P¥(n;) was the owner at at some
time 2. Since the owner always knows the identity of
the snooper, and P(n;) was the owner at time ¢ (or
later), P*(n;) must have knowledge of the snooper at
least as recent at time t; P¥(P¥(n;)) 2 P¥(m). O

Lemma 4 Vi, k(P*(P¥(n)) > PF(ni))

Another important property is that on any node
the knowledge of the identity of the owner of a page
is always at least as recent as the knowledge of the
identity of the snooper of the page.

Lemma 5 Vi, k(PX(n:) > PF(n:)).

Proof: (outline) The proof is by induction on the num-
ber of steps in the IS FTDSM algorithm that change
the probowner or probsnooper field of a page on any
node. It is shown that the lemma is true after each
such step in the IS FTDSM algorithm. (n]

G, and G, have the same vertex set, but their edge
sets are disjoint. This property is necessary in order
for the probable owner and probable snooper chains to
be 1-failure independent. When E, and FE, are disjoint
no node can have equal probowner and probsnooper
fields for a page. That is, Vi, k(P¥(n:) # PX(n;)).
Otherwise, the failure of Pf(n;) would isolate n; and
all of its descendants from both the owner and the
snooper. 'This property is stated in the following
lemma.

Lemma 6 For a given page in the IS FTDSM E, N
E, = 0.

Proof: (outline) The proof is by induction on the num-
ber of steps in the IS FTDSM algorithm that change
the probowner or probsnooper field of the page on any
node (and thus change E, or E,). It is shown that the
lemma is true after each such step in the IS FTDSM
algorithm. u]

The probable owner chain and probable snooper
chain must be 1-failure independent. When G, and G,
are 1-failure independent a probable owner edge that

225

leads to the failed node can be circumvented by follow-
ing the probable snooper link and vice versa. Define a
graph G, = GoUG, = (N, E,UE,) = (N, E,) which is
the union of the probable owner and probable snooper
graphs of a page. Let each edge in E, be augmented
with a marker indicating which set, E, or E,, it was
originally a member of. That is, a node can distin-
guish between probowner and probsnooper fields. Let
G’} be the 1-failure graph that is derived from Gy as
a result of the failure of node n;, G} = Gy — 1. G}
represents the combined probable owner and proba-
ble snooper graphs after the failure of one node. Let
R(G) be the transitive closure, or reachability relation,
of the relation represented by the digraph G.

Definition 1 For a given page G, and G, are I-
failure independent if n, is the page owner, n, is the
page snooper, and Vi,j(i # j = nj = noVn; =
n, V(nj,n,) € R(G'f) V(nj,n,) € R(G}).

Definition 1 states that G, and G, are 1-failure inde-
pendent if for any single node failure all healthy nodes
can send a message to either the snooper or owner of
the page by following some combination of probable
owner and probable snooper edges. Once the owner
or snooper is reached the other can be reached unless
it is the node that failed. If the owner or snooper did
fail, it will be recreated at a healthy node by the one
that did not fail.

The IS FTDSM uses a simple deterministic chain
following algorithm which will not always find the
shortest path to the owner or snooper, but is easy
to implement using only local knowledge. A message
follows probable owner (snooper) edges until it reaches
the owner (snooper) or encounters a failed node. Ifa
failed node is encountered the message begins follow-
ing probable snooper (owner) edges. The same type of
edge is followed until the owner or snooper is reached
or until a failed node is encountered.

The following theorem states that the probable
owner and probable snooper chains are 1-failure in-
dependent when using the IS FTDSM chain following
algorithm.

Theorem 1 For any page G, and G, are I-failure in-
dependent when using the IS F TDSM chain following
algorithm.

Proof: (outline) Lemma 6 is used to show that a single
failure cannot divide Gf, into two disconnected com-
ponents. The other lemmas given above are used to
show that there are no cycles in G‘, so progress to-
ward the owner or snooper is made whenever an edge
is followed. 8]

5 Conclusions

This paper has presented the IS FTDSM, a reliable
DSM system that is based on the idea of a snooper
assigned to each page. The snooper monitors the ac-
tivity of the page owner and can respond on behalf of
a failed owner. The advantages of the IS FTDSM over
other FTDSMs are that it is scalable, is based on the
efficient DDM algorithm, does not require the repair
of a failed processor to access the DSM, and does not
query all nodes to rebuild the state of the DSM.

The IS FTDSM can be extended to other
ownership-based protocols, such as the type-specific
protocols of Munin [3], by assigning a snooper to mon-
itor and backup the owner. The snooper of a page, like
the owner, can migrate from node to node. The re-
sponsibility for snooping a page must migrate if the
snooper becomes the page owner. Otherwise, there
would be a single point of failure. The IS FTDSM uses
a probable snooper chain to locate the snooper of a
page. The properties of the probable owner and prob-
able snooper chains were studied, and it was shown
that the chains are l-failure independent. That is,
given any single node failure all nodes can still reach
either the owner or the snooper of a page.

Further study is needed to determine the perfor-
mance and overhead of the IS FTDSM. Some prelim-
inary analysis is presented in [2]. Since each node is
both a worker and a snooper, each snooper has, on
average, the load of snooping the messages generated
by the worker thread of one node. The worker thread
generates extra messages (compared to the DDM al-
gorithm) when sending read reply, write reply, and
invalidate messages and when flushing pages and mi-
grating responsibility for snooping. Most of these mes-
sages are short and cause minimal processing at the
snooper. The bulk of the extra work may be caused by
page flushing. The frequency of page flushes, number
of pages flushed, and number of snoopers involved in
page flushes will have a important impact on overall
system performance. These characteristics will vary
with the page reference behavior of the particular ap-
plication. An implementation or detailed simulation
would allow the performance of a variety of applica-
tions to be measured.

Other issues related to the IS FTDSM such as poli-
cies for choosing the new snooper when migrating re-
sponsibility for snooping and integrating application-
level recovery with the IS FTDSM algorithm are dis-
cussed in [2].

226

References

[1] R. E. Ahmed, R. C. Frazier, and P. N. Marinos.
Cache-aided rollback error recovery (CARER) al-
gorithms for shared-memory multiprocessor sys-
tems. In Proc. 20th Int. Symp. on Fault-Tolerant
Computing, pages 82-88, June 1990.

L. Brown. Fauli-Teolerant Distributed Shared Mem-
ories. Ph.D. dissertation, Florida Atlantic Univer-
sity, Department of Computer Science and Engi-
neering, Dec. 1993.

2

1. B. Carter, J. K. Bennett, and W. Zwaenepoel.
Implementation and performance of Munin. In
Proc. 18th ACM Symp. on Op. Sys. Principles,
pages 152-164, Oct. 1991.

(3]

L. Lamport. How to make a multiprocessor that
correctly executes multiprocess programs. IEEE
Trans. on Comput., C-28(9):690-691, Sept. 1979.

[4

K. Li and P. Hudak. Memory coherence in shared
virtual memory systems. ACM Trans. on Comput.
Syst., 7(4):321-359, Nov. 1989.

(5]

B. Nitzberg and V. Lo. Distributed shared mem-
ory: A survey of issues and algorithms. IEEE
Computer, 24(8):52-60, Aug. 1991.

(6)

R. D. Schlichting and F. B. Schneider. Fail-
stop processors: An approach to designing fault-
tolerant computing systems. ACM Trans. on Com-
put. Syst., 1(3):222-238, Aug. 1983.

7

M. Stumm and S. Zhou. Fault tolerant dis-
tributed shared memory algorithms. In Proc. 2nd
IEEE Symp. on Parallel and Distributed Process-
ing, pages 719-724, Dec. 1990.

(8

[9] V.-O. Tam and M. Hsu. Fast recovery in dis-
tributed shared virtual memory systems. In Proc.
10th Int. Conf. on Distributed Compuling Systems,
pages 38-45, May 1990.

[10) K-L. Wu and W. K. Fuchs. Recoverable dis-
tributed shared virtual memory. IEEE Trans. on
Comput., 39(4):460-469, Apr. 1990.

