
1

Utility-Based Routing in Communication Networks
with Unstable Links

Mingming Lu and Jie Wu Department of Computer Science and Engineering
Florida Atlantic University

Boca Raton, FL 33431

Abstract—Traditional Dijkstra and Bellman-Ford routing al-
gorithms can only provide the best route to each destination
based on a fixed link cost model. We propose a utility-based
routing model that can provide different optimal routes for
different routing requirements captured by the benefit value
of the successful delivery of a data packet in a network with
unstable links. The challenges lie in the identification of the
relationship between the benefit values and the optimal routes
without exhausting all possible routes. This can be exponential
to the number of nodes in the worst case. We analyze the
relationship between the benefit values and the optimal routes,
and the relationship between different optimal routes. Based on
this analysis, we propose an efficient algorithm that can compute
all optimal routes by exploiting a unique property of the model.
We also implement the algorithm in a distributed and parallel
way, and conduct intensive simulations to verify our results.

Keywords: Link stability, network, routing, utility.

I. INTRODUCTION

Traditional routing algorithms, such as the Dijkstra and
Bellman-Ford algorithms, characterize network links by a
single metric, such as cost or error rate, and limit each source
to use a single-best route for each destination. However, the
single-best route usually fails to satisfy the diverse require-
ments from the routing source. For example, a routing source
may prefer a lower error rate to a lower cost, or vice versa.

We find that the best way to reflect the routing source’s
requirement is through the market value. In a market, an item
or a service with higher market value usually corresponds to
a higher quality, and thus, incurs higher price. In analogy,
different data have different market values to the routing
source. The source would rather deliver the data with higher
market value through the route with higher quality (lower error
rate) even at the expense of higher price (cost). To discriminate
the market value of the data to be transmitted from the general
market value in the real market, we adopt the benefit value to
denote the former.

Based on the above observation, our objective is to design
a routing algorithm that can adaptively select the best route
according to the benefit value of the data to be transmitted. In
such a routing model, a source may have multiple best routes
to the same destination because the source has different types
of data with different benefit values. In Fig. 1, we give a simple
but concrete example to illustrate the multiple best routes.

This work was supported in part by NSF grants ANI 0073736, EIA
0130806, CCR 0329741, CNS 0422762, CNS 0434533, CNS 0531410, and
CNS 0626240. Email: {mlu2@, jie@cse.}fau.edu

s

2

3/0.9

2/0.7

3/0.94/0.9

d

1

2/0.8

ud u1 u2 U
r1 20/30 15/24 10∗/17.2
r2 20/30 15/24 9.5/17.6∗

r3 20/30 8.5/14.8 15/24 4.8/9.8
r4 20/30 15/24 8.5/14.8 3.65/9.3

Fig. 1. The left figure is the topology of a simple network where the attributes
of each link are labeled in the form of ‘cost/stability’. The REUs of nodes
on each route (r1 :< s, 1, d >, r2 :< s, 2, d >, r3 :< s, 1, 2, d >, and
r4 :< s, 2, 1, d >) are listed in the right table, where in each cell, two values
separated by ‘/’ represent the REUs under benefit of 20 and 30, respectively.

There are four routes from the source s to the destination
d. The best routes corresponding to the benefit values 20 and
30 are < s, 1, d > and < s, 2, d >, respectively. The detailed
calculation of these best routes will be presented in Section II.

The challenges of this problem are three-fold. First, the
identification of the relationship between the benefit values
and the corresponding optimal routes is needed; second, the
avoidance of the exploration of all possible paths, which is
exponential to the number of nodes in the worst case, is
required; third, the distributed implementation of the proposed
solution is needed. We confine our attention to a pair of nodes
in the design of the routing algorithm, and extend it to all pairs
of nodes in the distributed and paralleled implementation.

The main contributions of this paper can be enumerated as
follows: 1) We propose a utility-based routing model where
the benefit value reflects the routing requirement, and different
benefit values may have different optimal routes. 2) Through
the analysis of the properties of the routing model, we identify
the relationship between the set of benefit values and the
corresponding optimal routes. 3) We design an efficient algo-
rithm to compute the mapping between each benefit value and
each optimal route. 4) We design a distributed and paralleled
implementation, which can be gracefully integrated into the
Bellman-Ford routing algorithm.

II. PRELIMINARIES

In [7], the following unicast routing problem is considered:
given a benefit value and a pair of nodes, find the optimal
path that connects them and maximizes the expected utility.
For a (source, destination) pair (i, j) that can be connected
through a link, the expected utility through link (i, j) is pi,j×
v−ci,j , where ci,j/pi,j is the link cost/stability. Similarly, the
expected utility through a path R is also in the same form,
pR × v− cR. The stability of a route is simply the product of

2

the stability of each link on the route. On average, the expected
cost consumed on a link should be the product of the link cost
and the probability that data is transmitted successfully along
all upstream links. The route cost is the sum of the expected
link costs. For example, the expected cost of link (i, i+1) on a
multi-hop route R =< 1, 2, · · · , r >, where nodes 1 and r are
the source and destination, respectively, is ci,i+1

∏i−1
j=1 pj,j+1,

where pj,j+1 (j = 1, · · · , i − 1) is the stability of upstream
link (j, j+1). Therefore, the expected utility obtained through
path R can then be expressed as

U = (

r−1∏
j=1

pj,j+1) · v −
r−1∑
i=1

ci,i+1

i−1∏
j=1

pj,j+1 (1)

where the product
∏r−1

j=1 pj,j+1 is route stability pR, and∑r−1
i=1 ci,i+1

∏i−1
j=1 pj,j+1 is the route cost cR.

Formula (1) can be derived through the following recursive
formula:

ui = pi,i+1 × ui+1 − ci,i+1. (2)

where i = 1, · · · , r − 1. Starting at node r − 1, the residual
expected utility (REU) is ur−1 = pr−1,r × v − cr−1,r by
applying Formula (2). Similarly, the REU at node r − 2 is
ur−2 = ur−1 × pr−2,r−1 − cr−2,r−1. The REU at node 1 is
U = u1 = p1,2 × u2 − c1,2, which is equal to the expected
utility in Formula (1).

In [7], an efficient algorithm, MaxUtility, is proposed to
compute the optimal route for a given benefit value. The basic
idea is to calculate the REU backwards, starting from the
destination with initial REU being v and repeatedly applying
Formula (2) recursively over each link backwardly. The algo-
rithm will construct a tree with initially only the destination,
and add one link to the tree at a time. In the tree construction
process, the algorithm maintains a priority queue with initial
elements being all nodes, and their priorities being their REUs,
which are −∞ initially besides that of the destination.

In each iteration, the algorithm selects the node with the
highest priority from the queue, then relaxes its neighbors
remaining in the queue, and finally removes the node from
the queue to the tree (through the link connecting the node
and its parent). The relaxation consists of two steps: first, the
chosen node calculates the REU of each neighbor through
Formula (2); second, the node compares each neighbor’s
calculated REU with its original REU, saves the larger one,
and updates the relaxed neighbor’s parent if the neighbor’s
REU is updated. The tree construction repeats until the source
is added. The route from the source to the destination in the
tree is, hence, the optimal route.

We illustrate the MaxUtility algorithm by an example shown
in Fig. 1. Assume the benefit value v = 20. By applying
Formula (2) over link (1, d), node 1’s REU is updated: u1 =
20 × 0.9 − 3 = 15. Similarly, u2 = 15. Since u1 = u2, the
tie-breaking rule (the smallest ID first) is applied to select
node 1, which then tries to update its neighbor node 2 and
source s. But only the REU of s is updated (from −∞ to
10) because node 2’s new REU, calculated by node 1, is less
than its current one. After node 1’s update, node 2 is selected

because of its maximum REU among the remaining nodes.
Node 2 executes the same update operations as node 1 does,
and updates no neighbor. In the end, s is selected and the
optimal route < s, 1, d > with the expected utility 10 is found.

III. THE PROBLEM

A. Problem definition

The problem in our prior work [7] can be summarized
as: given a benefit value v and a pair of nodes, finding the
optimal route R(v), which depends on the value of v. If
the benefit value v changes, the optimal route R(v) needs
to be re-computed. It inspires us to consider a more general
problem: finding the optimal routes for all possible benefit
values. Formally, the generalized problem can be defined as:
finding a set R of optimal routes for a given range of benefit
values (such as [v1, v2]) so that the optimal route for any
benefit value within the given range belongs to the optimal-
route set R, i.e., ∀v ∈ [v1, v2], R(v) ∈ R.

A possible solution to this generalized problem is to reac-
tively compute the optimal route by applying the MaxUtility
algorithm each time a routing demand with a new benefit value
arrives. The drawback of this solution is its routing discovery
latency. An alternative solution is to proactively collect all
routes’ information and then build the mapping between each
benefit value and its corresponding optimal route based on
the collected route information. This solution is not efficient
because the number of available routes can be exponential
to the number of nodes in the networks, and the number of
benefit values can be infinite.

In practice, the benefit value is discrete and the number
of benefit values within a given interval is finite. Therefore,
we assume that there is a granularity δ with a given interval
[v1, v2]. Without loss of generality, we assume that both v1

and v2 are feasible benefit values and hence there are exactly
v2−v1

δ + 1 feasible benefit values, which are v1, v1 + δ, v1 +
2δ, · · · , v2−δ, and v2, respectively. Thusly, the number of the
optimal routes is at most v2−v1

δ + 1.

B. Model and Analysis

We observe that different benefit values may share the same
optimal route. For example, for two different benefit values,
va 6= vb, it is possible that their corresponding optimal routes
are R(va) = R(vb). This observation provides a possibility to
reduce the complexity of the potential solution. Let’s assume
that an optimal route is shared by many benefit values. If
the mapping between the optimal route and those benefit
values can be constructed through the computation of the
optimal routes for several (not all) selected benefit values, the
complexity can be greatly reduced. To analyze this possibility,
we need to explore the relationship between the benefit values
and their corresponding optimal routes.

From Formula (1), we already know that the expected utility
obtained through a route R can be expressed as pR × v− cR,
where pR and cR are the stability and expected cost of route
R, respectively. Since pR and cR are constants for a given
route R, and v is changeable, the expected utility obtained
through route R can be regarded as an affine function:

3

UR(v) = pR × v − cR, 0 ≤ pR ≤ 1, cR ≥ 0.

with v as the variable. We name UR as a utility function
of route R because the utility obtained through route R can
be characterized by function UR alone. A utility function is
determined by its two parameters: pR and cR, which in turn
determine the utility for any given benefit value.

Usually, there is more than one route between a pair of
nodes. If two routes have different stabilities, the straight lines
representing them intersect on the coordinate axis. For exam-
ple, consider two routes R1 and R2 with different stabilities
and costs. Their utility functions are UR1(v) = p1×v−c1 and
UR2(v) = p2×v−c2, respectively. The intersection of the two
straight lines representing UR1 and UR2 is vc = c1−c2

p1−p2
. For

a given benefit interval [v1, v2], the intersection can be either
within the interval or outside of the interval. If vc 6∈ [v1, v2],
one route is always better (in terms of the expected utility)
than the other route. Otherwise, one route is better than the
other route in [v1, vc), but is worse in (vc, v2].

In any of these three cases, the relationship between the
maximum expected utility and the benefit value can be ex-
pressed as the function

U(v) = max
R∈R

UR(v) (3)

Similarly, our objective function R(v), the relationship be-
tween the benefit values and the corresponding optimal routes,
can be described as the function

R(v) = arg max
R∈R

UR(v) (4)

i.e., an optimal route for any benefit value v is the route that
maximizes the expected utility U(v) among all routes. Note
that it is possible that there is more than one optimal route
for a given benefit value. Therefore, R(v) is actually a set of
optimal routes. From definitions of functions U(v) and R(v),
we can see that these two functions are highly correlated, and
thus, U(v) can help us obtain the objective function R(v).

We observe that if two different benefit values share the
same optimal routes R, the optimal route for any benefit
value between the two benefit values should be the same as
R. Therefore, if there are more than two benefit values in
an interval (corresponding to an optimal route) and we can
identify the minimum and maximum benefit values in the
interval, then the optimal route for the other benefit values in
the interval is identified. The observation can be characterized
by the following theorem.

Theorem 1: For any route R with utility function UR(v)
from source s to destination d, if R is the optimal route for
benefit values v1 and v2, satisfying v1 < v2, then R is the
optimal route for any benefit value v ∈ [v1, v2].

IV. THE SOLUTION

A. Centralized Solution

The basic idea of our algorithm is to recursively partition
the set of benefit values into non-overlapping subsets so that
the benefit values within each subset correspond to the same
optimal route. Our algorithm uses the MaxUtility algorithm

2

3 4

1

d
s

5/0.9

5

5/0.9

5/0.5

6/0.8

2/0.4

4/0.9

4/0.9

8/0.5

2/0.57/0.8

4/0.8

4/0.8

Fig. 2. Illustration of the algorithm.

to identify the optimal routes for a set of selected benefit
values. Compared with the naı̈ve solution, which has to run
the MaxUtility algorithm for each individual benefit value,
our algorithm greatly reduces the number of executions of the
MaxUtility algorithm. Compared with the brute-force solution
to identify the boundaries, our algorithm does not have to
calculate all possible paths from source to destination, and
hence, reduces the time complexity.

Now we are able to present our algorithm. The input of this
algorithm is a benefit interval [v1, v2] and the granularity δ,
satisfying that v2−v1 can be divided by δ. The algorithm first
computes the optimal routes R(v1) and R(v2) by applying the
MaxUtility algorithm twice. Then it calls a recursive function
Partition, the parameters of which include two benefit values,
va and vb, and their corresponding optimal routes, R(va) and
R(vb). The Partition function is used to determine whether
the benefit values within a given benefit interval [va, vb] share
the same optimal route. If so, the optimal route for those
benefit values will be determined; otherwise, the interval will
be partitioned for further operations.

Initially, va = v1 and vb = v2. Within interval [va, vb], the
Partition function first checks whether the optimal routes are
the same, i.e., R(va) = R(vb). If R(va) = R(vb), the optimal
route for any benefit value v ∈ [va, vb] is R(va), according
to Theorem 1. Therefore, the interval [va, vb] does not need
further partitioning, and the Partition function can determine
that the optimal route for interval [va, vb] is R(va).

If R(va) 6= R(vb), the Partition function needs to determine
the partition point vc to divide interval [va, vb] into two sub-
intervals, [va, vc] and [vc, vb], and recursively call function
Partition to determine the sub-intervals for intervals [va, vc]
and [vc, vb], respectively. The selection of the partition point
affects the performance of the algorithm. Basically, there are
two different ways to determine the partition point.

The first way determines the partition point by considering
the utility functions of routes R(va) and R(vb). If routes R(va)
and R(vb) are different, there exists an intersection between
the straight lines representing routes R(va) and R(vb). The
intersection point is adopted as the partition point, which is

vc =
cR(va) − cR(vb)

pR(va) − pR(vb)

. (5)

The advantage of this method is that if no other route is
better (in terms of the expected utility) than R(va) and
R(vb) within [va, vb], the benefit intervals for R(va) and
R(vb) can be determined as [va, vc] and [vc, vb] through the
intersection point vc. Although the intersection point cannot

4

always partition the interval [va, vb] into two determined sub-
intervals, this method still provides a heuristic to decide the
partition point and it is suitable when the number of possible
sub-intervals is relatively small.

The second way selects the partition point without consid-
ering the utility function. Here, we adopt binary partition, i.e.,
vc is the median benefit value. That is,

vc =
va + vb

2
. (6)

The second method is suitable when the number of possible
sub-intervals is relatively large because it is costly to identify
all of those intersections. Therefore, the advantage of the
second method lies in its reducing the number of partitions
in the event that there is a large number of sub-intervals.
The disadvantage of the second method is that it cannot
quickly determine the boundary between two sub-intervals,
and the number of partitions to determine the boundary is
proportional to the granularity of the benefit value. The smaller
the granularity, the more the partitions. The formal description
of the algorithm is as follows.

Require: Input: a given benefit range [v1, v2];
1: Compute optimal routes R(v1) and R(v2)
2: Partition((v1, R(v1)), (v2, R(v2)));

Partition((va, R(va)), (vb, R(vb)))
1: Initialize((va, R(va)), (vb, R(vb)))
2: if R(va) = R(vb) then
3: The optimal route for [va, vb] is identified as R(va);
4: else
5: Compute partition point vc and optimal route R(vc);
6: Partition((va, R(va)), (vc, R(vc)));
7: Partition((vc, R(vc)), (vb, R(vb)));

We use the example in Fig. 2 to illustrate the algorithm,
and assume that the benefit interval is [1, 20] with δ = 1,
i.e., the set of benefit values is {1, 2, · · · , 20} and k = 19.
First, the algorithm calls procedure MaxUtility twice at the
two boundaries v = 1 and v = 20 and obtains two optimal
routes R(1) =< s, 1, 5, d > and R(20) =< s, 3, 4, d >. Since
R(1) 6= R(20), the initial interval should be partitioned into
two sub-intervals at the point v = 1 + b 19

2 c · 1 = 10. Then
the algorithm calls MaxUtility again to compute optimal route
R(10) for further partition in sub-intervals [1, 10] and [10, 20].
It turns out that there are two optimal routes at v = 10.
They are R(1) and < s, 1, d >. Since one of R(10) equals to
R(1), no further partition in [1, 10] is needed and the optimal
route for the set of benefit values {1, · · · , 10} is therefore
determined.

However, further partitioning is still needed in [10, 20] since
R(10) 6= R(20). Because the partition point is v = 15
and R(15) is the same as one route of R(10), < s, 1, d >,
the optimal route for the benefit set {10, · · · , 15} is also
determined. There are a total of 5 levels of partitions, and
many partitions can be used to determine the optimal routes for
half of the benefit values. The mapping between the optimal
routes and the benefit values is as follows:

ns n1 n2/n5 n4 n3

0 ([1, 20], ·) ([1, 20], ·) ([1, 20], ·) ([1, 20], ·) ([1, 20], ·)
1 ([1, 20], ·) ([1, 20], d) ([1, 20], d) ([1, 20], d) ([1, 20], ·)
2 ([1, 20], 1) ([1, 10], 5) ([1, 20], d) ([1, 2], 5) ([1, 20], 4)

([10, 15], d) ([3, 20], d)
([16, 20], 2)

3 ([1, 18], 1) ([1, 10], 5) ([1, 20], d) ([1, 2], 5) ([1, 20], 4)
([19, 20], 3) ([10, 15], d) ([3, 20], d)

([16, 20], 2)

TABLE I
THE DISTRIBUTED IMPLEMENTATION APPLIED TO THE NETWORK OF

FIG. 2. ni(i = 1, · · · , 5) DENOTES THE NEXT HOP OF NODE i.

R(1)
︷ ︸︸ ︷
1, 2, · · · , 10

R(15)
︷ ︸︸ ︷
10, 11, · · · , 15

R(16)
︷ ︸︸ ︷
16, 17, 18

R(19)
︷ ︸︸ ︷
19, 20

.

B. Distributed Implementation

Although we confine our attention to a pair of nodes in
the partition-based routing algorithm, we can extend it to
all pairs of nodes in the distributed implementation. The
basic idea of our distributed implementation is to adopt
a modified distributed Bellman-Ford algorithm to compute
the optimal route for each selected benefit value and uti-
lize the intrinsic parallelism among the computation of the
optimal routes within the same partition level to speed up
the routing discovery process. In the traditional distributed
Bellman-Ford algorithm [8], each node exchanges cost and
routing information with its neighbors on an interactive basis
until routing tables at the nodes converge to the appropriate
shortest path entries. In our modified distributed Bellman-Ford
algorithm, nodes also exchange stability information, and each
node computes the maximum ENU path to every other node
based on exchanged routing information. Each entry of our
routing tables is ((destination,benefit), next hop) instead of
(destination, next hop). For example, in Fig. 2, one entry of
the routing table of node 1 is ((d, 18), 2), which denotes that
the next hop along the optimal route of node 1 to d is node 2
if the benefit is 18.

Due to the parallelism within the computation of the optimal
routes, we can calculate the optimal routes for different benefit
values simultaneously. In the following, we assume that the
benefit interval and the benefit granularity are known to every
node through broadcast from the destination. The distributed
implementation can be illustrated by the example shown in
Fig. 2 (with initial interval [1, 20]) through the change of
each node’s the routing tables, as shown in Table I. Each cell
of Table I corresponds to ((destination,benefit), next hop), an
entry of a node’s new routing table. Because we consider one
destination for simplicity, we remove the destination from each
cell of Table I and keep only the next hop and the benefit. In
Table I, ni(i = s, 1, · · · , 5) represents the next hop of node i
along the optimal route to d.

Initially, the entry to the destination d is empty, as shown
in the second row of Table I (labeled as 0). After node d
exchanges link cost/stability with its neighbors, nodes 1, 2, 4,
and 5 know that they can directly connect to d, and can
calculate the expected utilities associated with benefit 1 and

5

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

N
um

be
 o

f C
ut

s

Granularity of Benefit

Bin-UD
Int-UD
Bin-UI
Int-UI

(a) Simulation in unit disk graph.

 0

 5

 10

 15

 20

 25

 30

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

N
um

be
 o

f C
ut

s

Granularity of Benefit

Bin-RL
Int-RL

Bin-RH
Int-RH

(b) Simulation in random graph.

Fig. 3. The effect of granularity.

20. For example, node 1’s expected utilities for benefit 1 and
20 are −4.5 and 5, respectively. Based on this calculation, the
four nodes update the entries to d as shown in the third row.
Then, the four nodes can further exchange routing information
with their neighbors. After that, node 1 updates its routing
table because it finds that it is better to forward packets to
node 2 (5) if the benefit is 20 (1), as the expected utility
through node 2 (5) is 5.6 > 5 (−3.24 > −4.5) in the
event that the benefit value is 20 (1). Since the optimal
routes for benefit 1 and 20 are not the same for node 1,
node 1 needs to determine the boundary between the intervals
associated with these two optimal routes. At that time, node
1 can collect the route cost/stability for routes < 1, 2, d >,
< 1, d >, and < 1, 5, d >, which are 7.2/0.64, 5/0.5,
and 3.6/0.36, respectively. Through Equation (5), node 1
identifies the intersection at v = 13, where the optimal route
is < 1, d >. Through further identification of the intersection
between routes < 1, 5, d > and < 1, d > (between routes
< 1, d > and < 1, 2, d >), node 1 can identify its boundary
as shown in the fourth row of Table I. Through another round
of information exchange, node s can also find its optimal route
set as shown in the fifth row of the table.

V. SIMULATION

We consider two simulation scenarios: (1) random graph
model; (2) unit disk graph model. The random graph and the
unit disk graph are used to model the general network and
the wireless ad hoc network, respectively. To maintain the
connectivity of the network, we adopt the Erdös-Renyi random
graph model [1], where every pair of nodes is connected with
a given probability. The link cost in our random graph model
is randomly generated. In the unit disk graph, the connection
between any two nodes depends on their geometric positions
and their transmission ranges. The link cost is proportional
to the link length. The unit disk graph model helps us restrict
the effects of various simulation parameters. To further restrict
the simulation environment, we can generate the link stability
based on the link cost.

The following parameters are used in the experiments:
the benefit granularity δ, the network density n (i.e., node
population), and the network topology such as node degree.
In the unit disk graph scenario, the simulation is set up in a
100m×100m area, where all nodes are homogeneous and can
be deployed in this area arbitrarily.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

N
um

be
 o

f C
ut

s

Number of Nodes

Bin-UD
Int-UD
Bin-UI
Int-UI

(a) Simulation in unit disk graph.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

N
um

be
 o

f C
ut

s

Number of Nodes

Bin-RL
Int-RL

Bin-RH
Int-RH

(b) Simulation in random graph.

Fig. 4. The effect of node density.

In each of the following experiments, we consider four
cases: two for unit disk graph: one with link stability depen-
dent on link cost (UD), and one with link stability independent
of link cost (UI), and the other two for random graph: one with
lower connectivity (RL) in terms of average node degree, and
one with higher connectivity (RH). In the UD case, we set the
link stability proportional to the link cost. In the UI case, we
allow the link stability to vary uniformly within stability range
[0, 1]. In RL and RH, we control the connectivity by adjusting
the coefficient of the probability that connects a pair of nodes.

In the first experiment, we compare the number of cuts
(the number of calls on the MaxUtility procedure) by the two
partition methods, which is the intersection-partition (denoted
as Int) and the binary-partition (denoted as Bin). The number
of nodes is set to 100. The granularity varies from 1 to
151 in increments of 10. The simulation results (illustrated
in Fig. 3) show that the number of cuts used by the two
partition methods is sensitive to the graph model, the link
stability dependence, and the connectivity. In any case, the
intersection-partition method outperforms the binary-partition
method in terms of the number of cuts. The reason is that the
intersection partition method considers the characteristics of
the optimal routes, which help the algorithm quickly identify
the boundaries between different optimal routes. We also
observe that the benefit granularity affects both of the partition
methods. The reason is that the increment of the granularity
can greatly reduce the partition level for both methods.

To assess the effect of network density (reflected by node
number), we compare the number of cuts produced by the
two partition methods through various network densities. From
the first experiment, we can see that the effect of the benefit
granularity is prominent within the range [1, 51]. To reduce the
effect of the granularity, we set it to 60. The node number is
adjusted from 20 to 160 in increments of 10. The simulation
results are illustrated in Fig. 4, where we can conclude that
network density can increase the number of cuts because the
increment of density introduces additional available routes,
which in turn introduce more intervals. From Fig. 4 (a), we
can see that more cuts are produced in UI than UD. That is
because the randomness of the link stability introduces more
available routes. Similarly, the number of cuts in RH is more
than that in RL because the increment of average node degree
introduces more available routes.

Fig. 5 compares the number of intervals generated by the
two partition methods. In our solution, the benefit interval

6

 0

 10

 20

 30

 40

 50

 60

 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

N
um

be
 o

f P
ar

tio
ne

d
In

te
rv

al
s

Number of Nodes

Bin-UD
Int-UD
Bin-UI
Int-UI

(a) Simulation in unit disk graph.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

N
um

be
 o

f P
ar

tio
ne

d
In

te
rv

al
s

Number of Nodes

Bin-RL
Int-RL

Bin-RH
Int-RH

(b) Simulation in random graph.

Fig. 5. Comparison of the partitioned intervals.

for an optimal route may be partitioned into several intervals,
which correspond to the same optimal route. It is better that
there are as few partitioned intervals as possible. Fig. 5 shows
that the intersection partition method has better performance
in terms of the number of partitioned intervals.

We also compare the two partition methods from the paral-
lelism point of view. The fewer the partition levels, the fewer
rounds the distributed implementation requires in order to
generate the route tables for each benefit value. The simulation
results are shown in Fig. 6. In the simulation result of the
unit disk graph (Fig. 6 (a)), the intersection-partition method
has fewer partition levels than the binary-partition method
although the former has more available routes, because it takes
more partitions for the binary-partition method to identify the
boundaries between two optimal routes. Similar observation
can be found in the simulation result for the random graph
(Fig. 6 (b)). From Fig. 6, we can conclude that the intersection-
partition method has higher parallelism.

The simulation result can be summarized as follows: 1) the
partition-based solution can greatly reduce the complexity in
identifying the optimal routes and their corresponding benefit
intervals; 2) the intersection-partition method is better than the
binary-partition method from various angles; 3) the benefit
granularity has a great effect on both partition methods in
terms of reducing the number of cuts, but it cannot change
the relative performance between the two partition methods.

VI. RELATED WORK

Numerous existing routing protocols [4] restrict each router
to use a single best route to each destination, and hence do not
meet the diverse routing requirements. Recent works [9], [10]
provided solutions to offer alternative routes for the single
optimal route. However, the alternative route might not be
the optimal route for a specific routing requirement. To meet
the specific routing requirements, the QoS routing problems
[2], [5] modeled the routing problem as the minimization of
routing cost under various routing constrains such as delay,
reliability, or bandwidth. Our model focuses on two QoS
requirements: cost and reliability, and adopts the benefit to
reflect the QoS requirement. There are many other works
adopting similar values to reflect the QoS requirement, such
as the utility-based network models [3], [6].

 0

 5

 10

 15

 20

 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

N
um

be
 o

f P
ar

tio
n

Le
ve

ls

Number of Nodes

Bin-UD
Int-UD
Bin-UI
Int-UI

(a) Simulation in unit disk graph.

 0

 5

 10

 15

 20

 25

 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

N
um

be
 o

f P
ar

tio
n

Le
ve

ls

Number of Nodes

Bin-RL
Int-RL

Bin-RH
Int-RH

(b) Simulation in random graph.

Fig. 6. Comparison of the partition levels.

VII. CONCLUSION

In this paper, we study a utility-based routing model,
which can provide different optimal routes to different routing
requirements, by using the benefit to characterize the routing
requirements (cost and stability) and using the expected utility
as the single routing metric. We design an efficient algorithm
that can compute all optimal routes for a given range of
benefit values, and implement the algorithm in a distributed
and paralleled way. We also conduct intensive simulations to
verify our results.

REFERENCES

[1] Béla Bollobás. Random Graphs, 2nd Edition. Cambridge University
Press, 2001.

[2] A. Chakrabarti and G. Manimaran. Reliability constrained routing in
QoS networks. IEEE/ACM Transactions on Networking, 13(3):662–675,
2005.

[3] W. Chen and L. Sha. An energy-aware data-centric generic utility based
approach in wireless sensor networks. In Proceedings of IPSN ’04, pages
215–224, 2004.

[4] C. Huitema. Routing in the Internet, second ed. Prentice Hall PTR,
2000.

[5] A. Jttner, B. Szviatovszki, I. Mcs, and Z. Rajk. Lagrange relaxation
based method for the QoS routing problem. In Proceedings of IEEE
INFOCOM’01, pages 859–868, 2001.

[6] J.W. Lee, M. Chiang, and A. R. Calderbank. Price-based distributed
algorithms for rate-reliability trade-off in network utility maximization.
IEEE Jounal on Selected Areas in Communications, 24(5):962– 976,
2006.

[7] M. Lu and J. Wu. Social welfare based routing in ad hoc networks. In
Proceedings of ICPP’06, pages 211–218, 2006.

[8] J. Wu. Distributed System Design. CRC Press, Inc., 1998.
[9] W. Xu and J. Rexford. MIRO: multi-path interdomain routing. In

Proceedings of ACM SIGCOMM’06, pages 171–182, 2006.
[10] X. Yang and D. Wetherall. Source selectable path diversity via routing

deflections. In Proceedings of ACM SIGCOMM ’06, pages 159–170,
2006.

