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Abstract—The efficiency of sensor networks depends on the coverage of the monitoring area. Although, in general, a sufficient

number of sensors are used to ensure a certain degree of redundancy in coverage, a good sensor deployment is still necessary to

balance the workload of sensors. In a sensor network with locomotion facilities, sensors can move around to self-deploy. The

movement-assisted sensor deployment deals with moving sensors from an initial unbalanced state to a balanced state. Therefore,

various optimization problems can be defined to minimize different parameters, including total moving distance, total number of moves,

communication/computation cost, and convergence rate. In this paper, we first propose a Hungarian-algorithm-based optimal solution,

which is centralized. Then, a localized Scan-based Movement-Assisted sensoR deploymenT method (SMART) and its several

variations that use scan and dimension exchange to achieve a balanced state are proposed. An extended SMART is developed to

address a unique problem called communication holes in sensor networks. Extensive simulations have been done to verify the

effectiveness of the proposed scheme.

Index Terms—Dimension exchange, Hungarian method, load balance, movement-assisted, scan, sensor deployment, wireless

sensor networks.

Ç

1 INTRODUCTION

WIRELESS sensor networks (WSNs) [1], [2] combine
processing, sensing, and communications to form a

distributed system capable of self-organizing, self-regulat-
ing, and self-repairing. The application of WSNs ranges
from environmental monitoring to surveillance to coordi-
nated target detection. The efficiency of a sensor network
depends on the coverage of the monitoring area. Although,
in general, a sufficient number of sensors are used to ensure
a certain degree of redundancy in coverage so that sensors
can rotate between active and sleep modes, a good sensor
deployment is still necessary to balance the workload of
sensors. Mobile sensors [3] can be exploited to provide a
redistribution.

After an initial random deployment of sensors in the
field, movement-assisted sensor deployment [4] can be applied,
which uses a potential-field-based approach to move
existing sensors by treating sensors as virtual particles
subject to virtual forces. Basically, movement-assisted
sensor deployment deals with moving sensors from an
initial unbalanced state to a balanced state. Therefore,
various optimization problems can be defined to minimize
different parameters, including total moving distance, total

number of moves, communication/computation cost, and
convergence rate.

More recently, some extended virtual force methods,

such as those in [5] and [6], which are based on disk packing

theory [7] and the virtual force field concept from robotics

[8], are proposed. These methods simulate the attractive

and repulsive forces between particles. Sensors in a

relatively dense region will explode slowly according to

each other’s repulsive force and head toward a sparse

region. In this way, the whole monitoring area can achieve

an even distribution of sensors. However, these methods

may have long deployment times since sensors move

independently, and they may even fail if all the sensors

can achieve force balance but not load balance.
We assume that sensors are deployed randomly into the

square monitoring area without consideration of any

physical obstacles. Then, if we partition the monitoring

area into many small regions and use the number of sensors

in a region as its load, the sensor deployment problem can

be viewed as a load balance problem in traditional parallel

processing, where each region corresponds to a processor

and the number of sensors in a region corresponds to the

load. The sensor deployment resembles the traditional load

balance issue in parallel processing, with several key

differences:

. Different objectives. In traditional load balancing, the
total moving distance rather than the number of
moves is important whereas, in sensor networks, the
number of moves is also important because of a
relatively heavy energy consumption to start or stop
a move.
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. Different technical issues. One unique issue in sensor
networks is the communication hole (or simply
“hole”) problem, where some regions of the network
have no deployed sensors. Since there is no
centralized control, the network can be partitioned.
Therefore, the network needs to be connected prior
to load balancing.

In this paper, we first provide an optimal solution in
2D meshes. This solution is based on the classic Hungarian
method but requires global information without consider-
ing sensor network connectivity. We then propose a method
using a 2D scan called Scan-based Movement-Assisted
sensoR deploymenT method (SMART). A typical scan
operation [9] involves a binary operator � and an ordered
set ½w0; w1; . . . ; wn�1�, where each wi represents the number
of sensors in a region and returns the ordered set

½w0; ðw0 � w1Þ; . . . ; ðw0 � w1�; . . . ;�wn�1Þ�:

In this paper, we consider only integer addition and
Boolean AND operations for scan. By using integer addition,
the scan operation will return the partial and total sums of
the number of sensors. Since each region position and n are
known, the average load information can be easily
calculated and distributed as can be the overload/under-
load situation of each ordered subset corresponding to a
prefix of the ordered set.

In SMART, a given rectangular sensor field is first
partitioned into a 2D mesh through clustering. Each cluster
corresponds to a square region and has a clusterhead that is
in charge of bookkeeping and communication with adjacent
clusterheads. A hybrid approach is used for load balancing,
where the 2D mesh is partitioned into one-dimensional (1D)
arrays by row and by column. Two scans are used in
sequence: one for all rows and another for all columns.
Within each row and column, the scan operation is used to
calculate the average load and then to determine the
amount of overload and underload in clusters. Load is
shifted from overloaded clusters to underloaded clusters in
an optimal way to achieve a balanced state. By optimal we
mean the minimum number of moves and minimum total
moving distance. By a balanced state we refer to a state with
the maximum cluster size (the number of sensors in a
cluster) and the minimum cluster size being different by at
most 1.

The communication hole problem in a 2D mesh corre-
sponds to a cluster with a cluster size of 0. Clearly, the scan
approach cannot be used in a row or column with holes,
since clusterheads separated by one or more holes cannot
communicate with each other to perform a scan operation.
In extreme cases, the 2D mesh may be disconnected as
shown in Fig. 1, where the number in each circle
corresponds to the cluster size, and sensors in each cluster
can communicate with sensors in adjacent clusters as well
as sensors in the same cluster. In Fig. 1, the network is
partitioned into two components. Our solution to the hole
issue is based on planting a “seed” from a nonempty cluster
to an adjacent empty cluster. Various solutions are
proposed in such a way that this seed-planting process
(also called preprocessing) can be easily integrated with the
normal 2D scan process to achieve a good balance of

various objectives. The network can use newly developed
location services [10], [11] to estimate the locations of
sensors; thus, no GPS service is required at each sensor, and
the corresponding overhead is avoided. For example,
locations of sensors can be determined by using sensors
themselves as landmarks [12].

The contributions of this paper are listed as follows:

1. We develop an optimal load balance solution based
on the classic Hungarian method that achieves the
minimum total moving distance and use it as a
baseline to check the performance of other ap-
proaches.

2. We systematically discuss the similarities and
differences between the traditional load balancing
in parallel processing and the movement-assisted
sensor deployment in sensor networks.

3. We propose a new hybrid approach called SMART,
together with several variations, that combines some
desirable features of both local and global ap-
proaches while overcoming their drawbacks.

4. We identify a unique technical problem called
communication hole and provide solutions to it.

5. We systematically study different trade-offs among
various contradictory goals.

6. We conduct extensive simulations and compare the
results with several existing local movement-
assisted sensor deployment methods.

2 PRELIMINARIES AND RELATED WORKS

2.1 Load Balance in Multiprocessor Systems

Extensive work on load balancing has been done in the
parallel processing community. In general, load balance
algorithms can be classified as local (such as iterative
nearest neighbor exchanging [13], [14]) and global (such as
direct mapping [15], [16]). The global approach relies on
global information that is usually not scalable. Local
algorithms can be either deterministic or stochastic. Diffu-
sion (DIFF) and dimension exchange (EXCH) are two
widely used local deterministic methods. Both algorithms
are iterative and are based on a nearest neighbor exchange.
Once all nodes complete one iteration, it is called a sweep.
Although no information on load distribution is needed in
local methods, iterative methods incur a significant number
of rounds (moves in sensor networks).

In the DIFF method, the balancing procedure is divided
into a sequence of synchronous steps. At each step, each
node i interacts and exchanges load with all its neighbors
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Fig. 1. A sample clustered sensor network that corresponds to a

2D mesh.



adjðiÞ. A DIFF parameter decides the portion of the excess
load to be diffused between nodes i and each of its
neighbors. Xu and Lau [17] proved that the optimal uniform
DIFF parameter that leads to the fastest convergence for
2D meshes is 1/4.

In the EXCH method, the edges of the graph are colored
such that no two adjacent edges have the same color. A
“dimension” is then defined as a collection of edges with
the same color. In Fig. 1, all edges are grouped into four
dimensions. Edges with label ðiÞ belong to dimension
i ði ¼ 1; 2; 3; 4Þ. At each iteration, one particular color
(dimension) is considered, and every two adjacent nodes i
and j connected by an edge with the selected color
exchange their load according to an exchange rate. Again,
Xu and Lau [17] showed the optimal uniform exchange rate
for 2k1 � 2k2 2D meshes (where both row and column
numbers are even).

2.2 Movement-Assisted Sensor Deployment

The sensor placement issue has been researched recently
[18], [19], [20]. A random placement of sensors may not
satisfy the deployment requirement due to a hostile
deployment environment. Therefore, the movement-
assisted sensor deployment method is developed. Most
existing movement-assisted protocols rely on the notion of
virtual force to move existing sensors from an initial
unbalanced state to a balanced state. These protocols are
similar to the nearest neighbor exchange in load balancing.
Sensors are involved in a sequence of computation (for a
new position) and movement.

In [6], Zou and Chakrabarty proposed a centralized
virtual-force-based mobile sensor deployment algorithm
(VFA), which combines the ideas of potential field and disk
packing [7]. In VFA, there is a powerful clusterhead that
will communicate with all the other sensors, collect sensor
position information, and calculate forces and desired
position for each sensor. In VFA, the distance between
two adjacent nodes when all nodes are evenly distributed is
defined as a threshold to distinguish an attractive or a
repulsive force between two nodes. The force between two
nodes is 0 if their distance is equal to the threshold,
attractive if less, and repulsive if greater. The total force on a
node is the sum of all the forces given by other sensors
together with obstacles and preferential coverage in the
area. The clusterhead executes VFA and directs each
sensor’s movement. VFA has the drawbacks of centralized
algorithms, single point of failure, bottleneck of processing,
and less scalability.

In [5], Wang et al. developed a novel distributed self-
deployment protocol for mobile sensors. They used Voronoi
diagrams [21] to find coverage holes in the sensor network
and proposed three algorithms—VEC (vector-based), VOR
(Voronoi-based), and Minimax—to guide sensor movement
toward the coverage hole. When applied to randomly
deployed sensors, these algorithms can provide high
coverage within a short time and limited moving distance.
If the initial distribution of the sensors is extremely uneven,
then disconnection may occur; thus, the Voronoi polygon
constructed may not be accurate enough, which results in
more moves and larger moving distance. They adopted the
optimization of random scattering of some sensors to cover

holes. The termination condition of their algorithms is
coverage instead of load balance. In [22], they further
explored the motion capability of sensors for relocation to
deal with sensor failure or respond to new events. The
algorithm contains two phases: The first is redundant
sensor location, and the second is redundant sensor
relocation. A grid-quorum solution was proposed to
quickly locate the closest redundant sensors to the target
area, where a sensor failure occurs. In their recent work [23],
they designed a virtual movement scheme for the deploy-
ment protocol to reduce the moving distance of sensors. To
our best knowledge, our work is the first to exploit scan-
based movement-assisted solution for sensor redistribution.

Some recent work focus on sensors with limited mobility,
which is motivated by the DARPA project called Intelligent
Mobile Land Mine Units (IMLM) [24]. In IMLM, the
mobility system is based on a hopping mechanism.
Chellapan et al. [25] studied a special hopping model in
which each sensor can flip (or flop) to a new location only
once. In addition, the flip distance is bounded. The
deployment problem is then formulated as a minimum-
cost, maximum-flow problem.

3 AN OPTIMAL SOLUTION

This section starts with an optimal solution for 2D meshes
based on the classic Hungarian method. Although, due to
its potential drawback of centralization, this optimal
solution is not practical, especially when the WSNs are
not connected, we can use it as a baseline to examine the
performance of other proposed methods.

3.1 Hungarian Method

Let us consider the edge-weighted matching problem in a
complete bipartite graph Km;m (m nodes on the left side and
m on the right), with numbers associated with the edges
called weights. The objective is to find a perfect matching
(of m pairs) such that the sum of the weights of edges in the
matching is maximum (or minimum). The matching finds
m edges to connect nodes on the left side to those on the
right, and each node has only one edge.

A naive approach to solve the matching problem is to
enumerate all m perfect matchings and find an optimal one
among them. A better solution called the Hungarian
method1 exists. The following is the algebraic formulation
for the matching problem. We let xij (i; j ¼ 1; . . . ;m) be a set
of variables. m is the number of nodes in the node sets of
the complete bipartite graph B ¼ ðV ; U;EÞ, where V and U

are two node sets, and E is the edge set. xij ¼ 1 means that
the edge ðvi; ujÞ is included in the matching, whereas xij ¼ 0
means that it is not. cij is the weight of edge ðvi; ujÞ. An
optimal solution is

Minimize �ijcijxij

subject to
X

j¼1
xij ¼ 1 i ¼ 1; . . . ;m

X
i¼1

xij ¼ 1 j ¼ 1; . . . ;m:
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To use the Hungarian method to load balance in WSNs,
we need to first convert the 2D mesh to a complete bipartite
graph by using the following procedure: 1) Calculate the
global average �v and determine the “give,” “take,” and
“neutral” states of each grid. 2) Construct a node-weighted
and edge-weighted bipartite graph, where the “give” and
“take” grids appear at the left-hand and right-hand sides of
the graph, respectively. The node weight corresponds to the
amount of overload and underload, and the edge weight
represents the distance between the “give” and “take” grids
in a matching pair. 3) Derive an edge-weighted perfect
bipartite graph by expanding each node with weight k to
k “clone” nodes. The edge weight of the clone nodes will
inherit from the original nodes. It is obvious that the total
sensor moving distance is minimized. The total number of
moves is also minimized, since each sensor, if necessary,
only moves once to its destination.

3.2 Examples and Analysis

In Fig. 3, the global average in case is 5. There are three
overloaded nodes and five underloaded nodes. M½3; 3� ¼ 3
means overloaded by three units, and M½1; 2� ¼ 1 means
underloaded by one unit. The edge weight is the Manhattan
distance between two end nodes M½i; j� and M½i0; j0�. That is,
�xþ�y ¼ ji� i0j þ jj� j0j.2 For example, the edge con-
necting M½3; 3� to M½1; 2� has a weight of 3. In Fig. 2a, the
node and edge-weighted bipartite graph shows the weights
of all edges connecting M½3; 3� to underloaded nodes. In
Fig. 2b, the edge-weighted complete bipartite graph of
Fig. 2a is shown, where each node (overloaded or under-
loaded) with weight k has k “clone” nodes. For example,
M½3; 3� has three clone nodes labeled from 1 to 3. The
Hungarian method is then applied as shown in Fig. 2b, and
the optimal result is shown in Fig. 2c. The optimal result
shows that M½5; 5� (now with four clone nodes) needs to
move one sensor to each of M½1; 2�, M½5; 2�, M½2; 3�, and
M½4; 3�.

There are several polynomial implementations for the
Hungarian method. Our implementation is based on
Munkres’ method [26]. Another implementation [27] solves

the problem in Oðm3Þ, exploiting the solution to the
maximum flow problem. The cost of implementing the
Hungarian method for load balance in WSNs is Oðm3Þ,
where m is the amount of overloads (underloads) that is
bounded by the number of sensors. Usually, the number of
sensors is one or two magnitudes higher than the number of
grids ðnÞ. A base station (BS) is needed to connect to the
WSN, serving as the central controller for information
collection and algorithm execution. Then, the BS informs all
clusterheads about the sensor movement via direct or
multihop communication.

4 SMART

4.1 Basic Ideas

Unlike the optimal solution, SMART is a hybrid of the local
and global approaches. Its extension (discussed in Section 5)
can be used in disconnected WSNs. The sensor network is
partitioned into an n� n 2D mesh of clusters (the method
can be easily extended to the general n�m 2D mesh). Each
cluster covers a small square area and is controlled by a
clusterhead. The role of each clusterhead can be rotated
within the cluster. Each clusterhead, in charge of commu-
nicating with adjacent clusters, knows the following
information: 1) its cluster position i in the 2D mesh (via
GPS) and 2) the number of sensors wi in the cluster.

Two rounds of balancing are used, one for each
dimension: rows first, then columns. As shown in Fig. 3b,
after the first round, all rows are balanced. After the second
round, all columns are balanced, as is the whole area.
Although balancing within a row or column can be done
either locally such as iterative nearest neighbor interaction
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2. The general distance between two points is defined as ðð�xÞk þ
ð�yÞkÞ1=k. When k ¼ 2, it is euclidean distance, and when k ¼ 1, it is
Manhattan distance.

Fig. 2. (a) The node- and edge-weighted bipartite graph of Fig. 3, with “give” grids at the left-hand side and “take” grids at the right-hand side. (b) The

edge-weighted complete bipartite graph of (a). (c) The optimal solution.

Fig. 3. An ideal case for SMART.



or globally such as direct mapping, SMART relies on an
extended scan method.

4.2 Clustering

Since each sensor node knows its cluster ID i, sensors in
the same cluster elect a unique clusterhead based on a
predefined priority. Assume that each cluster covers an
x� x square. To ensure that the square is covered
whenever there is a sensor in the region, the sensing
range r1 should be set to

ffiffiffi
2
p

x (the diagonal length of the
square). To support the transmission from a noncluster-
head to a clusterhead, the intracluster transmission range
should be set to at least

ffiffiffi
2
p

x (also denoted as r1). To
ensure that the clusterhead can communicate with cluster-
heads in four adjacent clusters, the intercluster transmis-
sion ranges of each clusterhead should be at least the
diagonal of the rectangle constructed from two adjacent
squares. That is, r2 ¼

ffiffiffi
5
p

x. If a sensor does not support
two transmission ranges, then r2 can be used for
intracluster communication.

Generally, the role of the clusterhead should rotate
among all the nodes in the cluster to achieve a balanced
energy consumption and to prolong the life span of each
individual node, such as in [28]. Nonclusterheads only need
to report their own position and energy to clusterheads by
using transmission range r1, whereas clusterheads will
communicate with neighboring clusters, take over the
information of sensors in their cluster, and direct the
movement of sensors.

4.3 Scan

Consider the 1D array of clusters where the cluster ID is
labeled following the sequence in the linear line. Again,
denote wi as the number of sensors in cluster i. Let vi be the
prefix sum of the first i clusters, that is, vi ¼

Pi
j¼1 wj. vn ¼Pn

j¼1 wj is the total sum. Clearly, w ¼ vn=n is the average
number of sensors in a balanced state, and vi ¼ iw is the
prefix sum in the balanced state. Note that w is a real
number that should be rounded to an integer bwc or dwe. In
a balanced state, jwi � wjj � 1 for any two clusters in the
network.

The scan algorithm works from one end of the array to
another (first scan) and then from the other end back to the
initial end (second scan). The direction of the first sweep is
called positive (with an increasing order of cluster ID), and
that of the second sweep is negative (with a decreasing order
of cluster ID). The first sweep calculates the prefix sum vi,
where each clusterhead i determines its prefix sum vi by
adding vi�1 þ wi and forwarding vi to the next cluster. The
clusterhead in the last cluster determines vn and w ¼ vn=n
(load in a balanced state) and initiates the second scan by
sending out w. During this scan, each clusterhead can
determine that vi ¼ iw (the load of prefix sum in a balanced
state) based on w, which is passed around, and its own
cluster position i.

By knowing the load in the balanced state, each cluster
can easily determine its “give/take” state. Specifically,
when wi � w ¼ 0, cluster i is in the “neutral” state. When
wi � w > 0, it is overloaded and is in the “give” state. When
wi � w < 0, it is underloaded and is in the “take” state. Each
cluster in the give state also needs to determine the number

of sensors (load) to be sent to each direction: w!i for the load

in the positive direction (or simply give-right) and  wi for

the load in the negative direction (give-left). Based on the

scan procedure, we have

w!i ¼ minfwi � w;maxfvi � vi; 0gg ð1Þ

 wi ¼ ðwi � wÞ � w!i : ð2Þ

The 2D scan process involves a row scan followed by a

column scan as shown in Figs. 3b and 3c, respectively.

Table 1 shows the details of the row scan on the third row,

where i is the column number. Only the cluster at column 3

is in the “give” state, since its load is higher than w ¼ 5. For

column 3, w!3 ¼ 2 (the load will be assigned to column 4;

the actual schedule will be discussed later), and  w3 ¼ 1 (it

will be assigned to column 2). Similarly, a set of conditions

can be given for the “take” state: w i for take-right and !wi
for take-left. It is clear that

!wi ¼ minfw� wi;maxfvi�1 � vi�1; 0gg ð3Þ

w i ¼ ðw� wiÞ � !wi: ð4Þ

In the subsequent discussion, we use !wi for both the

number of take-left units and the take-left state of cluster i.

The same convention is used for the other three notations.

The distinguishing feature of scan is its simplicity, where

each clusterhead in i passes only one package in each

sweep: the prefix sum wi in the first sweep followed by the

global average w in the second sweep.

4.4 Properties of Scan

An optimal load balance scheduling based on scan should

satisfy the above four conditions related to give-right, give-

left, take-right, and take-left for each cluster. By optimal we

mean the minimum number of moves and minimum total

moving distance. The following theorem shows that any

violation of the conditions will result in the increase of the

overall moving distance and/or the total number of moves

to reach a load balance state.

Theorem 1. Any violation of the four conditions on the give and

take states of each cluster will result in the increase of the

overall moving distance and/or the total number of moves to

reach a load balance state.

Proof. We consider four types of violations: take state

changed to give state, give state changed to take state,

take-right (take-left) changed to take-left (take-right), and

give-right (give-left) changed to give-left (give-right).
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Suppose cluster i’s state is changed from take to give
and one unit is sent to cluster j. To ensure load
balancing, that one unit at cluster i will be compensated
by another unit from cluster k (that is, k gives one unit
back to i). A better scheme would be k giving one unit
directly to j to save one move and shorten the distance if
j and k are at the same side of i in the 1D array.

Suppose cluster i’s state is changed from give to take
and one unit is given from cluster j. To ensure load
balancing, that one unit will be given away to cluster k. It
would be better for j to give one unit directly to k to save
one move and shorten the distance if k and j are at the
same side of i.

When cluster i’s state mixes give-right with give-left,
we assume that one unit is moved from w!i to  wi
(similarly, for  wi to w!i ). We show that this schedule
will generate a longer moving distance. Suppose this
unit is moved from i to i0 (1 � i0 < i). Based on the
balanced state requirement, one unit in cluster j in
region ½1 . . . i� 1� needs to be moved out to cluster j0,
with i < j0 � n. We consider swapping these two units at
i and j. To compare the moving distance between these
two cases (before and after the swap), we consider two
situations shown in Fig. 4 as follows:

1. When i0 � j < i, we have

ji� i0j þ jj� j0j > jj� i0j þ ji� j0j:

2. When 1 � j < i0, we have ji� i0j þ jj� j0j ¼

ji� i0j þ jj� i0j þ ji0 � jj > jj� ij þ ji� jj:

In both cases, the moving distance before the swap
ji� i0j þ jj� j0j is longer than that after the swap.

When cluster i’s state mixes take-right with take-left,
we again assume that one unit is moved from !wi to w i
(similarly, for w i to !wi). Suppose this unit is moved
from i0 to i ði < i0 � nÞ. Based on the balanced state
requirement, one unit in a cluster j in region ½1 . . . i� 1�
needs to be moved out to cluster j0, with n � j0 > i. We
consider swapping these two units at i and j. To compare
the moving distance between these two cases (before and
after the swap), we consider two situations shown in

Fig. 5 for j0 � i0 and j0 > i0. By following and argument
similar to that in the above case, the moving distance
before the swap ji� i0j þ jj� j0j is longer than that after
the swap. tu

The following theorem shows that, when the four
conditions are met, the overall moving distance is indepen-
dent of the actual schedule.

Theorem 2. When take-right (take-left) states get loads from
give-left (give-right) states, the overall moving distance is
independent of the actual schedule.

Proof. Let us consider schedules for all take-right states that
get loads from give-left states. The case of the take-left
states getting loads from give-right states can be argued
in a similar way. Starting from cluster 1 and checking
toward cluster n (that is, along the positive direction), for
each unit of underload in a take-right state i, assign one
unit of load from the closest give-left state i0 (that is, a
cluster in a give-left state with a minimum ID). Now, we
show that all other assignments can be converted to the
above schedule without changing the total moving
distance. Suppose that, in the above state, the unit to i
comes from a nonclosest give-left state j0, and the unit
from i0 is assigned to a take-right state j, where i � j � i0.
By swapping i0 with j0, the total moving distance remains
the same, and the unit in i now comes from i0 (see Fig. 6).
This kind of swapping can be done iteratively. tu

4.5 An Optimal Scan in 1D Arrays and Its Extension
in 2D Meshes

In this section, we propose a simple sender-initiated
optimal load balance algorithm for 1D arrays. The unique
property is that the algorithm starts from each cluster in the
give state (give-left and give-right) in parallel, without the
need to be concerned with the detail of the take state of
other clusters. Suppose i is in a take state, where �w� wi > 0.
Then, we do not distinguish take-right from take-left.

Sender-initiated optimal load balance in 1D arrays:

1. For each cluster i in the give state, the clusterhead
sends w!i units to its right neighbor and sends  wi
units to its left neighbor.

2. For each cluster i in the take state, when the
clusterhead senses several bypassing units, it inter-

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 7, JULY 2007

Fig. 4. Two cases for mixing up give-right with give-left. Fig. 5. Two cases for mixing up take-right with take-left.
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sects as many units as possible to fill in its “holes.”
Unintersected units move along the same direction.

Theorem 3. The proposed greedy schedule ensures an optimal
schedule in 1D arrays.

Proof. It suffices to show that the case in Fig. 5 is avoided.
That is, the two conditions related to the take state are
satisfied. Based on the algorithm, when a unit is passed
to i from right to left as shown in Fig. 5, it is implied that
subarray ½i . . .n� is in the overloaded state. Similarly,
when a unit is passed to j0 from left to right, the subarray
½1 . . . j0� is in the overloaded state. Since i < j0, the array
½1 . . .n�, as a whole, is overloaded, which corresponds to
a contradiction. tu

When the scan procedure is extended from 1D arrays
to 2D meshes, the scan procedure is applied twice: once
on all rows and once on all columns. This 2D scanning
process represents the core of SMART. However, this
approach is no longer optimal in 2D meshes. For
example, consider a 2� 2 mesh M½1; 1� ¼ 3, M½1; 2� ¼ 1,
M½2; 1� ¼ 3, and M½2; 2� ¼ 5. A scan on its rows will
change the load distribution of the mesh to M½1; 1� ¼ 2,
M½1; 2� ¼ 2, M½2; 1� ¼ 4, and M½2; 2� ¼ 4, and a scan on its
columns will balance the mesh to M½1; 1� ¼ 3, M½1; 2� ¼ 3,
M½2; 1� ¼ 3, and M½2; 2� ¼ 3. A total of four moves occur;
however, the optimal solution requires only two moves
from M½2; 2� to M½1; 2� directly.

Theorem 4. The ratio between the 2D scan and the optimal
solution in terms of the number of moves is bounded by 2.

Proof. During the 2D scan, wasted moves occur during the
first scan when a (global) underloaded cluster i moves
the load to another (global) underloaded cluster j.
Suppose L units of load are moved from i and j. L units
of load for j are necessary, whereas L units for i are
wasted units. A similar situation occurs when a (global)
overloaded cluster i moves load to another (global)
overloaded cluster j. In this case, L units for j are wasted,
whereas L units for i are necessary. It is easy to follow
that for each wasted move, there is a matching necessary
move; therefore, the ratio is bounded by 2. tu

4.6 Several Variations of SMART

In SMART, an “aggressive” approach is used, where a local
“give” state in a row or column can be a global “take” state.
To avoid this situation, a “conservative” approach can be
used to decide on local “give” and “take” states based on
global average information.

Besides the prefix sum of the first i grids in a row (or
column) in the positive direction, that is, vi ¼

Pi
j¼1 wj,

another, negative-direction prefix sum is exploited, where
v0i ¼

Pn
j¼i wj and v01 ¼

Pn
j¼1 wj is the total sum in the row (or

column). The negative-direction prefix sum is achieved in
the negative sweep, where the average is sending out. Now,
wl ¼ vn=n is the average number of sensors in a local
balanced state with respect to the current row (or column).
v ¼

Pn
i¼1

Pn
j¼1 wij is the global total sum. Then, wg ¼ v=n2 is

the average number of sensors in a global balanced state.
We define a third kind of average as wm ¼ jwg � wlj=2, the

mean of global and local balanced states. This average is to
achieve a compromise between conservative and aggressive
approaches.

The variation differs from the original SMART in its
definition of threshold w used to determine the “give/take”
state. Still, when wi � w ¼ 0, grid i is in the “neutral” state.
When wi � w > 0, it is overloaded and is in the “give” state.
When wi � w < 0, it is underloaded and is in the “take”
state. w can be one of three possible choices: wl, wg, and wm.
Again, vi ¼ iw is the prefix sum in the balanced state under
the given threshold w, and vi

0 ¼ ðn� iþ 1Þw is that of the
negative direction. w should be rounded to an integer.

In the original SMART, the threshold is based on the
local average wl when “give” and “take” states are balanced
in a row (or column). With a changing threshold, such a
balance is no longer held. That is, there could be more
“give” than “take” grids, and vice versa. Therefore, w!i for a
load in the positive direction (or simply give-right) and  wi
for a load in the negative direction (give-left) are changed as
follows: A grid is in the “give” state if its value is over the
given threshold w. The amount of excessive load to be
transferred to its right (or left) depends on the amount of
underload to its right (or left) provided that the amount
does not cause the underload of the current node. More
formally, we have

w!i ¼ minfwi � w;maxfv0iþ1 � v0iþ1; 0gg ð5Þ
 wi ¼ minfðwi � wÞ � w!i ;maxfðvi�1 � vi�1Þ; 0gg: ð6Þ

The threshold-based scan approach:

1. If w 6¼ wl, then determine global balanced value wg.
2. Perform a row scan followed by a column scan by

using the selected w.
3. If w 6¼ wl, then repeat Step 2 by using w ¼ wl.
wg in Step 1 can be calculated during Step 2. Basically, wg

is determined after row-then-column scans. However, in
these scans, there are no actual sensor movements. Move-
ments occur once w is derived from wg. Step 3 is needed,
since the result of Step 2 cannot guarantee a global balanced
state. When w ¼ wm, one variation of the algorithm is to
repeat Step 2 a constant ðcÞ number of times before applying
Step 3. We use SMARTðgÞ, SMARTðlÞ, and SMARTðm; cÞ to
represent the threshold-based scan that uses the global
average, the local average (the original SMART), and the
mean of the global and local averages, respectively. c in
SMARTðm; cÞ corresponds to the number of iterations of
Step 2.

If the total number of sensors is unknown, more informa-
tion propagation is necessary. After the last cluster of each
row gets the total number in its row, one more scan is
generated in the last column to achieve the global average.
Then, a scan in the negative direction in the column is
conducted to distribute the average to each row.

5 EXTENDED SMART

5.1 Simple Solutions

The 2D scan discussed previously works only when there is
no hole. Otherwise, certain rows and columns may not be
connected. In the worst case, the 2D mesh may be
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disconnected. A preprocessing is needed to plant “seeds” in
holes at each 1D scan, and these seeds will serve as
clusterheads in these holes.

Planting seeds in holes in an asymptotically optimal way
is a nontrivial task. Suppose we want to optimize the total
moving distance, the number of moves, and the commu-
nication latency (where each sequential neighbor commu-
nication is considered one step). The total moving distance
should be Oðn2Þ (as in the case of the first row of Fig. 1), the
number of moves should be OðnÞ, and the communication
latency should be OðnÞ.

A conservative approach could be sending out one seed
at a time to an adjacent empty cluster. This will work for the
case of the third row of Fig. 1, where k is a number larger
than 5, and the direction is from left to right. However, this
approach does not work well for the case of the first row,
since the frontier node, which is the clusterhead of the first
nonempty cluster in the expansion direction, needs to
communicate with the leftmost node after each probing and
expansion. The corresponding communication latency is
2
Pn�1

i¼1 i ¼ Oðn2Þ. Note that, if the moving distance is the
dominating factor rather than the communication latency,
this is still an acceptable solution.

In an aggressive approach, each cluster that has a
sufficient number of sensors (seeds) can send out multiple
seeds to cover the rest. This approach certainly works for
the case of the first row but fails for the case of the third
row. In this case, the total moving distance would be

ðn� 1Þ2 þ ðn� 3Þ2 þ . . .þ 32 þ 12 ¼ Oðn3Þ;

since clusters in the give state can initiate the process
simultaneously. Moreover, the number of moves is
ðn� 1Þ þ ðn� 3Þ þ . . .þ 3þ 1 ¼ Oðn2Þ.

The simple recursive doubling does not work for the
case of the second row either, where the span of each
expansion is doubled in the subsequent step. This is
because logn expansions will incur at least an n=2�
logn ¼ Oðn lognÞ communication latency, assuming that
the initial span is 1.

5.2 Optimal Seed Planting in 1D Arrays with Holes

We propose a solution for the hole issue that is asympto-
tically optimal for several parameters, including commu-
nication latency ðOðnÞÞ, total moves ðOðnÞÞ, and total
moving distance ðOðn2ÞÞ, assuming that each cluster knows
only the state of its two neighbors through probing. It is also
assumed that the sensor network is sufficiently dense such
that global w � 2 (that is, on the average, each cluster has
two sensors). Later, we will resort to a slightly stronger
condition when the solution is extended from 1D arrays to
2D meshes.

First, we give some notation used in the solution. A
segment Si is a maximum sequence of nonempty clusters. Wi

is the summation of load in Si, and Ci is the length of Si.
Now, we introduce two important concepts related to Si:

. Expansion level Li of Si: 2Li � Ci < 2Liþ1.

. Energy level Ei of Si: Ei ¼Wi � Ci.
The expansion level Li determines spans of successive

expansions 2Li ; 2Liþ1; 2Liþ2; . . . , whereas the energy level Ei

indicates the number of denotable sensors in the segment.
Ei should be large enough to cover holes in each expansion;
that is, Ei � 2Liþk for the kth expansion, which is called the
expansion condition. Any cluster that has more than one
sensor is in a denotable state for providing seeds, even
though the cluster may be in an underloaded state.

The solution is based on a recursive doubling of the
span for each successive expansion until there is no
sufficient energy for expansion, but the actual size of
expansion is governed by the current expansion level. For
segment Si with level Li, the sequence of span is
2Li ; 2Liþ1; 2Liþ2; . . . . For example, suppose the length Ci
of Si is 13. The first span is 23 ¼ 8, making a new
segment with a length of 21; the next expansion with
span 24 ¼ 16 will increase the length to 29, and so on.

Two approaches, reactive or proactive, can be used here.
In the reactive approach, each cluster waits for an
expansion signal from one of its predecessors or until a
predefined timeout expires (the timeout value is given in
Theorem 5). This approach trades a potential long delay for
small total moving distance and total moves. This approach
operates in the synchronized environment, where the
synchronization point can be set during the initial deploy-
ment phase. In the proactive approach, each segment acts
independently for expansion. This approach has a mini-
mum communication latency but has occasional extra
sensor movements for the lack of synchronization. The
solution can be described in the following steps: 1) By
following the positive direction, each segment performs an
expansion through recursive doubling, at which point
either it is informed from a predecessor segment or a
predefined tim-out expires in the reactive approach, with-
out waiting for any signal or timeout for activation in the
proactive approach until it either reaches the last cluster of
the 1D array or fails the expansion condition. 2) Repeat
Step 1 for the negative direction, except that no timeout is
needed at this step.

The efficiency of the method depends on the worst case
time-out in the reactive approach and the excessive move-
ment in parallel seed planting in the proactive approach.
The next theorem shows that it is sufficient to set the time-
out to 5ði� 1Þ, where i is the ID of the first cluster in the
segment. The total moving distance in the proactive
approach is still bounded within Oðn2Þ.
Theorem 5. In each segment S in a scan, the total moving

distance in constructing S is bounded by C2 and the
communication latency is bounded by 5C.

Proof. We prove by induction that, when Si expands to
connect Sj to form a new Sk along the positive direction,
we assume that C0i is the span Si used to connect Sj, and
C0j is the span of the nonoverlapping region in Sj as in
Fig. 7. Note that Si may merge with another segment Sj
to form a new segment Sk as a result of the expansion of
Si (as shown in Fig. 7). Sk will calculate its Wk and Lk
accordingly. The special case Sj does not exist and has a
length of 0. The following proof still applies.

Based on the induction, the latency in the formation of
Si is bounded by 5Ci. In the current expansion, Ci is
needed for the frontier node to inform all relevant
clusters along the negative direction in Si, and it takes
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Ci þ C0i time to pass seeds to relevant positions. Finally, it
takes C0j steps to reach the frontier of Sk (that is, the
rightmost node in Sj). Based on the fact that C0i � Ci <
2C0i (expansion conditions), we have

5Ci þ Ci þ ðCi þ C0iÞ þ C0j < 5ðCi þ C0i þ C0jÞ ¼ 5Ck:

Similarly, we show the total moving distance by
induction. Based on induction, the formation of Si is
bounded by C2

i . In the current expansion, the total
moving distance is bounded by

XC0i�1

l¼0

ðCi þ lÞ ¼ CiC0i þ C0iðC0i � 1Þ=2:

In the proactive approach, the formation of Sj needs to

be included, which is bounded by C2
j < ðC0i þ C0jÞ

2. Based

on the fact that C0i � Ci < 2C0i, we have

C2
i þ CiC0i þ C0iðC0i�1Þ=2þ ðC0iþC0jÞ

2<ðCi þ C0i þ C0jÞ
2 ¼ C2

k :

tu

Since the method involves two sweeps, the overall
moving distance is clearly bounded by Oðn2Þ, and the
overall communication latency is bounded by OðnÞ. The
total moves are bounded by OðnÞ in the reactive approach
and by Oðn lognÞ in the proactive approach. In the latter
case, clusters can plant seeds in parallel, but recursive
doubling limits parallel merging to logn levels of the
merging tree. Therefore, the proposed method in the
proactive mode is optimal for the three parameters.

The following theorem shows that no timeout is needed
in the second scan and proves the correctness of the 1D scan
approach. The postfix of the 1D array is a subarray that
contains the last cluster in the array.

Theorem 6. Assume that the average load is at least 2 for each
cluster. After the first scan, at least one postfix of the 1D array
is a segment. In the second scan, no timeout is needed. All
holes will be filled.

Proof. It is assumed that the average load for each cluster

is at least 2. Suppose S1; S2; . . . ; Sk�1; Sk is the sequence

of segments after Step 1 of preprocessing, where for

each Si (except Sk), Ei < 2Li ; that is, Wi < 2Ci. If we letPk�1
i¼1 Wi ¼WM and

Pk�1
i¼1 Ci ¼ CM , then WM < 2CM .

Based on the assumption of “at least average load of 2”

for each cluster, we have

WM þWk � 2CM þ 2Ck > WM þ 2Ck;

therefore, Wk > 2Ck. Sk has sufficient energy for expan-

sion. The only case for preventing such an expansion is

when Sk includes the last cluster in the 1D array.
Therefore, Sk is a postfix of the 1D array.

During Step 2 of preprocessing, since Sk has sufficient
energy, it will fill in the “gap” (a consecutive sequence of
empty clusters) between Sk and Sk�1 by planting seeds in
holes between them. By following the same argument,
the newly formed segment will have sufficient energy to
fill the next gap. In this way, all gaps will be filled after
the second scan. tu

The result from Theorem 6 shows that the scan process
can be combined with the preprocessing (planting the
seeds). That is, the scan process can start at step 2 of the
preprocessing.

5.3 Extended SMART

Now, let us extend the approach from 1D to 2D. The first
issue is to ensure that each 1D row array in the 2D mesh
meets w � 2. Instead of enforcing it (which is impossible),
we propose a smoothing process on all columns before the
preprocessing on rows. The smoothing process on columns
includes preprocessing (that is, plant seeds in holes) and
scan (that is, load balance). This columnwise smoothing
process does not completely remove holes or balance the
load along columns, unless the number of sensors in each
column is at least 2n initially. However, when the sensor
network is sufficiently dense, each row will have w � 2 after
the columnwise smoothing process. The following theorem
shows the density requirement.

Theorem 7. Suppose the average number of sensors in a cluster is
at least 4. After the columnwise smoothing, each row will have
at least 2n sensors.

Proof. We try to find the maximum number of sensors that
can be deployed when at least one row still has less than
2n sensors after the columnwise smoothing. If that
number is less than 4n2, then the theorem is proven.

Assume that, initially, k columns have a load of at least
2n, and the remaining n� k columns have a load under
2n. The former k columns will achieve load balancing
after smoothing, whereas the latter n� k columns will
not. Without loss of generality, we assume that row 1
(that is, the first nodes in all columns) has less than
2n sensors after smoothing. All the first nodes of those
n� k columns that have not achieved the balanced state
are holes. The maximum total load of nodes other than
the first nodes in these n� k columns is bounded by
ðn� kÞð2n� 1Þ. The loads of the first nodes of the other
k columns that have achieved the balanced state along
columns are assumed to be i1; i2; . . . ; ik, respectively.
Based on the balanced state definition, the maximum
total load of nodes other than the first nodes in these
k columns is bounded by ðn� 1Þ½ði1 þ 1Þ þ ði2 þ 1Þ þ
. . . ðik þ 1Þ�. Therefore, the total number is bounded by

I þ ðn� 1ÞðI þ kÞ þ ðn� kÞð2n� 1Þ �
ð2n� 1Þ þ ðn� 1Þð2nþ k� 1Þ þ ðn� kÞð2n� 1Þ

since I ¼ i1 þ i2 þ . . .þ ik � 2n� 1. Clearly, the total
number is bounded by 4n2 � ð2þ kÞn < 4n2. This num-
ber is maximized when k ¼ 1, and the corresponding
distribution is shown in Fig. 8. tu
With the above result, the extended SMART protocol can

be resolved to the following steps:
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. Step 1 (Columnwise smoothing). Preprocess on
columns (positive direction). If the last cluster fails
condition 1 (discussed below), then terminate the
preprocessing; otherwise, simultaneously prepro-
cess and scan on columns (negative direction). If
the first cluster fails condition 2 (discussed below),
terminate the preprocessing; otherwise, scan on
columns (positive direction).

. Step 2 (Row-wise preprocessing and scanning).
Preprocess on rows (positive), then simultaneously
preprocess and scan on rows (negative), and finally,
scan on rows (positive).

. Step 3 (Columnwise scanning). Scan on columns
(negative followed by positive).

Both conditions 1 and 2 are used for early termination
when a particular column has less than 2n sensors.
Condition 1 is defined when the last cluster is included in
a segment S and W � 2C. Condition 2 is defined when the
first cluster is included in a segment S such that C ¼ n and
W � 2n. In Step 1, each column needs one, two, or three
sweeps, depending on whether that column has 2n sensors
or not. In Step 2, three sweeps are needed. Two sweeps are
needed in Step 3. In the worst case, a total of eight sweeps
are needed.

The above approach has potential drawbacks in generat-
ing a longer communication latency even in the absence of
holes. To resolve this issue, we introduce some simple
bookkeeping. Once the first sweep of Step 1 is completed,
each end node in the last row will set a flag to 1 whenever it
registers at least 2n sensors in the corresponding segment. If
all flags in the last row are set, Step 3 can be skipped.
Checking whether all flags are set can be done in parallel
with Step 2, which needs 2n steps with two sweeps on the
last row. The first sweep is a scan using Boolean AND, and
the second is a broadcast of the scan value of the first sweep
that is a Boolean value (1 for all flags set and 0 otherwise).

With the above modification, the worst case number of
sweeps is reduced to 5. One more sweep can be eliminated
by combining preprocessing and scanning in Step 1.
Whenever the first cluster is included in the current
segment, the scan process also starts. At the end of the first
sweep, if the current segment includes both first and last
clusters, then the third sweep in Step 1 can be eliminated,
since its function can be done at the second sweep. The

optimization for the number of moves discussed in Section 3
can still be used after the scan process starts. However, the
number of moves during the smoothing and preprocessing
phases cannot be further reduced.

6 SIMULATION

6.1 Simulation Environment

We use a custom simulator. The initial deployment that it
generates could be a uniform or normal random distribu-
tion. We set up the simulation in a 500� 500 area, which is
the target field. The tunable parameters in our simulation
are listed as follows: 1) Cluster numbers n� n. A large n can
improve the speed of deployment, whereas a small n can
achieve more balanced results. We use 4 and 10 as n’s
values. 2) Number of sensors N . We have proven that at least
4n2 sensors are needed to guarantee the validation of
SMART. Therefore, we vary N’s value from 400 to 1,000. We
also include cases of under 4n2 sensors to check the
robustness of SMART. 3) Normal distribution parameter �. �
is the standard deviation of the normal distribution of the
initial deployment, which can control the density degree of
the sensor clustering. We use 1 to 5 as its values. When � is
1, around 98 percent of the sensors are in the 10 percent
region of the area. When � is 10, the distribution is very
close to uniform random distribution. For each tunable
parameter, the simulation is repeated 1,000 times. In
addition to the proposed algorithms, we also simulate the
traditional load balancing algorithms DIFF, EXCH, and the
Voronoi-based localized sensor redistribution algorithm
(VOR) for comparison.

The performance metrics are 1) deployment quality and
2) deployment cost. Deployment quality is shown by the
balance degree measured by two simulation results. One is
the standard deviation of the number of sensors in all the
clusters. The other is grads, which is the difference between
the largest cluster and the smallest one. Deployment cost is
measured by the time of deployment, in terms of rounds,
and energy consumption, in terms of overall moving
distance.

6.2 Simulation Results

Fig. 9 compares the number of rounds and the moving
distance of the three algorithms, namely, DIFF, EXCH, and
SMART in uniform random distribution. Based on Figs. 9a,
9b, and 9c, we can see that the proposed SMART has a small
and stable number of rounds. When the initial deployment
is relatively balanced and n is small, every row can have
more than 2n sensors; thus, it has five rounds; otherwise, it
takes eight rounds (the worst case). DIFF and EXCH both
have large numbers of rounds, which increase with the
growth of node number, especially when n is large and the
initial deployment is uneven. Figs. 9d, 9e, and 9f show
the overall moving distance comparison. We can see that
the overall sensor moving distance is proportional to the
number of sensors. Therefore, the average moving
distance of a sensor is insensitive to node numbers in
all these algorithms. Among the three, SMART has the
largest moving distance. This is because it achieves the
most balanced final state, which leads to more sensor
movements.
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Figs. 10a and 10b show the balance degree of the results
of these three algorithms by standard deviation in uniform
random distribution. SMART achieves a balanced final
state, and its standard deviation is less than or equal to 2.
Figs. 10c and 10d show the balance degree in terms of grads.

The grads of SMART are less than or equal to 2, and the
grads in a row or a column are less than or equal to 1. In
DIFF and EXCH, only the relative balanced state, which is
the neighboring balance, is guaranteed. That is, the
difference between adjacent clusters is less than or equal
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(d) n ¼ 4, � ¼ 1. (e) n ¼ 4, � ¼ 5. (f) n ¼ 10, � ¼ 1.

Fig. 10. Balance degree of DIFF, EXCH, and SMART ð� ¼ 1Þ. (a) Standard deviation, ðn ¼ 4Þ. (b) Standard deviation, ðn ¼ 10Þ. (c) Grads, ðn ¼ 4Þ.
(d) Grads, ðn ¼ 10Þ.



to 1. Therefore, the result could be a ladderlike distribution,
which leads to very large grads and standard deviations.
When n is large, the grads of DIFF and EXCH are large, and
their balance degrees are low.

Figs. 11a, 11b, 11d, and 11e compare the standard
deviation and moving distance of algorithms using differ-
ent normal distribution parameters �. The curve “Initial” is
the standard deviation of the initial deployment. SMART
can achieve a more balanced state than DIFF and EXCH.
SMART also outperforms them in a number of moves. In
SMART, sensors move at most twice: one move for the
vertical direction and another for the horizontal direction;
over 75 percent sensors move only once. When N is 400,
and � is 1, SMART has 444, DIFF has 1,040, and EXCH has
1,137. Since the startup usually consumes more power than
moving with invariable speed, less movement is desired.
Fig. 11c shows the standard deviation, and Fig. 11f shows
the moving distance comparison of VOR and SMART. We
can see that VOR can only slightly reduce the standard
deviation of the initial deployment. It has been mentioned
in [5] that the basic VOR algorithm has difficulties in
dealing with high-degree clustering, where sensors are
centered around a few locations. When � is 1, after applying
VOR, the clustering area still has high density, whereas the
original blank area has low density. The optimized VOR
(O-VOR) proposed to deal with this problem is better than
VOR, but SMART still outperforms O-VOR.

VOR is designed for a relatively sparse sensor network
that has a uniform random initial deployment, whereas
SMART is designed for a relatively dense network with
high-degree clustering. For fairness, we conduct the
following simulation to compare the performance of

SMART and VOR in a relatively sparse network where
the condition of Theorem 7 for SMART is not necessarily
satisfied.

Figs. 12a and 12b show the comparisons of the resultant
balance degree (in terms of standard deviation) and the
number of rounds of SMART, VOR, and O-VOR (� ¼ 3,
n ¼ 10). In Fig. 12a, when N is larger than 400, SMART
guarantees the balanced final state, where the standard
deviation of the resultant deployment of SMART should be
less than 2. This result is consistent with the analytical
results in the previous section, where, if the average
number of sensors in a cluster is less than 4, some rows
may have less than 2n sensors after smoothing. When the
node number is smaller than 400, the standard deviation is
larger than 2, and the balanced status is not achieved.
However, the increase of standard deviation is small, and
the balance degree of SMART can still beat that of VOR. For
VOR, when the node number is small, the resultant
deployment is more balanced. With the growth of the
number of deployed nodes, the balance degree gets lower.
This is because, in the high-degree clustering environment,
when the coverage termination condition of VOR is met,
most of the area can be covered by at least one node, but
VOR terminates before nodes in the clustering area scatter
out. Fig. 12b shows the comparison of the number of
rounds. At least 400 deployed nodes are needed to achieve
the best performance, five rounds, for SMART. The worst is
eight rounds. For VOR, a smaller node number leads to
fewer rounds. However, VOR has fewer rounds than
SMART when the node number is smaller than 150.
O-VOR achieves a more balanced degree with a smaller
round number than VOR.
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(c) Standard deviation, n ¼ 10. (d) Moving distance, n ¼ 4. (e) Moving distance, n ¼ 10. (f) Moving distance, n ¼ 10.



Figs. 12c and 12d show the comparisons of several
variations of SMART and also the optimal Hungarian-
based method (OPT) in uniform and normal random
distributions, respectively (n ¼ 10, N ¼ 500). SMARTðlÞ,
SMARTðgÞ, and SMARTðm; 3Þ are simulated. To check
the effect of Step 3 in the threshold-based scan algorithm,
we simulate SMARTðg0Þ, which is SMARTðgÞ without
Step 3. As shown in Fig. 12c, SMARTðmÞ has the most
moving distance, whereas SMARTðgÞ has a smaller
moving distance than SMARTðlÞ. OPT has the smallest
moving distance. Fig. 12d shows the results in normal
random distribution. With the growth of �, the moving
distance decreases, and the number of moves decreases
slightly. SMARTðgÞ and SMARTðmÞ have smaller moving
distances than SMARTðlÞ. SMARTðmÞ has the smallest
among the three. SMARTðlÞ has close or even better
performance than OPT because it does not achieve a
balanced result as OPT does.

Simulation results can be summarized as follows:

1. SMART achieves a more balanced state than DIFF,
EXCH, and VOR sensor deployment methods in
unevenly deployed sensor networks.

2. SMART needs a few rounds, which are bounded by
eight, for load balancing.

3. The centralized optimal algorithm has the best
performance; among all variations of SMART,
SMARTðgÞ has the best overall performance.

4. SMART can be effective when used in relatively
dense sensor networks as a complement for the
existing sensor deployment methods.

5. When the number of deployed nodes is less than
4n2, the performance of SMART is reduced, since

more rounds are needed, and a balanced final state
cannot be achieved.

6. In a sparse network, SMART may need more rounds
than VOR to achieve a balanced degree, but it still
beats VOR in terms of standard deviation.

7 CONCLUSION

In this paper, we have proposed the SMART algorithm,
which is a hybrid approach of the local and global methods.
We have considered a unique issue called “communication
hole,” where certain sensing areas have no deployed
sensors. A method of seed planting has been proposed to
move one sensor to each uncovered area before the
scanning process. We also developed an optimal solution
that is based on the Hungarian method. Simulation results
show that the proposed method can achieve an even
deployment of sensors with modest costs. In the future,
we will perform an in-depth simulation on energy
consumption of sensor deployment algorithms and design
some intracluster balancing algorithms to achieve high-
resolution load balancing. We also plan to consider the case
where only parts of the sensors are mobile. In this case, the
ultimate goal is to maximize the minimum load of these
grids. This is a more general measurement for the balance
degree of the final distribution.
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