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ABSTRACT

The poor performance of the current access point (AP)
selection schemes in infrastructure WLANs motivated inten-
sive studies to balance loads among APs. In this paper, we
model the AP selection problem as the matching problem
in the bipartite graph. Our objective is to maximize the
total load among all APs. We propose a class of localized
heuristics based on different user knowledge models. For
some of these localized heuristics, we prove that there exists
a constant approximation ratio in terms of expected total
load through both mathematical analysis and simulations.

Keywords: Access point selection, bipartite matching, in-
frastructure wireless LAN.

I. INTRODUCTION

Over the last few years, network users have experienced
enormous growth in the adoption of infrastructure wireless
LANs, such as IEEE 802.11. The infrastructure wireless
LAN’s easy installation and low infrastructure cost make
it ideal for network access in offices, campuses, airports,
and hotels. The widespread deployment of IEEE 802.11
networks means that a wireless user is often in the vicinity
of multiple APs with which to affiliate. For a wireless user,
the selection of the proper AP from all available APs is very
important because it has a great impact on his performance.

The current approach to access point selection is based
on the signal strength measured by wireless users. Each in-
dividual user selects the AP with the highest signal strength
from all APs within the vicinity. According to research
[1], [6], [3], this approach can lead to poor performance
for the users because the signal-strength metric does not
consider the load of APs and the amount of contention on
the wireless medium.

Numerous existing works have modeled the AP selec-
tion problem as load balance problems by assuming the
existence of a central node that can collect the global in-
formation and execute the centralized LP-based algorithms,
exploiting the assistance from APs, or through active (or
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passive) measurement on APs so that users can obtain
knowledge on the available (or potential) bandwidth. In this
work, we step back and look at two factors that can affect
the performance of the AP selection problem: the knowl-
edge of wireless users and the timing of the AP selection for
the different users. We only consider the information that
can be collected through some minor modification of the
existing 802.11 protocols. Thus, we focus on the localized
solutions to the AP selection problem.

We adopt the number of users connected to an AP to
model the load capacity of this AP by assuming all users
have the same minimum quality requirement. Thus, we can
model the AP selection problem as a many-to-one (m− 1)
matching problem in the bipartite graph, where each user
can connect to only one AP, while an AP can be connected
by multiple users. In our model, the optimization objective
is to maximize the total load, defined as the total number
of users whose minimum quality requirements are satisfied.

We first consider the localized solution to the special
case, 1−1 matching, i.e., one user matched to one AP, and
extend the results to m−1 matching. In 1−1 matching, we
consider three types of user knowledge models separately.
In each user knowledge model, we further explore the effect
of the order in which users select their APs. For each
case, we propose a localize heuristic. For some localized
heuristics proposed in this paper, we prove that there exists
an approximation ratio in terms of expected total load.

The major contributions of this paper are: 1) we propose
a relatively light-weighted optimization model; 2) we study
the effect of knowledge and the time of AP selection on
the performance; 3) we design an approximation algorithm
with constant average approximation ratio.

The remainder of this paper is organized as follows.
Section II introduces models and notations, and formalizes
the problem. In Section III, we study the 1 − 1 matching
problem from the angle of three types of user knowledge
models and two different orders of the AP selection. Section
IV extends our results to the m − 1 matching problem.
Section V empirically evaluates performance through our
customized simulator. Section VI presents related works.
Finally, Section VII concludes this work and outlines our
future work.
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II. PRELIMINARIES

A. The Network Model

A set of APs and a set of wireless users compose an
infrastructure wireless LAN. We adopt A to denote the set
of APs. Each AP has a fixed transmission range and can
only serve users within its range. The coverage area of the
wireless network consists of the union of the area covered
by each AP in A. We use U to denote the set of wireless
users that reside in the coverage area of the network. In
order to access the wireless network, each user has to
connect to an AP. We assume that the wireless users are free
to move but they tend to stay in the same physical location
for a long period of time. This assumption is backed up by
recent studies of wireless user behavior [2], [8].

We model the network as a bipartite graph (A ∪ U, E),
where E ⊆ A × U is the set of links connecting users to
APs. There is a link between an AP and a user if and only
if the user is within the range of the AP. We call the user
the AP’s neighbor user and the AP the user’s neighbor AP.
We use ui and aj to denote user i and AP j, respectively.
We consider two users neighbors if and only if they are
within the range of the same AP.

The strategy that a user can employ to select an AP
depends on the user’s knowledge. The basic user knowledge
is the information about his neighbor AP. We define this
type of information as 0.5-hop knowledge. Besides that, we
consider 1-hop knowledge and 1.5-hop knowledge. A user’s
1-hop knowledge includes his 0.5-hop knowledge and infor-
mation of his neighbor users. A user’s 1.5-hop knowledge
contains his 1-hop knowledge plus the neighbor APs of his
neighbor users. For example, in Fig. 1, where users and
APs are represented by crossed and circles, respectively,
u1’s 0.5-hop knowledge includes APs a1 and a2, u1’s 1-hop
knowledge further contains user ui (i = 2, 3, 4, 5, 6), and
u1’s 1.5-hop knowledge includes all APs and users in Fig. 1.
The reason that we consider 1-hop knowledge and the 1.5-
hop knowledge models is that the 0.5-hop knowledge alone
cannot help users self-distribute load among APs. Since the
information beyond 1.5-hop knowledge requires multiple
rounds of information exchange, we focus on 1-hop and
1.5-hop knowledge models.

B. Problem Formulation

Our concern focuses on the localized solutions that en-
able as many satisfied users as possible. The satisfied users
denote those users whose minimum quality requirements
are satisfied. The localized solutions means that each user
self-determines which neighbor AP to connect to, and his
decision is based on his local information alone.
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Fig. 1. The graph constructed according to u1’s 1.5-hop information.

To simplify the model, we assume that users are ho-
mogeneous, and hence, users have the same minimum
requirement to the quality such as bandwidth, delay, and etc.
We also assume that there is a limitation on APs’ capacities.
If the number of users connecting to an AP simultaneously
exceeds a certain threshold, the quality of network access
will fall under users’ minimum quality requirement.

Based on the above discussion, the AP selection problem
can be modeled as the m − 1 matching problem in the
bipartite graph. In the m − 1 matching problem, each
user can connect to only one AP, whereas an AP can be
connected by multiple users simultaneously. The objective
of this problem is to find a matching scheme so that the
number of satisfied users is maximized.

There are two major differences between the traditional
max-flow based algorithms [4] and our localized solu-
tions for the bipartite matching problem: 1) our localized
solutions do not require central node to collect global
information and compute the optimal solution accordingly;
2) our localized solutions are non-preemptive, i.e., once a
user matches an AP, this matching is determined and other
users cannot force him to switch to other APs.

III. SOLUTIONS TO THE 1− 1 MATCHING PROBLEM

We first consider a special case of the m − 1 bipartite
matching problem: the 1 − 1 bipartite matching problem,
where at most one user is allowed to connect to an AP,
i.e., the threshold of any AP is 1. Under each user knowl-
edge model, we consider two different AP-selection orders:
simultaneous connection and sequential connection.

A. The 0.5-hop Knowledge Model

The existing 802.11 based network protocols provide the
0.5-hop knowledge through signal detection of APs on the
user side. We first consider the simultaneous connection,
where users connect to their intended APs simultaneously.

1) Simultaneous Connection: The simultaneous-
connection based schemes can be regarded as a variations
of the greedy method in the current 802.11 protocols,
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where each user connects to the neighbor AP with the
strongest signal. Because users have no knowledge about
their neighbor users, user strategies can regarded as being
made at the same time, even though they may not be made
simultaneously.

In Algorithm 1, we formally present a generic user strat-
egy for simultaneous connection in the 0.5-hop knowledge
model. We assume user ui has k neighbor APs denoted as
{a1, a2, · · · , ak}. ui connects to aj with probability p(aj).

Algorithm 1 Simu-Connection (ui) in 0.5-hop Model
Input: {a1, a2, · · · , ak}

1: calculate p(aj), j ∈ {1, · · · , k}
2: connect to aj with probability p(aj)

Different implementations of the probability calculation
in the above strategy can derive different methods. For
example, by assigning probability 1 to the neighbor AP
with the strongest signal and probability 0 to all the other
neighbor APs, the generic scheme can be reduced to the
greedy method. By assigning probability 1

k to each neighbor
AP, the generic scheme is reduced to the method in that each
user connects to his neighbor APs with equal probability.

In this generic scheme, the conflict is incurred by mul-
tiple users connecting to the same AP. In that cases those
users can reduce their connection probabilities to reduce
conflict. For example, if the number of users that select
an AP is m, each of those users can set his connecting
probability to 1

m . A trade-off exists between the conflict
probability and the connection probability.

2) Sequential Connection: To reduce the conflict that
caused by multiple users connecting to the same AP at
the same time, we consider a back-off based sequential
connection scheme. We assume that the time consists of
multiple continuous time slots. Initially, each user sets a
back-off counter to each neighbor AP. The value of the
counter (in terms of the number of back-off slots) associated
with each AP is reverse proportional to the received signal
strength indicator (RSSI) of the AP, i.e., the signal strength
of the AP sensed by the user. The counter of each neighbor
AP will decrease by 1 for every l slots. At the beginning of
every l slots, if any counter becomes 0, a user randomly
selects a slot within the next l slots to connect to the
corresponding AP. Once an AP is connected by a user, the
AP will send an acknowledgement message to the user. By
overhearing the message, all the neighbor users of this AP
will know this AP is occupied. Those unconnected neighbor
users will remove the AP from their neighbor AP sets.

Note that the conflict probability is proportional to the
value of l. The larger the value of l, the lower the conflict

Algorithm 2 Sequential Connection (ui) in 0.5-hop Model
Input: N(ui)← {a1, a2, · · · , ak}

1: status ← unconnected; /*initialize status*/
2: initialize Bui

(aj) for j ∈ {1, · · · , k};
3: while status = unconnected do
4: if a is connected by u then
5: remove AP a from N(ui);
6: if N(ui) = ∅ then
7: quit;
8: Bmin ← minaj

Bui
(aj);

9: a1 ← arg minaj
Bui

(aj);
10: if Bmin = 0/*back-off timeout*/ then
11: r ← RANDOM(k);
12: schedule connection to a1 at the r-th slot from

now;
13: if t mod k = 0 and Bui

(aj) > 0 then
14: Bui

(aj)← Bui
(aj)− 1 for j ∈ {1, · · · , k} ;

probability. In Algorithm 2, we formally present our back-
off based strategy for each user. We assume that each
user initially has at least one neighbor AP. The following
notations and operations are used in the back-off based
strategy: 1) t: the timer that reduced 1 at the beginning of
every l time slots; 2) N(ui): the set of neighbor APs of user
ui, i.e., the set of APs that ui can connect to; 3) Bui

(aj): the
back-off counter for neighbor AP aj ; 4) Bmin: the back-
off counter with the smallest value; 5) a1: the neighbor
AP with the smallest back-off counter; 6) RANDOM(k):
the random number generator that generates random integer
number range from 0 to l − 1.

B. The 1-hop Knowledge Model

Although the back-off based sequential connection
scheme can reduce the conflict probability, it cannot avoid
conflict. In this subsection, we consider a conflict-free
heuristic based on 1-hop knowledge. The basic idea of this
heuristic can be simply described in the following steps: 1)
each user selects the neighbor AP with the strongest signal
strength; 2) each user informs his selected AP about RSSI
through a message; 3) upon receiving messages from users,
each AP sends feedback to inform those users that sends
RSSIs to the AP about which user sensed the highest RSSI;
4) only the user that sensed the highest RSSI will connect
to his selected AP. Unlike the greedy method in the 0.5-hop
knowledge model, where each user connects to his selected
AP, in this localized heuristic, a user connects to his selected
AP only if he is the best user among all the users that also
select that AP. The best user denotes the user that senses
the highest RSSI from that AP.
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Algorithm 3 Simultaneous Connection (ui) in 1-hop Model
Input: {a1, a2, · · · , ak}

1: sense signal strength Sui
(aj), j ∈ {1, · · · , k};

2: a← arg maxaj
Sui

(aj); /*find the best AP*/
3: send message to aj about Sui

(aj), j ∈ {1, · · · , k};
4: if receive feedback from a then
5: if ui = arg maxu Su(a) then
6: connect to a;

The formal description of the heuristic is presented in
Algorithm 3, where Su(a) represents the RSSI of a sensed
by user u. Although this heuristic is relatively simple, it can
achieve a constant approximation ratio under the reasonable
assumptions that the RSSI of an AP sensed by a user is
proportional to their distance, and both APs and users are
uniformly deployed in the coverage area of the wireless
network. Theorem 1 presents the average approximation
ratio of our heuristic, which is the average number satisfied
users by our heuristic to the maximum number of satisfied
users by the optimal solution.

Theorem 1: If both APs and users are uniformly de-
ployed in the coverage area, the average approximation ratio
of Algorithm 3 is at least 1− 1

e .
Due to space limitation, we omit the proof of this

theorem. The above heuristic is conflict-free. Therefore,
the performance of this heuristic can be further increased
through iterative executions.

C. The 1.5-hop Knowledge Model

In this subsection, we consider the model where each
user has 1.5-hop knowledge, i.e, users know not only their
neighbor users but also those neighbor users’ neighbor APs.
For example, consider the example shown in Fig. 1. If u1

has 1.5-hop knowledge, he knows not only his neighbor
user u6 but also u6’s neighbor AP a8.

To obtain this 1.5-hop knowledge, we assume that each
user needs to register at each neighbor AP beforehand. To
register at a neighbor AP, a user not only provides his own
information such as ID but also the RSSIs of his neighbor
APs. After the registrations of all neighbor users, an AP
notifies its neighbor users through a feedback message,
containing the IDs of each neighbor user, the neighbor AP
set of each neighbor user, and the associated RSSIs.

Based on the 1.5-hop knowledge, each user can construct
a local graph for each neighbor AP. The local graph for an
AP includes the AP itself, all of its neighbor users, and
all of the neighbor APs of those users, i.e., the 1.5-hop
knowledge of this AP. For example, Fig. 2 contains two
local graphs for u1’s two neighbor APs, a1 and a2, as shown

a
1u

4a
u2

a

5

9

7

2u

u

a13

4

a
a

(a) The local graph for a2.
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(b) The local graph for a1.

Fig. 2. The graphs constructed according to the knowledge that user
u1 has, as shown in Fig. 1. The local graph for a2 is the common
knowledge for users u1, u2, u3, u4, and u5, while the local graph for a1

is the common knowledge of users u1, u2, u5, and u6.

in Fig. 2 (a) and 2(b), respectively. An important property
of the local graph for an AP is that the local graph is the
common knowledge of the neighbor users of the AP.

In this model, we assume that each user selects its AP
in a greedy way, i.e., a user considers his first choice, the
neighbor AP with the best signal strength. If its first choice
is not available (i.e., connected by other users), a user will
consider its second choice, and so forth.

1) Simultaneous Connection: We first consider the si-
multaneous connection. The formal description of the
heuristic is in Algorithm 4, where the following additional
notations are used: 1) Qui

: the priority queue of user ui,
which stores the neighbor APs of ui according to their
priority; 2) Qa: the priority queue for AP a, which records
the neighbor users of a and is maintained at the user side; 3)
DEQUE(·): fetch the highest-priority element in the priority
queue and remove this element from the queue thereafter.

Algorithm 4 Simu-Connection (ui) in 1.5-hop Model
1: statusui

← unconnected;
2: a← DEQUE(Qui

);
3: build local graph for a if a is not empty; otherwise,

quit;
4: construct Qa for users in the local graph;
5: u← DEQUE(Qa);
6: while ui �= u do
7: statusu ← connected;
8: same operations as lines 8-11;
9: while statusu =connected do

10: u← DEQUE(Qa);
11: if ui = u (ui has the highest priority) then
12: status ← connected;
13: establish Connection(ui, a);

In the above strategy, user ui repeatedly constructs the
local graph for his first choice, second choice, and so forth,
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until a connection can be established between a neighbor
AP and ui, or no neighbor AP is available. Lines 2-5
represent the set of operations that fetch the AP with the
highest priority in user ui’s priority queue, construct the
local graph for the AP if the AP exists, and find the users
with the highest priority in the local graph. To determine
whether a user can establish a connection to a neighbor
AP, the user has to maintain two priority queues: one for
the neighbor APs, and the other for the neighbor users
in the corresponding local graph. The former is fixed in
the strategy, while the latter is dynamic because the user
dynamically constructs the local graph for his neighbor APs.
In the local graphs for ui’s second choice, third choice, etc,
if ui finds that the users with higher priority has already
connected to some other APs, ui will ignore those users.

We should note that Algorithm 3 can be regarded as a
special case of Algorithm 4 because users in Algorithm 3
consider the AP with the highest signal strength alone,
while users in Algorithm 4 take into account all neighbor
APs one by one in the order of the sensed signal strength.
Therefore, the performance of Algorithm 4 should not be
worse than that of Algorithm 3, and hence, the approxi-
mation ratio of Algorithm 3 can also be regarded as a low
bound for Algorithm 4.

Although we provide additional chances for those users
who lose in the competitions for their first choices, not
every user can obtain the additional chances that belong
to him because every user has only 1.5-hop knowledge.
For example, in Fig. 2, the first choices of u2, u3 and u4

are all a2. The second choices of u2 and u3 are both a4.
The second choice of u4 is a7, which is the first choice of
another user (not drawn in Fig. 2) and therefore be selected
by another user. The third choices of u3 and u4 are both a5.
There is no collision if u4 selects a5 because u3 has already
taken a4, but u4 does not know it, and hence resigns from
the competition for a5.

2) Sequential Connection: The above problem of the
simultaneous AP connection can be mitigated by iteratively
running Algorithm 4. We assume that, at the end of each
iteration, the matched user-AP pairs are the common knowl-
edge for their neighbor users.

IV. EXTENSION TO THE M-1 MATCHING PROBLEM

With some modifications, the localized heuristics for the
1− 1 matching problem can also be extended to the m− 1
matching problem. For the simultaneous AP connection in
the 0.5-hop knowledge model, the users’ strategies for the
1− 1 matching and the m− 1 matching are the same. The
only difference is the classification of the satisfied users
and the unsatisfied users. In 1 − 1 matching, if more than
one users connect to the same AP, all users connecting to

this AP are dissatisfied, while in m− 1 matching, a user is
unsatisfied if and only if the number of users connecting to
the AP selected by the user is larger than the AP’s threshold.

For the sequential AP connection in the 0.5-hop knowl-
edge model, we need to change the lines 4 − 5 in Algo-
rithm 2 to the following pseudo codes, where we introduce
two notations: 1) Ca: the counter to record the number of
users connected to AP a; 2) Ta: the threshold of AP a, i.e.,
the maximum number of users that can connect to a and
still meet the minimum quality requirement.

Algorithm 5 Modification (ui)
1: if Ca < Ta then
2: Ca ← Ca + 1;
3: else if Ca = Ta then
4: remove AP a from N(ui);

We also need to change the conflict condition to Ca ≥ Ta,
i.e., the number of users connected to AP a larger than its
threshold. For the simultaneous AP connection in the 1-
hop knowledge model, we need to modify the condition
for a user to be able to establish a connection to a neighbor
AP. In the 1 − 1 bipartite matching problem, a user is
able to establish a connection to a neighbor AP if and
only if his priority is the highest among the neighbor
users of the neighbor AP. In the m − 1 bipartite matching
problem, a user can connect t a neighbor AP if his rank
is within the first Ta neighbor users of the neighbor AP.
The modification for the simultaneous AP connection in
the 1.5-hop knowledge model is the same as that for the
simultaneous AP connection in the 1-hop knowledge model.

V. SIMULATION

In this evaluation, our concern focuses on two metrics:
the total load and the number of rounds (for the sequential-
ized AP selection strategy only). We will consider the four
localized heuristics for the 1−1 matching model separately,
and compare them with the optimal matching algorithms.

We simulate a stationary network with APs and users
randomly located in a 100m × 100m area. We assume all
APs are of the same type, initially have the same transmis-
sion range, and can be deployed in this area arbitrarily. So
are the users. In the simulation, we consider the following
tunable parameters: (a) n, the number of users. (b) k, the
number of APs, (c) r, transmission range of APs. (d) l, the
number of slots per round in the back-off based heuristic.

One of the network configurations that affect the perfor-
mance of the localized heuristics is the AP density, which
can be reflected by parameters k and r. The greater the
number of APs, or the larger the transmission ranges, the
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(b) Networks with high AP density.

Fig. 3. The experiment on the localized heuristics for the simultaneous
AP selection in the 0.5-knowledge model.

higher the AP density. The AP density has a great impact on
the performance of the localized heuristics. In the extreme
case, if the transmission ranges are large enough so that
each AP can cover the whole area, users can connect to
any AP, and thus, the major concern is to avoid conflicts.

We consider two types of network configurations: low
AP density and high AP density. The AP density can be
reflected by parameters k and r. In the low AP density
network, we set k = 20 and r = 20m. In the high
AP density network, we set k = 50 and r = 50m. In
any experiment, the performance of the heuristic will be
compared with the optimal solution, which is from the
augmentation-path based max-flow algorithm.

We first consider three variations of the localized heuris-
tic for the simultaneous AP connection in the 0.5-hop
knowledge model. The three variations are 1) the greedy
method, where users connect to the neighbor AP with the
highest priority, 2) the random-selection method, where
users randomly connect to one of neighbor APs with equal
probability, and 3) the double-random-selection method,
where users first randomly determine whether they will be
connecting to the network or not. If they determine that they
will connect to the network, they will randomly determine
which neighbor AP to connect to.

In the double-random-selection method, the probability
to connect to the network depends on the ratio of the
number of APs to the number of users. If the ratio is larger
than 1, the probability of connection is 1; otherwise, the
probability is equal to the ratio. Therefore, in the case where
the number of APs is more than the number of users, the
double-random-selection method is the same as the random-
selection method.

Comparing the performance in the high AP density
network (Fig. 3 (b)) and that in the low AP density network
(Fig. 3 (a)), we find that it is easier for the greedy method to
incur conflicts in the high AP density network. The reason
is that each user has more choices in the high AP density
network. All users tend to select the AP with the highest
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Fig. 4. The experiment on the localized heuristics for the 1.5-hop user
knowledge model.

priority, which in turn causes the conflicts at the AP with
the highest priority.

If the number of users is much more than the number
of APs, the performance of the random-selection method
decreases dramatically, and can be even worse than that of
the greedy method. The reason is that if each user insists on
connecting to an AP in the case where there are more users
than the APs, it is highly possible users will connect to
the same APs. In the greedy method, the conflicts occur at
the APs with higher priority, while in the random-selection
method, the conflicts can be anywhere.

Furthermore, we can see that the performance of the
optimal method increases dramatically in the high AP
density environment because each user can connect to
almost every AP. We can also find that the performance
of the double-random-selection method is better than that
of the random-selection method when the number of users
is larger than the number of APs because some users do not
join the competition for APs, which mitigates the conflicts.
Although our double-random-selection implementation re-
quires global information, the number of users and APs, the
estimation of the bandwidth of neighbor APs can be applied
to determine the probability to connect the network.

In the second experiment, the results of which are
shown in Fig. 4, we consider the heuristics for the 1.5-
hop knowledge model. We compare three heuristics: the
aggressive simultaneous-AP-connection heuristic (a varia-
tion of Algorithm 4, where a user connects to his second
choice in the event that he cannot determine if it is safe to
connect to neighbor APs other than the best AP without
introducing conflicts), the conservative simultaneous-AP-
connection heuristic (Algorithm 4), and the iterative heuris-
tic based on the conservative simultaneous-AP-connection
heuristic. When the number of users is relatively small,
the aggressive heuristic has better performance than that of
the conservative one because the probability of connecting
an unoccupied AP is relatively high. However, when the
number of users is much more than the number of APs,
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Fig. 5. The experiment on all localized heuristics for both 0.5-
knowledge model and the 1.5-hop user knowledge model.

the conflicts caused by the aggressive heuristic cancel
its benefit, i.e., enabling more users (either satisfied or
unsatisfied) to connect to APs. We also observe that the
number of satisfied users in the iterative heuristic is almost
the same as that of the optimal solutions. The reason is
that the conservative heuristic does not incur conflicts, and
by repeatedly running the conservative heuristic, it is highly
possible that each unoccupied AP will be connected by one
user, especially when the number of users is large.

In the third experiment, the results of which are shown
in Fig. 5, we select one or two representative heuristics
from each model and compare their performances. Among
the five heuristics, the iterative heuristic in the 1.5-hop
knowledge model has the best performance, while the
back-off heuristic in the 0.5-hop knowledge model has the
second to the best performance. The performance difference
between these two heuristics is expected because the former
heuristic has more knowledge.

VI. RELATED WORK

Currently, most of the IEEE 802.11 protocols adopt the
received signal strength indicator (RSSI) based approach
in order to select an AP to affiliate with. Previous works
[1], [3], [6] have shown that the RSSI-based approach
can lead to poor performance in terms of the total load.
To address this problem, existing works [1], [3], [6], [9],
[10] have proposed numerous approaches. All of them are
essentially various AP access control schemes. Most of
these approaches were evaluated through simulations or
experiments on test beds. To the best of our knowledge,
there are only two types of algorithms that provide perfor-
mance guarantees. One is based on the linear programming
(LP) approach [5], and the other is based on the simulated
annealing technique [7].

However, the LP-based approach is centralized, which
cannot adapt to the self-organized wireless LANs. Although
the simulated annealing technique and the primal-dual
scheme (derived from the LP) can be implemented in a

localized manner, both of them require the propagation of
global information and a large number of rounds in order
to converge. This is not desirable in an environment with
a highly dynamic user population. Therefore, we propose
a class of pure, localized algorithms, parts of which can
provide performance guarantees and do not require the
propagation of global information.

VII. CONCLUSIONS

In this work, we model the AP selection in 802.11
wireless networks as the m − 1 matching problem in the
bipartite graph. We analyze the user knowledge and the
timing of the AP selection on the performance, and propose
several localized heuristics adaptable to the existing 802.11
wireless networks. We adopt the 0-1 function to classify
satisfied users and unsatisfied users. That is, when the
number of users connected to an AP exceeds the some limit,
all users become unsatisfied. In the future, we will explore
other possible functions to characterize the satisfaction of
wireless users.
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