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Abstract— Efficient searching is one of the important design
issues in peer-to-peer (P2P) networks. Among various searching
techniques, semantic-based searching has drawn significant atten-
tion recently. Gnutella-like efficient searching system (GES) [18]
is such a system. GES derives a node vector, a semantic summary
of all of the documents on a node, based on vector space model
(VSM). The topology adaptation algorithm and search protocol
are then designed according to the similarity between node
vectors of different nodes. However, although GES is suitable
when the distribution of documents in each node is uniform, it
may not be efficient when the distribution is diverse. When there
are many categories of documents at each node, the node vector
representation may be inaccurate. We extend the idea of GES
and present a class-based semantic searching system (CSS). It
makes use of a data clustering algorithm, online spherical k-
means clustering (OSKM) [16], to cluster all documents on a
node into several classes. Each class can be viewed as a virtual
node. Virtual nodes are connected through virtual links. As a
result, class vector replaces node vector and plays an important
role in the class-based topology adaptation and search process,
which makes CSS very efficient. Our simulation using the IR
benchmark TREC collection demonstrates that CSS outperforms
GES in terms of higher recall, higher precision and lower search
cost.

Keywords: Class-based search, GES, semantic clustering, topol-
ogy adaptation, P2P networks.

I. INTRODUCTION

There has been a growing interest in peer-to-peer (P2P)
networks since applications like Napster and Gnutella became
successful in the past few years. P2P networks can be classified
into two categories according to the control over data location
and network topology: structured and unstructured. Structured
P2P systems such as CAN [10], Pastry [11], and Chord [13]
can guarantee to find existing data and provide bounded data
lookup efficiency. However, it suffers from high overhead to
handle node churn, which is a frequent occurrence of node
joining/leaving. In addition, these systems support exact-match
lookups well but are not suitable for full-text content search.
Unstructured P2P systems such as Gnutella are more flexible
in that there is no need to maintain special network structure,
and they can easily support complex queries like keyword/full
text search. The drawback is that their routing efficiency is
low because a large number of peer nodes have to be visited
during the search process.
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A number of search techniques have been proposed for
unstructured P2P networks. They are either blind searches like
random walk [7], or informed searches like routing indices [5].
These techniques are designed to eliminate high-cost flooding.
Moreover, some extensions have been made to strengthen
these techniques, such as k-walker random walk [7], iterative
deepening [15], directed BFS [15], and so on. However, none
of the above utilize VSM (vector space modeling) or LSI
(latent semantic indexing), so they are not suitable for semantic
searching. Some searching techniques introduce a semantic-
based search mechanism which supports topic (keyword or
full-text) searching, such as [12], [17]. Some of them utilize
VSM, others do not. Some are hierarchically centralized,
others are decentralized.

The topology of an unstructured P2P network is a ran-
dom graph. Recently, some schemes [6], [9], [14] have been
proposed to build a semantic overlay on top of the P2P
overlay. In the semantic overlay, semantically related nodes are
connected to each other and form a semantic group. Gnutella-
like efficient searching system (GES) [18] proposed by Zhu
et al. summarizes all the documents at each node into an
average term vector (named node vector) based on VSM. Its
features include, (1) semantic clusters (nodes are organized
into clusters according to their node vectors), (2) semantic
or random link (physical link which connects two nodes
whose node vectors are semantically relevant or irrelevant,
respectively), (3) node-based topology adaptation algorithm,
and (4) node-based search protocol which combines biased
walk and flooding. The drawback of GES is that if there are
different categories of documents on a node, the node vector
representation may be inaccurate. For example, files on a node
may fall under music class, book class, and sports class.

In this paper, we present a distributed, dynamic, class-
based semantic searching system (CSS) in unstructured P2P
networks. CSS extends GES by clustering all documents on
a node into different classes. The goal of CSS is to make
searching more efficient, which means achieving higher recall
with lower search cost. CSS builds virtual semantic groups and
uses an informed search. CSS uses class vectors to represent
document classes on a single node. The virtual short and long
links replace physical semantic and random links in GES. With
the above variation, we develop a new class-based topology
adaptation algorithm and a class-based search protocol which
directs a query to the most relevant virtual semantic eroun.

The summary of our contributions in this paper
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follows:

o We develop a new distributed, dynamic, and class-based
IR search system. The new concepts of class vector
and virtual link are introduced. The class-based topology
adaptation algorithm has virtual nodes (namely classes
on each node) organized into virtual semantic groups
through virtual links between classes. The class-based
search protocol for CSS is effective in retrieving relevant
documents.

o We take advantage of state-of-the-art document clustering
algorithms, in particular online spherical k-means clus-
tering (OSKM) [16], to cluster documents at each node
efficiently and precisely.

o We use the IR benchmark TREC collection to evaluate
our search system. The experimental results show that
our system is more efficient than GES in all cases.

The rest of the paper is organized as follows. We survey
related work in Section II. The preliminaries about VSM and
GES are introduced in Section III. We describe the design of
each component of CSS in Section IV. Simulation results are
presented in Section V. The paper is concluded and future
work is discussed in Section VI.

II. RELATED WORK

An informed search such as routing indices [5], directed
BFS [15], and local indices [15] achieves more efficiency
than a blind search by having each node forward a query
to a subset of neighbors based on previous query results or
the summaries of documents stored in neighbors. Similarly, in
CSS, nodes replicate the information about the class vectors
of each neighbor and use directed walks. However, they differ
in the information kept for neighbors.

Recently, the semantic-based search mechanism has become
widely used in literature. Zhou et al. [17] extended Gnutella, a
well-known P2P system, by adding a content-based relevance
mechanism. The idea is to estimate the relevance of peers
locally when receiving query messages. Only those peers
deemed as relevant will receive the forwarded query. The sim-
ilarity between the query model and the document collection
model is then measured. Our search protocol is inspired from
this method but takes a further step by directly calculating the
similarity between the query vector and the class vector, which
is more accurate. Shen et al. [12] proposed a semantic-based
document search system which is based on a hierarchical sum-
mary structure. This system supports semantic-based content
searching by utilizing VSM and LSI, as in CSS. However, it
requires the underlying P2P architecture to be constructed with
superpeers. It is a hierarchically centralized system in which a
centralized index is maintained at a server in superpeers, and
all queries are directed to it first. In contrast, our system CSS
is, in essence, totally decentralized.

Search techniques based on semantic groups (clusters) are
also very useful. A semantic overlay is built on top of the P2P
network before the search process. In [6], the semantic overlay
network (SON) is built as follows. First, the documents at
each node are classified and a document hierarchy is spread
throughout the network. Second, the SON (clusters) is built
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according to that document hierarchy. Finally, each new node
joins the SON in a Gnutella fashion (flooding) by finding a
proper cluster. In [14], a small world structure is built and
maintained by using a gossiping mechanism. Each peer node
periodically sends out a query containing its own profile. When
it receives an answer to its query, it will analyze the answer to
decide whether to add the candidate node to its neighborhood
or not. In some cases, other neighbors may have to be replaced
due to size constraint. The topology adaptation algorithm in
CSS is inspired partly from the above articles. However, it is
different in that it uses random walk, not flooding, to build
semantic groups and its relevance calculation formula differs
from that in [14]. In [9], Ng et al. proposed a query routing
model called firework query model on top of the clustered P2P
network. It clusters P2P networks based on the characteristics
of peer nodes and introduces the notion of attractive and
random links, which resembles CSS. However, geographical
information is used to determine the similarity between peer
nodes.

The topology adaptation algorithm in CSS bears similarity
to the following papers. In [2], SETS tries to reorganize
the network topology so that topic-related peers are close to
each other. However, in SETS, a single designated node is
responsible for clustering nodes into topic segments, which is
actually not distributed. In [4], Gia uses a topology adapta-
tion algorithm to balance the capacity of the network. We
borrow the idea of the three-way handshake protocol for
node join/leave from [4] and simplify it by removing the
satisfaction level. The topology adaptation algorithm in CSS
can be viewed as the extension to that in GES [18]. However,
they differ from each other as follows. First, CSS uses class-
based virtual links to assist topology adaptation algorithm
while GES is node-based. Second, CSS reduces two host
caches (semantic and random caches) in GES into one since
there is no corresponding concept of semantic and random
links in CSS. Finally, CSS uses a novel formula to calculate
the relevance score between nodes. The score is crucial to our
topology adaptation algorithm.

There are many document clustering algorithms. They can
be classified as k-means, fuzzy c-means, hierarchical cluster-
ing and mixture of Gaussian. K-means is an exclusive cluster-
ing algorithm. Online spherical k-means clustering (OSKM)
[16] is an online version of the spherical k-means algorithm
based on the well-known winner-take-all competitive learning.
We choose it to cluster documents at each node because it can
achieve much better clustering results than many others and
its implementation is not too complex to handle.

III. PRELIMINARIES
A. VSM

The vector space model (VSM) [3] is a way of representing
documents through the words (terms) that they contain. It is
a standard technique in information retrieval. In VSM, each
document or query is represented using a term frequency
vector. In each vector, the terms are stemmed with stop words
(functional words like “is”, “for”, “the”) removed. Sunnose a
collection includes two documents. The content of d
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Indexed Term all back | dog fox jump | lazy

Document 1 0 1 1 1 1 1

Document 2 1 0 0 0 0 0

Indexed Term | men | now | over | quick run time

Document 1 0 0 1 1 0 0

Document 2 1 1 0 1 1 1
TABLE I

AN EXAMPLE SHOWING VSM REPRESENTATION.

one is “The quick fox jumped over the lazy dog’s back”.
The content of document two is “Now is the time for all
men to run quickly”. Table I shows the VSM representation
of the collection. In general, a collection of n documents
(D1, Do, -+, D,,) with t distinct terms (11,75, -+ ,T}) can
be represented by a (sparse) matrix, in which w;; means the
weight of term ¢ in document j.

Ty T, - T,

Dy wyr wor W1

Dy wiz  wa W2
_Dn Win W2n Win |

In addition, each term is assigned a weight that reflects its
importance in describing the document content. Among many
term weighting schemes, the “dampened” tf scheme weighs
each term in the form of 1+log(¢f) (tf means term frequency).
It does not require global information, which fits semantic
search in P2P networks.

There are many different ways to measure how similar two
documents are, or how similar a document is to a query. The
cosine measure is a very common similarity measure. Given a
normalized document vector D and a normalized query vector
Q, the relevance score is calculated as:

REL(D,Q) = Y fup % fiq

teD,Q

(D

In the above formula, ¢ is a common term occurring in both
D and Q. f; p is the weight of term ¢ in D and f; g is the
weight of term ¢ in Q.

B. GES Overview

GES [18] is a distributed, content-based IR system proposed
by Zhu et al. There are four components in GES that are also
in CSS. However, they are different in that CSS introduces the
new concept of class vector and makes all these components
class-based. In addition, a query is routed through virtual
links in CSS rather than through physical links in GES. The
following is a brief summary of the GES version of these
components.

Node Vector and Physical Link: A node vector is a com-
pact outline of all documents on a node, which is indeed an
average normalized term vector derived from the term vectors
of all documents on a node. To judge whether two nodes or
a node to a query are relevant, the cosine similarity measure
between node vectors and query vector is used. A physical
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link is a link that connects two nodes in the P2P network.
Physical links can be further classified as semantic (relevant)
or random (non-relevant) links based on the relevance score
of the node vectors of the two adjacent nodes.

Topology Adaptation Algorithm: The goal is to organize
relevant nodes into semantic groups through semantic links.
The algorithm is implemented in a distributed manner. Each
node periodically issues two random walk query messages
that contain its node vector. One is for nodes whose node
vectors are sufficiently relevant to the node vector of the query
source, the other is for non-relevant nodes. These two kinds
of candidate nodes selected by the query are put into the
query source’s semantic and random host caches, respectively.
After that, each node periodically checks these two caches for
semantic or random neighbor addition/replacement based on
the relevance score calculated from node vectors. When the
number of neighbors reaches the maximum limit, an existing
neighbor has to be dropped before adding a new neighbor.

Selective One-Hop Node Vector Replication: Each node
maintains the node vectors of its random neighbors to assist
the informed search process. The node vectors of semantic
neighbors are not replicated.

Search Protocol: GES uses a biased walk rather than a
random walk to forward a query through random links. Each
node looks up its local documents satisfying the query. If at
least one relevant document is found on a node, this node is
called semantic group target node. This target node terminates
the biased walk and starts flooding the query along its semantic
links. If no relevant document is found, the node forwards
the query to the random neighbor whose node vector is most
relevant to the query vector. This two-stage search protocol
makes a query walk into a proper sematic group and then
retrieves many useful responses within it. Besides, the book-
keeping technique is also used in GES to sidestep redundant
paths.

IV. SYSTEM DESIGN
A. Overview

In CSS, each node contains several classes of documents
and has corresponding class vectors as a summary of the
semantic content on each node. Each class may have two types
of virtual links, short and long links that connect with similar
and dissimilar classes on its neighbor nodes respectively.
The topology adaptation algorithm reorganizes the network
according to the similarity of the contents on different nodes.
The class-based search protocol routes a query through long
links to the most relevant virtual semantic class group and
then floods the query within that group to retrieve relevant
documents.

B. Class Vector and Virtual Link

A class vector is a centroid vector of all documents in a
class. We calculate class vectors on a node based on VSM as
follows. First, a term vector is derived to represent a document,
in which each term’s weight is assigned by its frequency in that
document. Second, we re-weigh each term using “damnened”
tf scheme in the form of 1 + log(¢f). Third, we nc
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the weighed term vector to unit length. Fourth, we feed
all processed term vectors (corresponding to all documents
on a node) to the OSKM [16] clustering algorithm. Finally,
given the number of classes you want to cluster (e.g., 6),
the algorithm outputs the given number of normalized class
vectors and a list showing which document belongs to which
class.

Given two classes of documents (class X and Y), their
relevance score is the cosine similarity of their normalized
class vectors listed below:

Z W, x X Wty

REL(X,Y) )
teX,Y

In this formula, ¢ is a common term occurring in both class
vector X and class vector Y. wy x is the weight of term ¢ in
X, and wy is the weight of term ¢ in Y. If the relevance
score is no less than a certain threshold, these two classes are
considered relevant, otherwise not.

Sometimes we need to define the relevance between a
normalized class X and a normalized query Q. The following

formula applies:
Z W, x X We,Q
teX,Q

REL(X,Q) = 3)

In CSS, we build virtual links on top of physical links.
Physical links are the P2P overlay links that connect peers.
Virtual links connect two classes on different nodes. Formally,
let E be the set of physical links and E' be the set of virtual
links. Thus, CSS makes a many-to-one mapping from E to
E. Tt means that many virtual links can be mapped to one
underlying physical link.

The goal of conceptual virtual links is to connect classes
of documents on different nodes virtually. If the relevance
score between two classes is no less than short_rel_thres,
we build a virtual link between them and call it short link.
If the relevance score between two classes is no more than
long_rel_thres, we build a virtual link between them and call
it long link. Note that it is necessary for each document class
on a node to have at least one long link to each of its neighbors
because otherwise the directed walk in the search protocol
would not work. So if the relevance scores of all virtual links
coming from one class are higher than long_rel_thres, we
just pick the link with the lowest score as the long link.

Therefore, we do not classify physical links like in GES.
Instead, we classify virtual links as short and long links in
CSS. The short and long links can be considered as the
extension of semantic and random links in GES. Note that
we use two thresholds to classify virtual links instead of the
node_rel_threshold in GES. The reason is that we do not
want to build a virtual link between classes with relevance
scores not high or low enough (e.g., 0.5). Using two thresholds
yields better classification.

Fig. 1 shows an example of a physical link and three virtual
links. The relevance score between class 1 on node X whose
content is about baseball and class 1 on node Y whose content
is about football is higher than short_rel_thres, so a short link
is built since these two classes both belong to sports. On the
contrary, the relevance score between class 1 on node X and
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Fig. 1. Class vector and virtual link (C'1,; means class 1 on node X).

class 2 on node Y whose content is about cooking is lower
than long_rel_thres. So a long link is built between them
because the two classes are not relevant. There is no virtual
link built between class 1 on node X and class 3 on node Y
because they have medium relevance.

C. Topology Adaptation Algorithm

The topology adaptation algorithm is an important part
of our search system. It aims not only to maintain node
connectivity but also to achieve a refined network topology
for better search performance. Simply speaking, it aims to
find “good” neighbors for each node in a distributed manner.
The main goal of the topology adaptation in GES [18] is
to ensure that relevant nodes are organized into semantic
groups which may be relevant to the same queries. Our
topology adaptation algorithm has to consider more factors
since class vectors on a node play an important role. Our
goal is to ensure that (1) relevant classes on different nodes
are connected through virtual similar links (namely short
links), and that (2) each class should have enough virtual
dissimilar links (namely long links) in order to discover proper
virtual semantic groups. Short links and long links are both
valuable because during the search process a query is flooded
through short links and directly routed through long links. The
simulation result shows that they both affect the performance
greatly. So we need a criteria to judge whether a node is a good
candidate to be a neighbor or not. A formula is designed to
calculate the overall_score between two nodes. We name it
overall_score since it considers both relevance factor (short
links) and non-relevance factor (long links). Given two nodes,
the overall_score is defined as follows:

1) Find all short and long links by calculating the rele-
vance scores between all class vectors of the two nodes
using formula (2). The relevance scores of a short link
and a long link are denoted by rel_score_short and

rel_score_long, respectively.
2) Define a medium value:

rel_med = (short_rel_thres + long_rel_thres)/2

3) Sum up the differences between rel_score_short and
rel_med for all short links. Similarly, the differences
between rel_med and rel_score_long for all lo
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are summed up:

sum_dif f_short =

>

all short links

>

all long links

sum_dif f_long = (rel-med — rel_score_long)

4) Add a weight factor w:

overall_score = sum_dif f long + w - sum_dif f_short

When a node joins the network, it first randomly connects to
other nodes using a bootstrapping mechanism as in Gnutella.
At this time, it is not aware of any content (e.g., class vectors)
of other nodes and its classes do not belong to any virtual
semantic group. This node then periodically issues a topology
query message for such information. The query is routed
throughout the network using random walk bounded by a TTL
(time to live) until sufficient responses are obtained. This kind
of query is different from the search query. So we name it
probe query. A probe query message contains all class vectors
of the node, the maximum number of responses and TTL. The
query returns some qualified nodes ranked in decreasing order
of overall_score which will be added to the query initiator’s
host cache. Each entry in the host cache consists of a node’s
IP address, node degree, class vectors and overall_score. The
cache is continuously updated during the lifetime of a node.

With candidate nodes stored in host cache, each node
periodically performs neighbor addition and replacement in
a similar way to Gia [4]. After a neighbor is added, short and
long links for that neighbor will be established immediately.
Similarly, before a neighbor is dropped, all short and long links
associated with that neighbor have to be removed. A node (say
X) chooses a candidate node with the highest overall_score
from its host cache and verifies that the candidate is still
active and not an existing neighbor. X then uses a three-way
handshake protocol to communicate with the selected neigh-
bor candidate, say Y. It is a distributed handshake protocol,
which means that each node decides independently whether
to accept the other node as a new neighbor or not. These
nodes make a decision according to their own maz_links (the
maximum number of neighbors allowed), current degree and
overall_score of the requesting node. If current degree is less
than maz_links, the node automatically accepts the requester
as a new neighbor. Otherwise, the node has to check whether
it can find a suitable existing neighbor to drop and replace it
with the requesting node. X makes such a decision as follows.
From all of X’s neighbors that are not poorly connected and
whose overall_scores are lower than that of Y, X chooses the
neighbor Z with the lowest overall_score to drop and adds
Y as its new neighbor. (A poorly connected node is a node
whose degree is less than or equal to the minimum number of
neighbors required, namely min_links.)

Each node periodically detects whether the content of
its neighbors has changed or not and keeps updating the
overall_score of all of its neighbors. If many documents on a
node have been added, removed or changed, then the clustering
algorithm is run again on that node and the class vectors
are updated. Each node detects the changes and recalculates
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(rel_score_short—rel_med)

overall_scores by obtaining updated class vectors from its
neighbors. If the overall_score is too low (e.g., lower than
a certain threshold), in order to keep all short and long links
intact we do NOT simply drop that neighbor. Instead, we wait
for a good candidate node to replace that neighbor during
topology adaptation. In summary, our topology adaptation
algorithm can fit a dynamic situation well.

D. Selective One-Hop Class Vector Replication

Each node should store information about the class vectors
of all its neighbors in order to assist the search process. We
only store class vectors of the classes connected via long
links. That is why we call it selective replication. During the
search process, queries are routed through one of the long
links (need to compare and select one) and flooded through
all short links (no need to compare and select). So, we need to
replicate information about long links for selection purposes.
If a neighbor leaves the network, then the information about
its class vectors will be deleted. If the documents on a node’s
neighbors have been changed, it will receive the updated class
vectors and then recalculate overall_score. In summary, our
replication algorithm can handle dynamic situations such as
node join/leave or the change of documents on neighbor nodes.

E. Search Protocol

The topology adaptation algorithm refines the network
topology, and selective one-hop class vector replication in-
forms each node of the class vectors of its neighbors. We then
discuss our content-based virtual link assisted search protocol.
The protocol is totally class-based, which means that queries
are routed from one class to another along virtual links.

A query can be in two separate modes during the search
process. One is directed walk mode (walk with each hop
selected intelligently) and the other is flooding mode. When
a node initiates a query, it first calculates and compares the
relevance scores between the query vector and all its class
vectors. The query is then routed to the class with the highest
relevance score. This class is called the query source class.

After the query source class is found, the query is set to
be in directed walk mode. When receiving a query in this
mode, each class looks up its locally stored documents for
those satisfying the query. A relevance score is calculated
between the query and each document using formula (1). If it
is higher than a certain threshold, this document is identified
as a relevant document for the query. If at least one relevant
document is found, then this class (say A) of the node (say X)
is called a virtual semantic group target class. At this time,
the query ends directed walk mode and enters flooding mode.
If all documents in class A are identified as non-relevant, class
A selects a class (say B) whose class vector is most relevant to
the query vector according to formula (3) from all other classes
in the same node X and classes connected via X’s long links.
Fig. 2 illustrates how node X intelligently chooses a class to
forward the query. The query (), begins with the class C' ,
of node X and no documents in C , are relevant to the query.
So class (5, tries to find the most suitable class to biasedly
forward the query. Its choices include all other classe
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Algorithm 1 Search

1: A query reaches the source node X

2: /* Initialization */

3: The query is located in the identified query source class

4: set query_-mode « directed walk

5: while insufficient responses and TTL bound not reached do
6 if query_mode = directed walk then

7 look up relevant documents in the current class

8 if one relevant document found then

9: mark current class virtual semantic group target class

10: set query-mode «— flooding

11: else

12: define set C «— {all other classes in the same node X} U
{classes connected via node X’s long links}

13: forward the query to the class in set C which is most
relevant to the query

14: end if

15:  end if

16:  if query_-mode = flooding then

17: flood the query along all short links

18: if no short link found or beyond flood radius then

19: set query_mode «— directed walk

20: end if

21:  end if

22: end while

23: return

same node X (Cy s, C5,5, Cs) and classes connected via
X’s long links (Cy,y, Co ., Cy ). Class Cy , finally chooses
C4,y since its class vector is most relevant to the query vector.
The directed walk continues similarly until a virtual semantic
group target class is found.

The target class then sets the query to be in flooding
mode and floods the query along all its short links. Each
semantically-related class receiving the query looks up all
documents in the class and floods the query along its own
short links. Fig. 2 shows that if C5, is the target class
for the query @y, it will flood @, along its short links to
the classes C,,, Cs, and Cj .. In addition, the radius of
flooding is controlled via TTL. The relevant documents found
within the semantic class group are reported to the target class
directly. The target class is responsible for aggregating all
these files and reporting them directly to the query source. If
the number of relevant documents discovered so far is below
user expectation specified in the original query, the target class
starts another directed walk and the above search process is
repeated. The whole algorithm is illustrated in Algorithm 1.

We also use TTL to bound the duration of the directed walk
and the book-keeping technique to avoid redundant paths. In
CSS, each query is assigned a unique GUID by its originator
class. Each class remembers the classes to which it has already
forwarded queries for a given GUID. If a query with the
same GUID comes back to the class, it will be forwarded
to a different class with highest relevance score in directed
walk mode or it will simply be discarded in flooding mode.
However, to guarantee forwarding progress, if a class has
already sent the query to all possible classes, it flushes the
book-keeping state and starts reusing classes for directed walk.

In summary, the directed walk guides the query towards a
target class with similar semantic content. Flooding locates
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Fig. 2. Query routing graph (C1 ; means class 1 on node X).

enough desired documents near the target class. Our class-
based search protocol makes searching efficient by using a
smaller search unit: a class of documents on a node instead
of all documents on a node.

V. SIMULATION

In this section, we present the results of our class-based
search system (CSS). We first discuss text datasets used in the
simulation and then explain performance metrics. After that,
simulation settings are described. Finally, CSS is evaluated in
different network configurations and document distributions.

A. Text Datasets

We use all documents of AP newswire 1988 along with
Topics 151-200 in TREC disks 1&2 to evaluate our search
system. They can be found in TREC’s ad hoc test collections
[1]. The goal of TREC is to provide a benchmark for evalu-
ation in information retrieval from large text collections. We
then extract the text field from these documents by removing
irrelevant parts. Rainbow [8], a powerful toolkit to preprocess
raw text files for further classification and clustering, is then
used to calculate the term frequencies for all terms (words) in
these documents. Rainbow is also able to perform a stemming
process with the aid of Porter stemmer. Finally there are
79,986 files distributed over 1,000 nodes. The queries we use
are from TREC topics 151-200. The query vectors are obtained
from the text field of these topics using Rainbow. So each
query is not a keyword-based search but a text-based search.
The query vectors are also stemmed with stop words removed.
In addition, the TREC website [1] provides relevance judgment
files that can be viewed as “correct answers” for the above
50 queries. These assessment files are obtained by manual
identification and are vital to our simulation.

B. Performance Metrics

The following performance metrics are used in the simula-

tion.

1) Recall: It measures the coverage of available relevant
results. It is defined as the number of relevant documents
retrieved divided by total number of relevant documents
in the system.

2) Precision: It is defined as the number of truly relevant
documents divided by total number of documents re-
trieved.
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3) Search cost: It is defined as the percentage of classes
in the network visited by a query. An efficient search
algorithm incurs a low search cost. The less classes
visited by a query, the shorter the search response time
and the less the computing resource consumption is,
especially when there are a huge number of documents
in the network.

C. Comparison Criteria

As described in the search protocol section, CSS is a class-
based search system while GES is node-based. This means that
CSS routes a query from one class to another while GES routes
a query between nodes. Therefore, how can we compare the
performance of CSS and GES using the same criteria? First,
we globally cluster all documents in the text datasets into 20
classes by using OSKM [16]. Second, a tunable parameter,
cpn is defined to reflect different document distribution. cpn
is the abbreviation of classpernode which is the number of
classes placed at each node. If cpn equals 5, there are 5 classes
of documents per node, which means that we randomly pick
up some documents from 5 classes of the above 20 global
classes and assign them to nodes. Third, the metric we use
is percentage of classes visited. There is no problem with
class-based CSS. As for GES, we turn to the conversion that
the number of classes visited equals the product of the number
of nodes visited and cpn. As a result, the same metric can be
applicable to both search systems.

D. Simulation Setting

We use a custom simulator to test our search system. A
random graph with average degree 6 is generated first as the
initial topology and then the topology adaptation algorithm
is run for several rounds to reorganize the initial topology.
The search process is then performed on the refined topology.
In our search system (CSS), there are two fixed parameters
(min_links and max_links) and five tunable parameters
(classpernode or cpn, short_rel_thres, long_rel_thres, w,
good_neigh_thres). We set min_links = 3 and max_links =
10 which are min. and max. limit for node degree. The
tunable parameter cpn is set from 1 to 10. short_rel_thres
and long_rel_thres represent two thresholds to define short
and long links respectively. We set their values to 0.7 and 0.3,
respectively. The weight factor w (w = 3) is used to strengthen
the effect of short links when calculating overall_score be-
cause the number of short links is much less than that of long
links. We use 3.0 as the value of the last tunable parameter
good_neigh_thres, which is the criteria for “good” candidate
nodes to be put into the cache in the probe query process.

All values of the above tunable parameters are obtained
from experiments so they are heuristic values. However, there
are some rules why we choose these particular values. We
set the value of short_rel_thres larger so that each short
link is built between two classes that are very relevant. This
makes flooding short links very effective in finding really
relevant documents. As for the value of long_rel_thres, if
it is too small, then the number of long links is too few for
a query to find a relevant enough class to route itself to. If
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Fig. 4. CSS vs. GES with different node degree (cpn = 5, nodenum = 1000).

it is too large, then there will be too many long links for
directing a query, which consumes more resources and causes
longer delay. Finally, if the host cache is large, we can set
good_neigh_thres smaller so that more candidate nodes can
be considered.

E. Simulation Results

We compare the performance of our search system (CSS)
with GES in different network configurations and document
distributions.

Fig. 3 shows the performance with different values of
classpernode (cpn) ranging from 1 to 10. Four typical graphs
with ¢pn = 1,4,7,10 are illustrated. We can see that (1) CSS
performs better than GES when cpn ranges from 1 to 10. If
cpn equals 1, then CSS is reduced to GES and they behave
in the same way. So the search results are identical for cpn
= 1 in Fig. 3 (a). However, in Fig. 3 (b)-(d), our search
system CSS outperforms GES by achieving higher recall at
the same search cost. This can be explained as follows. Since
a query is routed through classes instead of all documents on a
node, it can locate the target class more precisely and quickly
without visiting many irrelevant documents. (2) The trend from
Fig. 3 (b)-(d) indicates that CSS performs better than GES
when the number of classes at each node increases. This is
because the advantage of clustering documents into classes
will be more obvious as the number of classes increases.
The more classes on a node, the more choices for a query
to investigate and the higher precision the search has. We
demonstrate that CSS outperforms GES in different document
distributions.

Fig. 4 compares the performance in different initial node
degree (deg = 3,6,9). We can see that CSS still beats GES
and the difference between the group of curves of CSS or
GES is very small. This is because the topology adaptation
algorithm plays a significant role in addition and replacement
of neighbors so that initial node degree seems less important.

Fig. 5 compares the performance with different numbers of
nodes in the network (nodenum = 500,1000,2000). We can
see that CSS still exceeds GES and the difference between the
group of curves of CSS or GES is relatively larger than that
in Fig. 4. That is because the number of nodes in the network
has a direct impact on topology adaptation and search process.
CSS proves to be applicable to P2P networks of different sizes.

Fig. 6 presents a graph of precision vs. recall. It is a standard
measure in information retrieval. We can observe
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Fig. 6. Precision vs. Recall (cpn = 5, nodenum = 1000, deg = 6).

precision of CSS is higher than that of GES in the same recall,
which means CSS is more precise in the search process due to
its class-based search protocol. However, the highest precision
is around 32%, which seems low. This is because the truly
relevant documents for a query in the relevance judgment
file are only around one thousandth of the whole document
collection (text datasets). Besides, we aim to conduct a full
search to find all truly relevant documents since there are
not many. This is why we can not set a high threshold for
document retrieval.

VI. CONCLUSION

In this paper, we extend GES and present a class-based
search system (CSS) in Gnutella-like unstructured P2P sys-
tems. CSS exploits a state-of-the-art data clustering algorithm
and makes each component class-based. The simulation shows
that CSS is more efficient than GES in all cases. In summary,
CSS is more suitable when the documents at each node are
diverse while GES is applicable when the documents are
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uniform. In the future, we will conduct more simulations using
larger datasets and different metrics such as precision@ 10.
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