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Abstract: In this paper we propose a process generating faybject-oriented specifica-
tions in OCL and class diagrams from the use casgehof a system through a clearly
defined sequence of model transformations. Thebadge invariant of business values
exchanged in a use case guides the design of lsiatedescriptions for the actors and
counter-actors, collectively called agents, of a oase. Each state in a statechart corre-
sponds to a system state characterized by sendiregeiving of a business object to or
from the system’s environment. The system classefnadd OCL specifications are de-
rived from the agents’ statecharts. The proposgadoageh fills the gap between the out-
side behavioral system description as offered leyaases and the “first cut” at software

architecture, the analysis level class model.

Keywords: software engineering, UML, object-oriented analysibject-oriented modeling,

model transformation, analysis techniques
1. Introduction

The contention of [11] and [27] supported by thepeival data in the CHAOS report [3] is that
object-oriented methods are underdeveloped ingheifscation of external functions of systems
and weak in guidelines for partitioning a systemo icomponents. The work of Jacobson [12] has
proven to be one of the most significant advannesoftware engineering. Jacobson’s approach
to software development was embraced by OMG antyedanto UML [19]. In UML, a system
model consists of several partial models, reprasgmifferent aspects of the designed system,
such as, structural, behavioral, communicatiomtaraction. The success of UML is based on the
realization that the semantic gap between the prnolaind machine domains cannot be bridged by
a single model. As a result, software developmefeifined as model transformation from more

abstract to more detailed and precise models.



Modeling from different viewpoints gives rise tortieal, horizontal, syntactic and semantic
consistency problems [10]. However, the differeidels must be consistent for an implementa-
tion to be feasible. The objective of this workasfacilitate the development of consistent UML
models, and in particular statecharts, class diagrand OCL declarative specifications from use
cases. The main contributions of the paper enhdiME's major success factor, namely, devel-

opment through model transformation.

In this work, we define a process for discoveritagses, class relationships, and OCL con-
straints from a use case based on the notion ofas®einvariant introduced in [20]. The proposed
approach fills the gap between the outside behalvgystem description as offered by use cases
and the “first cut” at system architecture, thelgsia class model. We show how use cases, state-

charts and class diagrams can seamlessly relatetoother.

The proposed techniques apply to the design ofnmition systems with non-trivial user re-
quirements and rich sets of usage scenarios suelcammerce systems, including Web-based
applications, controllers, and software systemdempnting enterprise business processes. The
proposed approach is not suitable for system softwa scientific applications development as
the complexity of these systems is dominated byddsign of their algorithms rather than model-

ing their functional requirements.

In complex environments, systems development stéttsbusiness modeling. The business
use case and business object models specify howetsigned system interfaces with business
units, customers, users, and existing enterprisees)s, such as inventories and supply chains.
These business-level models can be used as an topie proposed requirements analysis

method.

The rest of the paper is structured as followsSéetion 2, we present the value added invari-
ant. In Section 3, we introduce a process gengratass diagrams and OCL use case specifica-
tions from the use case model of a system. Nexgeiction 4, we give the algorithm describing
formally the proposed approach. Then, in Sectiowé present a case study, followed by a dis-

cussion. In the final section, we outline plansftgure work and conclude.

2. TheValue Added Invariant of a Use Case

2.1 Background

In the UML community, there is an overall agreemtiiatt system functions are rendered as use

cases. Ause casds a cluster of related usage scenarios, wherk seenario is a sequence of



transactions performed by an actor in a dialogué tie system that brings value to the actor
[12]. Use cases, however, do not capture only fanat requirements. They are also a communi-
cation specification technique since they show reglecommunications (with actors). In addi-
tion, use cases specify system behavior as sequeh@etions. And finally, through realization
relationships (an abstraction dependency steredtygeealize>>) with collaborations (use case
realizations), use cases indirectly determine theetral part of the analysis model, i.e. the con-
ceptual system decomposition. Therefore, use caestly or indirectly, express functional,
behavioral, communication and structural systenp@rites. Cockburn [4] observes the confusion
resulting from the different perceptions of useesagnd gives 24 possible interpretations of the

use case model.

Two types of use case description techniques catobsidered—imperative and declarative
[19]. The advantage of an imperative specificatothat it leads to an executable specification,
which can be validated at an early stage in theldpwment. Its disadvantage is that it specifies a
process by giving an implementation for it. The aattege of a declarative specification is that it
is completely implementation-independent. Howeitsrdisadvantage is that it is an underspeci-
fication. Imperative descriptions include plaintteactivity graphs, statecharts, and sequence dia-
grams, while declarative techniques are only meeticas a possibility but not given in the UML

specification [19].

Several methods have addressed the problem ofrdiéetaspecifications in object-oriented
modeling. Although not directly related to use sag$ausion [5] was among the first methods that
advocated the idea of specifying declarativelysbevices offered by a system to its environment.
Influenced by the formal specification languagef23] and VDM [14], Fusion employs sche-
mata written in structured natural language, thedycing the cost of introducing the method in
practice. [4] adds goals to the use case modaktnbiguate its semantics and streamline its de-
scription. Catalysis [22], a synergy of ideas frBaosion and Syntropy [6] rendered in UML, in-
troduces OCL post-conditions over domain typesdfing declaratively the effect of a system
service. ANZAC [21], building on both Catalysis aRdsion, splits the use case functional speci-
fication into two separate models to mitigate tbafticting agendas of end users/owners and de-

velopers.

In this work, we use OCL pre- and post-conditionsroexchanged business objects to de-
scribe declaratively the effect of a use case. We mtroduce a new imperative technique de-
scribing the behavior of a use case as a set oftoicating state machines [16], and we use

these behavioral descriptions to derive the syst@malysis-level class model.



Several works provide insights into how scenariselovisual formalisms can be linked to
object-oriented models [7],[24],[26]. Less attentioas been given to how scenarios can be de-
scribed without developing or revealing the undagysystem structure. For example, in a UML
sequence diagram, lifelines correspond to instan€edready identified classes or subsystems,
while locations correspond to object states. Intremh, we propose to specify use case scenarios
with a formal and interactive model including omytwardly visible communication events and

information objects.

There are five basic approaches to class discdveny a functional system specification:
CRC [28], Noun-phrase, Common class pattern, Use daven [12], and Mixed [15]. The basic
disadvantage of all five methods is the lack ofgpmatic guidelines that can steer the process of
class discovery and serve as a litmus test foqtiaity and completeness of the resulting soft-
ware architecture. Only the use case driven appré@ough sequence diagrams can verify the
requirements, but the lack of rigor makes the ieaiion highly subjective and can lead to imbal-
ance between iterative and incremental—thrashingcontrast, the approach presented in this

paper gives practical, quantitative guidelinesu®e case specification and class discovery.

OCL is a formal and pure expression language usegpécify constraints in UML models
[25]. OCL expressions augment graphical models, elgss diagrams, to produce unambiguous
and precise system descriptions. Visual modelsdesbme constraints, like association multi-
plicity, but in OCL we can specify richer ones, Isus uniqueness constraints, formulae, limits
and business rules. OCL constraints improve pratiahd communication, and facilitate design
by contract. According to Ambler [1], the disadwvages of OCL are its poor readability and its
inefficiency in specifying requirements-level anthlysis-level concepts. In this work, we show

that OCL can be used productively in expressindyaitlevel concepts.
2.2Value Added I nvariant

From the perspective of an actor, a use case pesfeomething that adds value to the actor, such
as calculating a result, generating a new objeathanging the state of an existing object. The
respondent interacting with the actor initiating texecution of the use case instance is called
counter-actor classActors and counter-actors are called collectivadgnts For each use case
we define the following conservation law. The jottistributed count of business values ex-
changed between the actors and the counter-actdhe icourse of a use case execution is con-

stant. We call this properthe value added invariant of a use case



Jacobson et al. [13] give two criteria helpful ietermining the scope of a use case, the key
phrases being “resulting value” and “participatagjor.” The authors went a step further by say-
ing that “In some cases, actors are willing to paythe value returned,” but stopped short of
generalizing and defining the exchange of valuetoB, using an online reservation system as a
running example, we show how the exchange of basinbjects in the course of the execution of

a use case instance is defined by a value addediany and how this invariant can be used to

discover the logical system structure.

Book Ticket Use Case

Descri pti on:
This use case describes how customers with HTML 4.0
book tickets online for a selected performance.
Actor(s):
Customer, Clerk, Bank
Fl ow of events
Basi ¢ Fl ow

1. The use case execution begins when a customer po
book ticket web site.

2. The customer selects a performance, and in respo
a seating chart with seats available for the show.

3. The customer picks a free seat. In response, the
collecting payment information.

4. The customer provides the required payment infor
payment form to the system. The system, in cooperat
carries out the payment transaction and responds by
tomer to provide their shipment address.

5. The customer fills out the shipment address and
system. The system notifies the clerk of the custom
the clerk ships the ticket and records the shipment
this point, the system sends the customer an electr
an electronic ticket.

6. Finally, the customer receives the shipment with

Exceptional Flow of Events:

=  The customer can cancel the purchase at any point p
their shipment address.

= Instep (3), no vacant seats are available. The use

= Instep (3), the customer has selected a booked sea
an updated seating chart.

= Instep (4), payment data is incomplete or incorrec
the missing information. If the payment information
correct again, the system aborts the booking and ro
prior to the current purchase.

Pre-conditions
None
Post - condi ti on
= A seat is booked.
= An amount equivalent to the seat's price is transfe
bank account to the system's bank account.
= The ticket for the booked seat is e-mailed to the ¢

(a) Use case description

compatible browsers can

ints their browser to the
nse, the system displays
system displays a form
mation and submits the
ion with the bank,
prompting the cus-
submits the form to the
er's purchase. Then,
with the system. At
onic confirmation and
the ticket.

rior to submitting

case terminates.
t. The system displays

t. The system requests

is incomplete or in-
lIs back to its state

rred from the customer's

ustomer.
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(b) Use case diagram

Figure 1. Book Ticket  use case.
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excluding seatN
Hall Hall'
Assets % book % Assets + Money ﬁ
Bank Bank'
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hi ts .
s |pmen shipmentM
Clerk Clerk'

Figure 2. Value added invariant for use cd®ok Ticket

Figure 1 shows a use case with three actors. Aistomer initiates the use case execution. A
customer books a seat and receives a ticket byidingvin exchange some form of money. The
respondent receiving the customer’'s payment isrd8emk. Actor Clerk is the respondent
completing the bookings and shipping the tickebnkithe use case model, it is not clear who
provides the customer with a seat. We introduceumter-actor, named Hall, providing a vacant
seat. Prior to introducing Hall, the invariant tbe use case was not satisfied be-cause the count
of business objects received or sent by actor Guestalid not match with the business objects

gained or given away by actors Clerk and Bank.

At the highest level of abstraction, we define ¢lrelution of an agent as a contract, which is
an exact specification of the agent’s interfacee Tusiness values sent/received (pre-/post-
conditions) by the agent are described in the ratteshed to the left/right agent snapshot, &s it i
shown in Figure 2. The agent snapshots and busuaésss specify the state of the agent before



and after the execution of the use case. The imwbfor Book Ticket expresses the fact that
the joint distributed count of business objectobethe execution of the use case is equal to the

joint distributed count of business objects after éxecution of the use case.
3. Deriving Class Diagrams and OCL Specification from a Use Case

3.1. Describing a Use Case as a Set of Statecharts

The lifecycle of each agent is described with gesteart. The statechart model can represent a
system at an arbitrary level of detail. In analysis mandatory to stay at a high level of abstrac
tion, i.e., out of design. This requirement is fogtassociating with each state a business object,
which is received or sent by the action of the git@on leading to that state. Figure 3 shows the
statechart foCustomer , derived from the main use case scenario. Sineath agent receiving

a value corresponds an agent providing this valgenumber the states so that they can be re-

selectSeat pay giveAddress rcvConfirmation ship

VNSNS NN
e JE b

(+)Seat ﬁ (-)Payment ﬁ (-)Address ﬁ (+)Confirmation (+)Shiment

Figure 3. Statechart fo€Customer .

selectSeat rcvConfirmation pay debitAccount

0 O 0

(-)Seat ﬁ (+)Confirmationﬁ (+)Paymentinfo ﬁ (+)Payment ﬁ
Customer([2]

Figure4. Statechart foHall . Figure5. Statechart foBank.



0 (-)Confirmation 0 -)Confirmation
@ Customer[4] l(-|?a1ll[2]

getAddress getAddress

1 confirm 2 1 confirm 2 ] confirm 3 ]
ship ship
(+)Address (+)Address (-)ConfCust 4
Customer([4]
(-)Shipment AN (-)Shipment
Customer[5] Customer([5]

(a) Initial statechart (b) Modified statechart

Figure 6. Statecharts for Clerk.

ferred to unambiguously from other diagrams. A meffiee is written in the form of
agent[number] , and it is placed in the note attached to therrefg state, e.gCus-
tomer[2] . There is a weight associated with each businegzi The weight is +1, when the
agent gains the business object, and -1, otherWwimeexample, in Figure Eustomer receives
a Confirmation in the transition to stat€ustomer[4] , and therefore, the weight for the
confirmation object is +1. The weight magnitude can be omiftech diagrams. The state-

charts forHall , Bank, andClerk are shown in Figures 4, 5 and 6(a), respectively.

In order for an invariant to be satisfied, the safithe weighted business objects in the agent
statecharts must be zero. The invariant is writeia set of equations. The equations represent in
a testable way the information recorded in theestarts. For example, the equations for objects

Seat andConfirmation derived from the diagrams in Figures 3, 4, and &e written as:

(+1)Seat Customer[1] + ('1)Seat Hall[1] =0 (Eq1)
(+1)Confirmation customerig]  + (+1)Confirmation Haizp  +
(-1)Confirmation clerkizy %20 (Eq.2)

The value added invariant is not satisfied in Equa2. To balance the invariant, ag€ierk
must send out two confirmations—one @oistomer and another one tHall . To deal with
this, we add a new state and a transition to #techart foicClerk , as it is shown in Figure 6(b).
k m
Formally, the value added invariant for a use casebe expressed %Z:vvljvi =0, where

i=1 j=1

Vy = {vy, Va,..., W} is the set of business values exchanged in usewd, = {aj, a,,..., a} the



set of agents afi, andW, = {Wy1, Wiz, ..., Wig, Wa1, Wap ..., Wom,..., W1, Wig, ..., Wim} IS the set of

weights, withw; being the weight associated with business vglureagenty,.

3.2. Reduction of a Set of Statechartsto a Class Diagram

Similarly to context diagrams, actors model the samication between the system and its envi-
ronment. Maciaszek [15] observed an interestindpatimmy with regard to actors. On the one
hand, actors are external to the system. On ther dthnd, actors are also internal because the
system must maintain information about them soithan knowingly interact with them. Hence,
the specification needs to hold two models relabedctors—a model of the actors and a model

of what the system records about the actors.

We use the dichotomy of actors in a heuristic fscalvering entity classes. The system must cre-
ate an object of clagSustomer (if the object already exists it is linked) forchaicket booking.
The agent statecharts are considered one at aTfimeorder of their processing is not significant.
A statechart not processed yet is selected, anasa for its agent is created and stereotyped ac-
cordingly, see Figure 7. Then, a class for eachesghined or given away by the agent is created.
If the value is given away, a unidirectional asabon link is drawn from the agent class to the
value class. If the value is gained, the directbrihe association link is opposite. Finally, the
developer determines and adds any associationssageto create the collaboration paths be-
tween the discovered classes, e.g. associagodToin Figure 7. Since the use case invariant
does not account for these associations, the as®os should be based on the business rules in

the application domain.

<<entity>> book
1

Customer Seat

0..*
1 "y confirm 1
1
1.% ~_
Address shipTo o jor
Confirmation
1 dTo 1>
9.1 0.x Account
Shipment

Figure 7. Class diagram generated from the statechart nodd&lstomer .

The following is a commonly occurring pattern. Ageat creates a new business object, e.g.,
a confirmation or a transaction ID, and then, pdesiit to another agent. The information about
the exact timing of object instantiation is notnegented in the use case invariant because the

invariant is primarily concerned with the redistiilon of business values between the system and



its environment and the direction of each redistidn. Over a sufficiently long period of time,
the providing agent will create and deliver morarttone object. We suppress the information
about the exact moment of object creation by madetie providing agent with a set of objects,
e.g., a set of IDs, and by showing that after tkexation of the use case instance, the cardinality
of this set has decreased by one. In the genesal tiee object being sent has been created in the
step preceding its sending. From the receiver'atpafi view, there is nothing unusual. As far as

the receiving agent is concerned, it has got israss value.

Figure 8 shows how as a result of analyzing theesit@rt model foHall , the initial class
diagram has been extend with a new counter-actsscand two association links. Domain
knowledge suggests the use of containment reldtipietweerHall andSeat . The class dia-
gram after processing ageblerk is presented in Figure 9. Agent classes are sigred as en-
tity classes to record the long-lived changes enrddistribution of business values in the system.
Since each agent interacts with other agents wkcdtp the agent classes and the clones form a
pool of candidates for controller classes in theEBfesign pattern [12]. This is justified by the
behavioral aspects captured by the agent statschad the existence of natural collaboration
paths between the agents and the business objetisbriefly, in the BCE design pattern, entity

classes model long-lived information that survigesise case along with all behavior

<<entity>> book available | <<entity>>

Customer 1 Seat Hall
0.* 1.*

151 W 1 /1
1.% o
Address shipTo 0.* 0.* sea
Confirmation0. *
1 sendTo
0.. 0..* 1.*

Shipment Account

Figure 8. Diagram extended with knowledge from the stateobfadall



<<entity>> book available | <<entity>>

Customer <1 5 Seat _— Hall
L ) T =1
1/ 1 confirm 1
<<entity>> {seat}
Bank 0..*
1.* 0_*
Address shipTo . 0.* Confirmation
L. N 0.1
Account |1 Pa t L.* Ticket 0.*
1 NendTo 1 ymen icke
0.. 1
1“*
020 4 1
ity>>
Shipment <<?:Tg:f(’
0.* 1

Figure9. Final class diagram fdook Ticket  use case.

naturally coupled to this information. Boundaryssas model behavior and information depend-
ent on the Ul, and controller classes models fonelity that is not naturally tied to any other

class.

3.3 Converting a Set of Statechartsto an OCL Specification

This section presents a technique for derivingatative use case specifications. We propose the
use of OCL pre- and post-conditions over excharmesiness objects to describe the effect of a
use case scenario. The complete OCL specificatioa fise case is defined as éxelusive-ornof

the specifications for the individual use case ades.

Let us consider the statechart for agénstomer . We can define declaratively the behavior
of the use case from the customer’s point of vieva @ontract expressed in terms of OCL expres-
sions. The contract is an exact specification efgbrvice provided to the customer. The service
is described by two sets of constraints whose gbrigean instance o€ustomer : (1) pre-
conditions: the conditions under which the servigt be provided; and (2) post-conditions: a
specification of the result, given that the predtiods are fulfilled. The service pre- and post-
conditions are described in the notes attachedhdoagents on the left and right hand side of
Customer andCustomer' , respectively, as shown in Figure 10. We split plicated con-
straints into several separate constraints to ingibeir readability and writeability. The pre-
condition for a customer is to have a valid creditd (called account for short) and a mail ad-

dress that coincides with the account’s billingradd. The latter condition cannot be expressed in



pre AN post: N
account.valid = true book seat.occupied = true
-- account : Account - —_— —___| Customer.allinstances->forAll(cl, c2 |
account.address = addr ¢l <> c2 implies cl.seat <> c2.seat)
-- addr : Address , account.balance = acount.balance@pre
Customer Customer - seat.price
- N shipment.ticket.id = seat.id
preéeats - Set(Seat) book shipment.address = addr
seats->forAll(s1, s2 | H . N
sl <> s2 implies sl.id <> s2.id pz:éts >select(occupied)->size =
iﬁiﬂlse—z'l[lnoc;gggisézeat) Hall Hall seats@pre->select(occupied)->size + 1

book
pre: b — | ~|post: ﬁ

assets >= 0 assets = assets@pre + seat.price
-- assets : Double Bank Bank'
operation
invariant
. book post:
p:;i ments->includes(shipment) % —— addresses->includes(addr)
P P ‘ shipments->excludes(shipment)
Clerk Clerk'

Figure 10. OCL specification foBook Ticket  use case.

a graphical model. The post-condition includes acupied seat, modified account balance and
shipment. One of the post-condition constraints uBeallinstancespredefined feature of OCL
types. It is instrumental not only in specifyinguaiqueness constraint, but also (implicitly
through thelogic-and of all post-conditions) in expressing a semangiatronship between the
value of seatoccupiedand the associatioBustomer - Seat . This expression accesses the
meta-level UML model to express the fact that & seaooked by exactly one customer if and

only if the seat is occupied.

Similarly to Customer , we can derive the OCL specifications for the otieee agents in
the use case, see Figure 10. The OCL expressierdeéined and evaluated in the context of the
corresponding agenbe{Seaj is used in a comment to clarify the type of odtilen seats We use
the extended variant (with two iterators) fofAll to define the uniqueness constraintsaats

seats->includes(seat$ a precondition indicating thaeathas not been booked yet.

Declarative specifications may suffer from the sfled frame problem [2]. We can put
frame assumptions in the form of invariants attdcteethe edges, e.g., the liblook between
Bank andBank' . The invariant below specifies that the bank a&sattany one moment are

equal to the sum of the sold tickets’ prices.

assets = Seat.alllnstances->select(seat | seat.occu pied = true)

->iterate(s : Seat; result : Double = 0 | result + s.price)

In this case, we usterateto add up the prices of all seats sold. Wheritdnate expression is



Not at i on Meani ng
U Use case model
u Use case
A | Actor or counter-actor
A, | Agents in use case u
V | Gain-loss set of the model U
V, | Gain-loss subset for agent a
V, Gain-loss subset for use case u
Act Set of Actors for use case u
W | The set {-1,1}
sc, | Statechart for agent a
SC, Set of statecharts for A,
E, Set of OCL constraints for a u.c.
Epre Set of OCL preconditions for a u.c.
Epost Set of OCL postconditions for a u.c.
E nv Set of OCL invariants for a u.c.
e, | OCL expression over value %

Table 1. Notation used in the algorithm.

evaluated, elemert iterates over the collection of sold seats. Ther@ssionresult+s.priceis

evaluated for each After each evaluation of the expression, its gatuassigned taesult
4. Formal Process Description

This section describes unambiguously the methoddercase specification and class discovery.

Let U be the use case model of the system. The setsufidss values exchanged in all use
cases is called thgain-loss setand is denoted by. Let A, be the set of agents of use case

udU, andV, OV the gain-loss subset exchanged by the agents of

Definition 1. The statechart for an agemtaldA,, is the ordered quadruplet, = (S, T.OS:xS,,
Va gla), whereS, is the set of state$, is the set of transition¥, J V, is a set of values argl, is

thegain-loss functiordefined as,
Ola: Ta > Wx V,

whereW = {0,1} is the set of weights. Functiayl, assigns to each transitionn T, a valuev

from V, weighted byw, wCOW.

The process of generating class diagrams and O€tifg@tions from a use case model is
shown in Figure 11. The notation used is givenabl& 1. The lower limit of the number of itera-
tions in the process is determined by the numbarsef cases in use case modelProcedure
reduce_uc to sc takes a use casethe actord\ct, of u, the actom initiating u, and the lost-

gain setV (discovered thus far) as inputs and returns thefsgtatechartSG, for the agents in.



procedure generate_cld _ocl spec_fromucm( U use case nodel)

1) v= 0

2) foral |l usecases ullU do begin

3) | oop

4) outcome = reduce_uc_to_sc( u, Act,, a, V)

5) i f outcome = success t hen

6) exit

7 end

8) V= V O V, --addthe identified business values to the
-- set of system business values

9) reduce_sc_to_cld_oclspec( SC)

10) end

Figure 11. Procedurgenerate_cld_oclspec_from_ucm

The loop beginning on line 3 will continue to execuntil the use case invariant becomes bal-
anced. In line 8, the gain-loss set is updated thighnew values discovered during the step of
converting the use case to a set of statechaxseBurereduce_sc_to cld_oclspec re-
duces the set of statecharts for the use case oodsideration to one or more class diagrams and
derives the use case OCL specification.

procedure reduce_uc_to_sc(u, Act,, a: alAct,, V)
1) A={ a}, V,= 0O, Acty = Act,\{ a}

2) | oop
3) sC,= generate_sc(a, u)
4) Vo= WV, OV,
5) SC,= SC, O sc,
m
6) i f Z:Wij\/i =0 and Act,= O then
j=1
7 r et ur n success
8) el se
9) a = identify_new_agent()
10) i f a=null t hen
11) r et ur n failure
12) el se
13) A= A O a
14) end if
15) end if
16) end

Figure 12. Procedureeduce_uc_to_sc

procedure reduce_sc_to_cl d_ocl spec(SC)

1) forall sc,0SC, do begin
/] extend the CD

2) create class for agent a and stereotype it as such
3) foral |l transitions t Osc, do begin
v, w--the value and weight associated with t
4) i f class for v does not exist t hen
5) create value class for %

6) end if



7 if w>0 then

8) create association link from the value class
to the agent class

9) write a post-condition e, involving the value
class and the agent class

10) Epost = Epost U { e}

11) el se

12) create association link from the agent class
to the value class

13) write a pre-condition e, involving the value
class and the agent class

14) Epe= Epe O{ &}

15) end if

16) add necessary collaboration paths

17) end

18) write frame assumptions from the point of view of the agent

under consideration and update E v
19) end

Figure 13. Procedureeduce_sc_to_cld_oclspec

Procedureeduce_uc_to_sc  is shown in Figure 12. In the initialization phaggis set to the
empty set, and,, is set to the initiating act@ passed as an input to the procedure. In each itera
tion, procedurgenerate_sc takes an agent as an input and generates itsisdgteThe state-
chart design may entail changes to the existingatarts such as adding new states and/or new
transitions. The discovered gain-loss valdgsare added td/,. The termination conditions,
evaluated on lines 6 and 10, test if the use aaswiant is balanced. If the invariant is satisfied
and the set of actoisct, is empty, the procedure terminates successfulég @ new agent is
identified by proceduréentify_new_agent . This agent is found as follows. If the set of
actorsAct, is non-emptyjdentify_new_agent removes one actor fromct, and returns it.

Otherwise, the procedure identifies a new countésrausing the knowledge that for some busi-

m
ness valuey; in V,, ZW“-Vi # 0, where m=| SG, |is the number of statecharts (one for each

j=1
agent) andv; is the weight associated within statecharsgLISG.. If a new agent cannot be iden-
tified, procedureeduce_uc_to_sc  returns failure, which causes backtracking inttdpelevel

procedure. The order in which the agents are cermiddoes not affect the resulting class dia-

gram or OCL specification.

Procedureaeduce_sc_to cld_oclspec , shown in Figure 13, has iterations, where
m = [SG)| is the cardinality of the set of statecharts @dde it. The statecharts are processed one
at a time. In each iteration, the class diagramtardOCL specification are extended with new

classes/class relationships and OCL constrairdpertively. The context for the new constraints



is the agent whose statechart is being processaateAondition/post-condition is defined for

each value lost/gained by the agent on line 9/bBeBch new constraint the developer adds the

CO——%

%/C/ P

RegisterVechicle

Driver Operator
PassTwoPointTollGate PassSingleTollGate

Figure 14. Use case diagram for the EZ pass system.

expressions necessary to specify the semanticoredaips with objects other than the instance of

the agent under consideration. If necessary, frassamptions are added on line 18.
5. Applying the Processto a Distributed Software System

To test the feasibility of the proposed approach,applied the invariant-based process to a real-
world distributed system [17]. In the EZ Pass systdrivers of authorized vehicles are charged
at tollgates automatically. They pass through spdanes called EZ lanes. To use the system, a
driver has to register and to install an electrdag (gizmo) in his/her vehicle. The vehicle regis-
tration includes the owner’s personal data, accountber and vehicle details. The owner’s ac-
count is debited automatically at the end of eveonth. Each gizmo has a unique identifier that
is read by the sensors installed at the tollgatks.information read is stored by the system and
used to debit the respective account. The amoure tdebited depends on the kind of the vehicle.
When an authorized vehicle passes through an E &agreen light comes on, and the amount to
be debited is displayed. If an unauthorized velpelsses through it, a yellow light comes on and
a road camera takes a photo of the plate, usededtfe vehicle’s owner (fine processing is out-
side the system scope). There are EZ lanes whersathe type of vehicles pay a fixed amount,
for example at a toll bridge, and EZ lanes wheeeamount depends on the type of vehicle and
the distance traveled, for example on a highway.tRe latter, the system stores the entrance

tollgate and the exit tollgate.



The use case diagram for the EZ Pass system isnsimoigure 14. The textual descriptions

for use caseRegister Vehicle andPass Single Tollgate

Regi ster Vehicle Use Case

Descri pti on:

This use case describes vehicle registration.
Actor(s):

Driver, Operator, and Bank
Fl ow of events

Basi ¢ Fl ow

1. A driver provides an operator with contact infor
name and mailing address, the vehicle type and the
tion. In response, the system stores the informatio
driver to provide a valid bank account. This bank a
debited automatically at the end of each billing cy

2. The driver provides a bank account. The system v
the bank.

3. The system provides the driver with a gizmo and
information, the gizmo ID associated with the regis
starting date of the billing cycle.

Exceptional Flow of Events:

=  The driver can cancel the registration at any point
back to its state prior to the registration.

= Instep (2), if the verification fails the registra

Pre-condi tions

= The driver has a valid vehicle registration and a v
Post -condi ti on

= The driver receives a gizmo with a unique ID

= The driver, vehicle and gizmo are entered in the sy

are as follows.

mation, including their
vehicle's registra-
n and prompts the
ccount which will be
cle.

erifies the account with

stores the bank account
tered car, and the
. The system rolls
tion is cancelled.

alid bank account.

stem.

Pass Single Tollgate Use Case

Descri pti on:
This use case describes the system's behavior in re
through a single tollgate.
Actor(s):
Driver
Fl ow of events
Basi ¢ Fl ow
1. The use case begins when a vehicle with a gizmo
tollgate. The tollgate sensor reads the gizmo's ID.
the passage, including date, time, location, and ra
amount the driver will be charged, and turns the gr
Exceptional Flow of Events:
=  The gizmo is invalid or missing. The system turns t
a photo of the vehicle is taken.
Pre-conditions
None
Post - condi ti on
= The vehicle's account is updated with the passage i

Figure 15 shows the value added invariant for aseRegister

Figure 16 are designed using procedwduce_uc_to_sc

sponse to a vehicle passing

passes through a single
The system records
te, displays the
een light on.

he yellow light on and

nformation.

Vehicle . The statecharts in

. They verify that the joint gain-

loss value sets for acto@perator andBank balance with the value set foriver . The class

diagram and the OCL constraints generated from dée of statecharts using procedure

reduce_sc_to_cld_oclspec

are shown in Figure 17 and Figure 18, respectivihg class



attributes have been abstracted from the charatitefiéatures of the business objects in the tex-

tual use case description. The post-conditio®prrator involving the collectionregistrations

and the keywor@preis interpreted as providing a registration to @ nehicle.

account f I -
vehicle - RegisterVehicle ___|gizmo
contact info
Driver Driver
ReglsterVehche Set of gizmos AN
Set of gizmos ___| excluding gizmo
Customer
Operator Operator'
RegisterVehicle Set of accounts AN
Set of % % including account
accounts
Bank Bank'
Figure 15. Value added invariant fdRegister Vehicle use case.

(-)contactinfo (-)account (-)vehicle (+)register (+)gizmo (+)verify  (-)confirm
Driver Bank
o] o]

(+)contactinfo (+)account (+)vehicle (-)verify (+)confirm (-)register (-)gizmo

Operator
o] e]

Figure 16. Agents’ statecharts for tliRegister Vehicle use case.
Contactinfo Vehicle VerifyReq
address : String 1.*|type : String _
0"* 1 0“* ..*
1 1 S
1
t - t 1 i
<<§E\|,2/r>> 1 1.*| Gizmo |1.* <5§2r'at>{g? <<entity>>
name : Strin 1 id ;int B Bank
: g empno:int | 4
1
0.* 0.*
Registratign i Account t Verification
validFrom : Date 1 1
Figure 17. Class diagram for thRegister Vehicle use case.

Next, we consider use caBass Single Tollgate . The only actor interacting with this

. The invariant is instrumental in identifying iteunter-actors and in evolv-
ing further the system’s software architecture. @hger exchanges electronic money (the fact

use case iBriver

that the actual payment occurs later is immateftalspeedy passage. To model the creation of a

passage object, we introduce a counter-actor, nd@loedter (meaning counting not counter-



acting), providing a passage every time a regidteehicle is detected at an EZ lane and calculat-
ing the amount of money due in exchange for thasgge. To calculate the passage rate, agent

Counter needs information about the passage’s locaticagehtCounter receives a location

post:
gizmo
pre: . X vehicle.gizmo=gizmo
vehicle RegisterVehicle registration->notEmpty
vehicle.gizmo->isEmpty > “ | Vehicle.allinstances->forAll(v1, v2 |
account.valid vl <>v2 implies v1.gizmo <> v2.gizmo
contactinfo Driver Driver gizmo->includes(registration.gizmo)
pre: N registration.validFrom = today
-- gizmos : Set(Gizmo)
gizmos->nonEmpty ) . post:
gizmos->forAll(gl, g2 | RegisterVehicle gizmos->size = gizmos@pre->size - 1
gl<>g2impliesgl.D <>g2ID |—— _— — registration->size = registration@pre->size - 1
-- registrations : Set(Registration) contacts->includes(contactinfo)
registration->nonEmpty vehicles = vehicles@pre->including(vehicle)
registration->includes(registration) Operator Operator'
contacts -- Set(Contact)
Regi : post:
pre: N egisterVehicle accounts =
--accounts : Set(Account)  |—— E—— | accounts@pre->including(accoun)t)
accounts
Bank Bank'
Figure 18. OCL specification foRegister Vehicle use case.

value, then there must be an agent providing thisev To balance the invariant, we introduce a
new counter-actor, namedne in Figure 19, to provide the location value. Thsuiting class
diagram and OCL specification are shown in Fig@tgsand 22, respectively. Note that since
Gizmo ID is related tdRegistration , which in turn is related through claG&mo to Ve-
hicle (see Figure 17), the vehicle type is known, aredd@mount charged can be determined

based on the rate Price and stored ifPassage .

money () PassSingleTollGate () pass ()gizmolD  (+)passage
gizmo ID—— e Driver
Driver Driver'
) PassSingleTollG )
pass I (/ m (/, 74@828,1 (+)gizmolD  (+)location  (-)passage
i i gizmo ID Counter
Counter Counter n
location () PassSingleTollGate ()
—_— _— (-)location
Lane
Lane Lane'
1
Figure 19. Value added invariant for Figure 20. Agents’ statecharts for the
PassSingleTollGate use case. PassSingleTollGate use case.

The invariants, diagrams, and specifications ferdther two use cases are designed similarly.



«Igm/teyr» 0.* Registration
Passage name : String 1. /validFrom : Date
date : Date ?x Account 1
amt: Double [0.* 1
charge() \1
0 * *
0.* : 1 :
GizmoData 1 Location Price
crex location : String o.* amt : Double
0.7 1
/ \1
1
L <<entity>>
“Counter Photo Lane
date : Date
Figure 21. Class diagram for theassSingleTollGate use case.

post:
pre: AN PassSingleTollGate pass
gizmo.registration.valid = true | — - > — pass.location = location

gizmo.ID pass.amt = pass.charge(location.price,
gizmoData.vehicleType)

Driver Driver'

- post:
pre: ) AN PassSingleTollGate passages->exclude(pass)
passages->includes(pass) | ~ _| passages->size =

passages@pre->size - 1

ID
Counter Counter'
pre PassSmgIeToIIGate
Iocat|on
Lane Lane’
Figure 22. OCL specification foPassSingleTollGate use case.

EZ Pass is a mid-sized system of moderate compleRilr experience with developing EZ Pass
shows that the consistency of the designed mosiddstter than that of the models produced with
the CRC, Noun-phrase, Common class pattern, orcdse-driven approaches. We attribute this
to the constraints imposed on the models’ elemengs, classes, class associations, and associa-

tion multiplicities, by the use case invariants atatechart diagrams.
6. Discussion

Our work is related to several object-oriented radthdealing with user requirements specifica-
tion and analysis. We already discussed Jacobsme' ases. In what follows, we discuss how
Fusion, Catalysis and ANZAC relate to the valueeatidivariant.

In Fusion [5], a specification consists of an ifdee model and object model. The interface
model includes declarative specifications of systgrarations, expressed as schemata written in
natural language and the temporal ordering of astaptured by regular grammar expressions.

The object model describes the information entities system deals with in order to fulfill re-



guests coming from its environment. Our approach daumber of similarities to the analysis
model in Fusion. In particular, analogously to Basoperations, we define declaratively, but in
OCL, the value brought to the actor initiating & wsse execution. Instead of regular grammar
expressions, we employ statecharts to define thiedborder of the actions occurring on the sys-
tem-environment border. Besides the differencesdsn the two methods in terms of the formal-
isms used, schemata versus OCL expressions, regppaessions versus statecharts, and entity-
relationship diagrams versus classes, there arpedesethodological differences. The value
added invariant binds quantitatively the exchanigesiness objects. The statechart composition
operation synthesizes the system structure frorbéhavioral descriptions of the use case agents.
In Fusion, the object model makes a separation dezivihe classes that lie within the system
boundary and those ones that lie outside it. Fpthis dichotomy is not absolute. We include the
classes that lie outside the system boundary isyeEm model because in order to interact with

them the system has to maintain knowledge abouti.the

Catalysis [22] is a component-oriented developmegthod. Catalysis defines a use case as a
goal-oriented collaboration (action) between aeaystind an actor. Catalysis uses OCL post-
conditions over application types as a way of defjrdeclaratively the effect of an action. Ca-
talysis introduced the idea of representing chawimstance snapshots diagrams expressing can-
didate types and their associations at a partiqudart in time. In these diagrams, the result of a
use case execution is expressed by showing whgtdtiagions are deleted and added to the dia-
gram. The value added invariant takes the ideaabshot diagrams a step further by expressing
guantitatively the exchange of types (businessobbjm our parlance) and using the equations
over types as a practical guideline for class disog test for completeness, and method of justi-
fying types’ existence. Catalysis focuses only ba dutcome of a use case execution without
formally describing the sequence of events leatbrihe outcome. Catalysis ignores the question
of who would possess a type when the new ownepisan actor. To express the ownership
change we define counter-actors. Our approachgttrens a major innovation of Catalysis—the
type model of a use case as the link between &amse and the different UML diagrams, e.qg.,
sequence and collaboration diagrams. An importestindtion between Catalysis and the value
added invariant is that Catalysis visualizes thpe tpnodel, while we use the domain dictionary to
compose the system architecture. Catalysis, infleeérby SOMA [9] extends class descriptions
with assertions and rules of tiféhen andwhen/thenform to encapsulate global knowledge in
local entities. In its current form, the value adidievariant relies on UML rules, e.g., OCL con-
straints on class models and statecharts. BothySetand the value added invariant fall in the

category of translational approaches. A translaliomethodology regards the development proc-



ess as a sequence of distinct models togetherayiifocedure translating from one to the next,
e.g., Executable UML. In the value added invariduet analysis level architecture is composed

out of the agents’ statecharts. We do not makeofigee more subjective refinement.

ANZAC [21] is a methodology employing OCL in itsaarative, goal-based use case speci-
fications. ANZAC introduces new modeling artifactallectively called ANZAC specification,
maintained separately from the use case specditalihe latter adds extra cost to the software
processes because of the need to maintain twaeatfespecifications. The extra cost should be
offset by the benefits brought in by the new speaifon formalism. Adopting ANZAC would
require staff training and process change, entdilethe introduction of the new modeling arti-

facts. In contrast, our goal is to enrich the asiéddyarsenal of tools in an unobtrusive way.

In analysis, use cases are decomposed into comtepimponents and their external interac-
tions are mapped to component interactions. Cagtyti this includes the following activities:
discovering components, discovering messages,adilt@coperations to components, and defin-
ing the components information structures. Sinampmnents support each other's information
needs, the activities above are interdependent.tdgieof realizing a use case is, by and large,
explorative, and it may involve backtracking. Guiides for realizing a use case and for assessing
the goodness of a use case realization other thamirdy partially constructive sequence dia-
grams representing individual scenarios, are pralti missing. Our work alleviates this situation
because it provides a way to test analysis-levadsciodels by checking if they satisfied the in-

variant of the use case they realize.

Harel refers to the stark difference between iotgect and intra-object behaviors as the
grand duality of system behavior and argues thaangefar from having a good algorithmic un-
derstanding of this duality [8]. In this respette invariant-based approach is a means for deriv-
ing the inter-object behavior, i.e., use case biehavrom the agents’ intra-object behaviors,
whose specification is guided by an algebraic ifardr steering the exploratory derivation proc-
ess. Our experience shows, that the upfront invegtim constructing the invariants is offset by
reducing the probability of backtracking later e tdevelopment lifecycle. The proposed process
of class discovery converges quickly because thariants constitute unambiguous guidelines
for developers to follow. The invariants narrow dothe choices that developers have to make.
Even though backtracking is possible, design chawbggond the initial stage of the use case re-

alization are predominantly transformational.

There is a growing consensus that new techniquefofmal modeling and for analyzing

properties of the environment, as opposed to thever of the software, are needed [29], [18].



The demand comes from the realization that sat@faanalysis cannot be performed in isolation
from the context in which the system will operafbe approach proposed in this work relates
directly to context modeling, since it capturespmties of actors and exchange of business do-

main objects crossing the system boundary.

We define precisely when a use case ceases toteapgenore input. The value added in-
variant delimits the boundaries of a use case, $lenging as a pragmatic guideline to require-
ments engineers. The invariant addresses dirdatlyptoblem of horizontal consistency. It en-
sures that the integration of new classes andigekdtips in the class model is functionally and
semantically correct. The balance of the value dddeariant serves as a litmus test for the qual-
ity and completeness of the software architect8iece the invariant is defined over business
objects, it safeguards system analysts from emfedesign (the infamous “analysis-paralysis”
problem). The composition technique deriving cldegrams from agent statecharts resolves a
major weakness of the UML languages for systentmaycs—the lack of seamless integration
between state-change models and static structudelmoThe Unified Process (UP) and agile
methods could benefit from incorporating the vaaulled invariant as it guides the transition
from informal requirements towards formal modeleeTdiscontinuity in model transformation
observed in UP is diminished since the proposedriamt formalizes requirements modeling and

environment modeling.
Conclusion

In this paper we proposed a method for derivindaborations of classes realizing a use case
model through a sequence of model transformationdsfar specifying formally use cases with
OCL constraints. The presented method is basetiendtion of value added invariant of a use
case. We used these algebraic invariants as a médiscovering of classes, class relationships,
and OCL specifications from narrative use casergesms. The use case specification is defined
as a set of pre- and post-conditions defined dwebtisiness objects exchanged during the execu-
tion of a use case instance. All constraints aezifipd from an agent’s, that is, partial point of
view. The derived OCL expressions define declagesitithe use case under consideration. We
defined formally the proposed process, and dematestiwith a real-world system how it can be
used by system analysts to transform a set of asesdo class diagrams and OCL specifications.
This procedure fills the gap between the outsidebieral system description as offered by the
use case model and the analysis level class mbHelproposed approach resolves the vertical

consistency problem between a use case and itsagserealization-analysis. It reinforces Jacob-



son’s most important factor of success, namelytesysdevelopment through model transforma-
tion. Currently, we are developing a method foruresments verification through model anima-
tion using LTSA [16] that will use as an input thgent statechart descriptions and business ob-
jects. Having declarative formal use case spetifioa opens up interesting research topics such
as automatic generation of runtime constraint cingcknplementations and test generation (test

cases and test procedures), which we plan to explor
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