

Transforming Use Case Models to Class Models and

OCL-Specifications

Boris Roussev

Information Systems Dept.

University of the Virgin Islands

Box 10,000, Kingshill, VI 00850

brousse@uvi.edu

Jie Wu

Computer Science and Engineering Dept.

Florida Atlantic University

Boca Raton, Fl 33431, USA

jie@cse.fau.edu

Abstract: In this paper we propose a process generating formal object-oriented specifica-

tions in OCL and class diagrams from the use case model of a system through a clearly

defined sequence of model transformations. The algebraic invariant of business values

exchanged in a use case guides the design of statechart descriptions for the actors and

counter-actors, collectively called agents, of a use case. Each state in a statechart corre-

sponds to a system state characterized by sending or receiving of a business object to or

from the system’s environment. The system class model and OCL specifications are de-

rived from the agents’ statecharts. The proposed approach fills the gap between the out-

side behavioral system description as offered by use cases and the “first cut” at software

architecture, the analysis level class model.

Keywords: software engineering, UML, object-oriented analysis, object-oriented modeling,

model transformation, analysis techniques.

1. Introduction

The contention of [11] and [27] supported by the empirical data in the CHAOS report [3] is that

object-oriented methods are underdeveloped in the specification of external functions of systems

and weak in guidelines for partitioning a system into components. The work of Jacobson [12] has

proven to be one of the most significant advances in software engineering. Jacobson’s approach

to software development was embraced by OMG and evolved into UML [19]. In UML, a system

model consists of several partial models, representing different aspects of the designed system,

such as, structural, behavioral, communication or interaction. The success of UML is based on the

realization that the semantic gap between the problem and machine domains cannot be bridged by

a single model. As a result, software development is defined as model transformation from more

abstract to more detailed and precise models.

Modeling from different viewpoints gives rise to vertical, horizontal, syntactic and semantic

consistency problems [10]. However, the different models must be consistent for an implementa-

tion to be feasible. The objective of this work is to facilitate the development of consistent UML

models, and in particular statecharts, class diagrams, and OCL declarative specifications from use

cases. The main contributions of the paper enhance UML’s major success factor, namely, devel-

opment through model transformation.

In this work, we define a process for discovering classes, class relationships, and OCL con-

straints from a use case based on the notion of use case invariant introduced in [20]. The proposed

approach fills the gap between the outside behavioral system description as offered by use cases

and the “first cut” at system architecture, the analysis class model. We show how use cases, state-

charts and class diagrams can seamlessly relate to each other.

The proposed techniques apply to the design of information systems with non-trivial user re-

quirements and rich sets of usage scenarios such as e-commerce systems, including Web-based

applications, controllers, and software systems implementing enterprise business processes. The

proposed approach is not suitable for system software or scientific applications development as

the complexity of these systems is dominated by the design of their algorithms rather than model-

ing their functional requirements.

In complex environments, systems development starts with business modeling. The business

use case and business object models specify how the designed system interfaces with business

units, customers, users, and existing enterprise systems, such as inventories and supply chains.

These business-level models can be used as an input to the proposed requirements analysis

method.

The rest of the paper is structured as follows. In Section 2, we present the value added invari-

ant. In Section 3, we introduce a process generating class diagrams and OCL use case specifica-

tions from the use case model of a system. Next, in Section 4, we give the algorithm describing

formally the proposed approach. Then, in Section 5, we present a case study, followed by a dis-

cussion. In the final section, we outline plans for future work and conclude.

2. The Value Added Invariant of a Use Case

2.1 Background

In the UML community, there is an overall agreement that system functions are rendered as use

cases. A use case is a cluster of related usage scenarios, where each scenario is a sequence of

transactions performed by an actor in a dialogue with the system that brings value to the actor

[12]. Use cases, however, do not capture only functional requirements. They are also a communi-

cation specification technique since they show external communications (with actors). In addi-

tion, use cases specify system behavior as sequences of actions. And finally, through realization

relationships (an abstraction dependency stereotyped <<realize>>) with collaborations (use case

realizations), use cases indirectly determine the structural part of the analysis model, i.e. the con-

ceptual system decomposition. Therefore, use cases, directly or indirectly, express functional,

behavioral, communication and structural system properties. Cockburn [4] observes the confusion

resulting from the different perceptions of use cases, and gives 24 possible interpretations of the

use case model.

Two types of use case description techniques can be considered—imperative and declarative

[19]. The advantage of an imperative specification is that it leads to an executable specification,

which can be validated at an early stage in the development. Its disadvantage is that it specifies a

process by giving an implementation for it. The advantage of a declarative specification is that it

is completely implementation-independent. However, its disadvantage is that it is an underspeci-

fication. Imperative descriptions include plain text, activity graphs, statecharts, and sequence dia-

grams, while declarative techniques are only mentioned as a possibility but not given in the UML

specification [19].

Several methods have addressed the problem of declarative specifications in object-oriented

modeling. Although not directly related to use cases, Fusion [5] was among the first methods that

advocated the idea of specifying declaratively the services offered by a system to its environment.

Influenced by the formal specification languages Z [23] and VDM [14], Fusion employs sche-

mata written in structured natural language, thus, reducing the cost of introducing the method in

practice. [4] adds goals to the use case model to disambiguate its semantics and streamline its de-

scription. Catalysis [22], a synergy of ideas from Fusion and Syntropy [6] rendered in UML, in-

troduces OCL post-conditions over domain types to define declaratively the effect of a system

service. ANZAC [21], building on both Catalysis and Fusion, splits the use case functional speci-

fication into two separate models to mitigate the conflicting agendas of end users/owners and de-

velopers.

In this work, we use OCL pre- and post-conditions over exchanged business objects to de-

scribe declaratively the effect of a use case. We also introduce a new imperative technique de-

scribing the behavior of a use case as a set of communicating state machines [16], and we use

these behavioral descriptions to derive the system’s analysis-level class model.

Several works provide insights into how scenario-based visual formalisms can be linked to

object-oriented models [7],[24],[26]. Less attention has been given to how scenarios can be de-

scribed without developing or revealing the underlying system structure. For example, in a UML

sequence diagram, lifelines correspond to instances of already identified classes or subsystems,

while locations correspond to object states. In contrast, we propose to specify use case scenarios

with a formal and interactive model including only outwardly visible communication events and

information objects.

There are five basic approaches to class discovery from a functional system specification:

CRC [28], Noun-phrase, Common class pattern, Use case driven [12], and Mixed [15]. The basic

disadvantage of all five methods is the lack of pragmatic guidelines that can steer the process of

class discovery and serve as a litmus test for the quality and completeness of the resulting soft-

ware architecture. Only the use case driven approach through sequence diagrams can verify the

requirements, but the lack of rigor makes the verification highly subjective and can lead to imbal-

ance between iterative and incremental—thrashing. In contrast, the approach presented in this

paper gives practical, quantitative guidelines for use case specification and class discovery.

OCL is a formal and pure expression language used to specify constraints in UML models

[25]. OCL expressions augment graphical models, e.g., class diagrams, to produce unambiguous

and precise system descriptions. Visual models define some constraints, like association multi-

plicity, but in OCL we can specify richer ones, such as uniqueness constraints, formulae, limits

and business rules. OCL constraints improve precision and communication, and facilitate design

by contract. According to Ambler [1], the disadvantages of OCL are its poor readability and its

inefficiency in specifying requirements-level and analysis-level concepts. In this work, we show

that OCL can be used productively in expressing analysis-level concepts.

2.2 Value Added Invariant

From the perspective of an actor, a use case performs something that adds value to the actor, such

as calculating a result, generating a new object or changing the state of an existing object. The

respondent interacting with the actor initiating the execution of the use case instance is called

counter-actor class. Actors and counter-actors are called collectively agents. For each use case

we define the following conservation law. The joint distributed count of business values ex-

changed between the actors and the counter-actors in the course of a use case execution is con-

stant. We call this property the value added invariant of a use case.

Jacobson et al. [13] give two criteria helpful in determining the scope of a use case, the key

phrases being “resulting value” and “participating actor.” The authors went a step further by say-

ing that “In some cases, actors are willing to pay for the value returned,” but stopped short of

generalizing and defining the exchange of values. Below, using an online reservation system as a

running example, we show how the exchange of business objects in the course of the execution of

a use case instance is defined by a value added invariant and how this invariant can be used to

discover the logical system structure.

Book Ticket Use Case
Description:

This use case describes how customers with HTML 4.0 compatible browsers can
book tickets online for a selected performance.

Actor(s):
Customer, Clerk, Bank

Flow of events
Basic Flow

1. The use case execution begins when a customer po ints their browser to the
book ticket web site.

2. The customer selects a performance, and in respo nse, the system displays
a seating chart with seats available for the show.

3. The customer picks a free seat. In response, the system displays a form
collecting payment information.

4. The customer provides the required payment infor mation and submits the
payment form to the system. The system, in cooperat ion with the bank,
carries out the payment transaction and responds by prompting the cus-
tomer to provide their shipment address.

5. The customer fills out the shipment address and submits the form to the
system. The system notifies the clerk of the custom er’s purchase. Then,
the clerk ships the ticket and records the shipment with the system. At
this point, the system sends the customer an electr onic confirmation and
an electronic ticket.

6. Finally, the customer receives the shipment with the ticket.
Exceptional Flow of Events:

� The customer can cancel the purchase at any point p rior to submitting
their shipment address.

� In step (3), no vacant seats are available. The use case terminates.
� In step (3), the customer has selected a booked sea t. The system displays

an updated seating chart.
� In step (4), payment data is incomplete or incorrec t. The system requests

the missing information. If the payment information is incomplete or in-
correct again, the system aborts the booking and ro lls back to its state
prior to the current purchase.

Pre-conditions
None

Post-condition
� A seat is booked.
� An amount equivalent to the seat's price is transfe rred from the customer's

bank account to the system's bank account.
� The ticket for the booked seat is e-mailed to the c ustomer.

(a) Use case description

Customer

Clerk

Book Ticket

Bank

(b) Use case diagram

Figure 1. Book Ticket use case.

Customer Customer'

bookMoney
Address

shipmentM
seatN

Hall'Hall

bookSet of seats Set of seats
excluding seatN

Bank'Bank

bookAssets Assets + Money

Clerk'Clerk

bookSet of
shipments

Set of shipments
excluding
shipmentM

Figure 2. Value added invariant for use case Book Ticket .

Figure 1 shows a use case with three actors. Actor Customer initiates the use case execution. A

customer books a seat and receives a ticket by providing in exchange some form of money. The

respondent receiving the customer’s payment is actor Bank . Actor Clerk is the respondent

completing the bookings and shipping the ticket. From the use case model, it is not clear who

provides the customer with a seat. We introduce a counter-actor, named Hall, providing a vacant

seat. Prior to introducing Hall, the invariant for the use case was not satisfied be-cause the count

of business objects received or sent by actor Customer did not match with the business objects

gained or given away by actors Clerk and Bank.

At the highest level of abstraction, we define the evolution of an agent as a contract, which is

an exact specification of the agent’s interface. The business values sent/received (pre-/post-

conditions) by the agent are described in the notes attached to the left/right agent snapshot, as it is

shown in Figure 2. The agent snapshots and business values specify the state of the agent before

and after the execution of the use case. The invariant for Book Ticket expresses the fact that

the joint distributed count of business objects before the execution of the use case is equal to the

joint distributed count of business objects after the execution of the use case.

3. Deriving Class Diagrams and OCL Specification from a Use Case

3.1. Describing a Use Case as a Set of Statecharts

The lifecycle of each agent is described with a statechart. The statechart model can represent a

system at an arbitrary level of detail. In analysis it is mandatory to stay at a high level of abstrac-

tion, i.e., out of design. This requirement is met by associating with each state a business object,

which is received or sent by the action of the transition leading to that state. Figure 3 shows the

statechart for Customer , derived from the main use case scenario. Since to each agent receiving

a value corresponds an agent providing this value, we number the states so that they can be re-

1 20 3 4

selectSeat pay giveAddress rcvConfirmation

5

ship

(+)Seat (-)Payment (-)Address (+)Confirmation (+)Shiment

Figure 3. Statechart for Customer .

0 1

selectSeat

2

rcvConfirmation

(-)Seat (+)Confirmation

0 1

pay

(+)PaymentInfo
Customer[2]

2

debitAccount

(+)Payment

Figure 4. Statechart for Hall . Figure 5. Statechart for Bank .

0

1 2

3
(+)Address

confirm

getAddress

(-)Confirmation
Customer[4]

ship

(-)Shipment
Customer[5]

0

1 2 3

4

getAddress

confirm confirm

ship

(+)Address (-)ConfCust
Customer[4]

(-)Confirmation
Hall[2]

(-)Shipment
Customer[5]

(a) Initial statechart (b) Modified statechart

Figure 6. Statecharts for Clerk.

ferred to unambiguously from other diagrams. A reference is written in the form of

agent[number] , and it is placed in the note attached to the referring state, e.g. Cus-

tomer[2] . There is a weight associated with each business object. The weight is +1, when the

agent gains the business object, and -1, otherwise. For example, in Figure 3, Customer receives

a Confirmation in the transition to state Customer[4] , and therefore, the weight for the

confirmation object is +1. The weight magnitude can be omitted from diagrams. The state-

charts for Hall , Bank , and Clerk are shown in Figures 4, 5 and 6(a), respectively.

In order for an invariant to be satisfied, the sum of the weighted business objects in the agent

statecharts must be zero. The invariant is written as a set of equations. The equations represent in

a testable way the information recorded in the statecharts. For example, the equations for objects

Seat and Confirmation derived from the diagrams in Figures 3, 4, and 6(a) are written as:

 (+1)Seat Customer[1] + (-1)Seat Hall[1] = 0 (Eq.1)

 (+1)Confirmation Customer[4] + (+1)Confirmation Hall[2] +

 (-1)Confirmation Clerk[2] ≠ 0 (Eq.2)

The value added invariant is not satisfied in Equation 2. To balance the invariant, agent Clerk

must send out two confirmations—one to Customer and another one to Hall . To deal with

this, we add a new state and a transition to the statechart for Clerk , as it is shown in Figure 6(b).

Formally, the value added invariant for a use case can be expressed as ∑∑
= =

=
k

i

m

j
iij vw

1 1

0, where

Vu = {v1, v2,…, vk} is the set of business values exchanged in use case u, Au = {a1, a2,…, am} the

set of agents of u, and Wu = {w11, w12, …, w1m, w21, w22, …, w2m,…, wk1, wk2, …, wkm} is the set of

weights, with wij being the weight associated with business value vi in agent aj.

3.2. Reduction of a Set of Statecharts to a Class Diagram

Similarly to context diagrams, actors model the communication between the system and its envi-

ronment. Maciaszek [15] observed an interesting dichotomy with regard to actors. On the one

hand, actors are external to the system. On the other hand, actors are also internal because the

system must maintain information about them so that it can knowingly interact with them. Hence,

the specification needs to hold two models related to actors—a model of the actors and a model

of what the system records about the actors.

We use the dichotomy of actors in a heuristic for discovering entity classes. The system must cre-

ate an object of class Customer (if the object already exists it is linked) for each ticket booking.

The agent statecharts are considered one at a time. The order of their processing is not significant.

A statechart not processed yet is selected, and a class for its agent is created and stereotyped ac-

cordingly, see Figure 7. Then, a class for each value gained or given away by the agent is created.

If the value is given away, a unidirectional association link is drawn from the agent class to the

value class. If the value is gained, the direction of the association link is opposite. Finally, the

developer determines and adds any associations necessary to create the collaboration paths be-

tween the discovered classes, e.g. association sendTo in Figure 7. Since the use case invariant

does not account for these associations, the associations should be based on the business rules in

the application domain.

Address

Account
Shipment

1
0..*

1
0..*

sendTo

Seat

Confirmation
0..*

1

0..*

1

Customer
<<entity>>

1..*
1

1..*
1

1..*1..*

1

0..*

1

0..*

shipTo

1

0..*

1

0..*

book

0..*

1

0..*

1 confirm

Figure 7. Class diagram generated from the statechart model of Customer .

The following is a commonly occurring pattern. An agent creates a new business object, e.g.,

a confirmation or a transaction ID, and then, provides it to another agent. The information about

the exact timing of object instantiation is not represented in the use case invariant because the

invariant is primarily concerned with the redistribution of business values between the system and

its environment and the direction of each redistribution. Over a sufficiently long period of time,

the providing agent will create and deliver more than one object. We suppress the information

about the exact moment of object creation by modeling the providing agent with a set of objects,

e.g., a set of IDs, and by showing that after the execution of the use case instance, the cardinality

of this set has decreased by one. In the general case, the object being sent has been created in the

step preceding its sending. From the receiver’s point of view, there is nothing unusual. As far as

the receiving agent is concerned, it has got its business value.

Figure 8 shows how as a result of analyzing the statechart model for Hall , the initial class

diagram has been extend with a new counter-actor class and two association links. Domain

knowledge suggests the use of containment relationship between Hall and Seat . The class dia-

gram after processing agent Clerk is presented in Figure 9. Agent classes are stereotyped as en-

tity classes to record the long-lived changes in the redistribution of business values in the system.

Since each agent interacts with other agents we duplicate the agent classes and the clones form a

pool of candidates for controller classes in the BCE design pattern [12]. This is justified by the

behavioral aspects captured by the agent statecharts and the existence of natural collaboration

paths between the agents and the business objects. Very briefly, in the BCE design pattern, entity

classes model long-lived information that survives a use case along with all behavior

Address

AccountShipment

1

0..*

1

0..*
sendTo

SeatCustomer
<<entity>>

1
1..*

1
1..*

1..*1..*0..*

1

0..*

1

shipTo

0..*
1

0..*
1

book

Confirmation

1

0..*

1

0..*0..*

1

0..*

1 confirm

Hall
<<entity>>

1..*1..*

available

0..*

1

0..*

1
{seat}

Figure 8. Diagram extended with knowledge from the statechart of Hall .

Bank
<<entity>>

Payment Ticket

1

1..*

1

1..*

Address

Account
0..*

1

0..*

1

Shipment

1

0..*

1

0..*

sendTo

1

1..*

1

1..*

Hall
<<entity>>

Clerk
<<entity>>

10..* 10..*

Seat

0..1

1

0..1

1
1..*1..*

available

Confirmation
0..*

1

0..*

1

{seat}

1

0..*

1

0..*

0..*

1

0..*

1

Customer
<<entity>>

1

1..*

1

1..*

1..*1..*

0..*
1

0..*
1

book

0..*

1

0..*

1

shipTo
0..*

1

0..*

1
confirm

Figure 9. Final class diagram for Book Ticket use case.

naturally coupled to this information. Boundary classes model behavior and information depend-

ent on the UI, and controller classes models functionality that is not naturally tied to any other

class.

3.3 Converting a Set of Statecharts to an OCL Specification

This section presents a technique for deriving declarative use case specifications. We propose the

use of OCL pre- and post-conditions over exchanged business objects to describe the effect of a

use case scenario. The complete OCL specification for a use case is defined as the exclusive-or of

the specifications for the individual use case scenarios.

Let us consider the statechart for agent Customer . We can define declaratively the behavior

of the use case from the customer’s point of view as a contract expressed in terms of OCL expres-

sions. The contract is an exact specification of the service provided to the customer. The service

is described by two sets of constraints whose context is an instance of Customer : (1) pre-

conditions: the conditions under which the service will be provided; and (2) post-conditions: a

specification of the result, given that the preconditions are fulfilled. The service pre- and post-

conditions are described in the notes attached to the agents on the left and right hand side of

Customer and Customer' , respectively, as shown in Figure 10. We split complicated con-

straints into several separate constraints to improve their readability and writeability. The pre-

condition for a customer is to have a valid credit card (called account for short) and a mail ad-

dress that coincides with the account’s billing address. The latter condition cannot be expressed in

pre
 account.valid = true
 -- account : Account
 account.address = addr
 -- addr : Address

post:
 seat.occupied = true
 Customer.allInstances->forAll(c1, c2 |
 c1 <> c2 implies c1.seat <> c2.seat)
 account.balance = acount.balance@pre
 - seat.price
 shipment.ticket.id = seat.id
 shipment.address = addrpre:

 -- seats : Set(Seat)
 seats->forAll(s1, s2 |
 s1 <> s2 implies s1.id <> s2.id
 seats->includes(seat)
 not seat.occupied

post:
 seats->select(occupied)->size =
 seats@pre->select(occupied)->size + 1

pre:
 assets >= 0
 -- assets : Double

post:
 assets = assets@pre + seat.price

pre:
 shipments->includes(shipment)

post:
 addresses->includes(addr)
 shipments->excludes(shipment)

Customer Customer'

book

Hall'Hall

book

Bank'Bank

book

Clerk'Clerk

book

operation
invariant

Figure 10. OCL specification for Book Ticket use case.

a graphical model. The post-condition includes an occupied seat, modified account balance and

shipment. One of the post-condition constraints uses the allInstances predefined feature of OCL

types. It is instrumental not only in specifying a uniqueness constraint, but also (implicitly

through the logic-and of all post-conditions) in expressing a semantic relationship between the

value of seat.occupied and the association Customer - Seat . This expression accesses the

meta-level UML model to express the fact that a seat is booked by exactly one customer if and

only if the seat is occupied.

Similarly to Customer , we can derive the OCL specifications for the other three agents in

the use case, see Figure 10. The OCL expressions are defined and evaluated in the context of the

corresponding agent. Set(Seat) is used in a comment to clarify the type of collection seats. We use

the extended variant (with two iterators) of forAll to define the uniqueness constraint on seats.

seats->includes(seat) is a precondition indicating that seat has not been booked yet.

Declarative specifications may suffer from the so-called frame problem [2]. We can put

frame assumptions in the form of invariants attached to the edges, e.g., the link book between

Bank and Bank' . The invariant below specifies that the bank assets at any one moment are

equal to the sum of the sold tickets’ prices.

assets = Seat.allInstances->select(seat | seat.occu pied = true)

 ->iterate(s : Seat; result : Double = 0 | result + s.price)

In this case, we use iterate to add up the prices of all seats sold. When the iterate expression is

Notation Meaning
U Use case model
u Use case
A Actor or counter-actor
Au Agents in use case u
V Gain-loss set of the model U
Va Gain-loss subset for agent a
Vu Gain-loss subset for use case u

Actu Set of Actors for use case u
W The set {-1,1}

sca Statechart for agent a
SCu Set of statecharts for Au
Eu Set of OCL constraints for a u.c.

Epre Set of OCL preconditions for a u.c.
Epost Set of OCL postconditions for a u.c.
Einv Set of OCL invariants for a u.c.
ev OCL expression over value v

Table 1. Notation used in the algorithm.

evaluated, element s iterates over the collection of sold seats. The expression result+s.price is

evaluated for each s. After each evaluation of the expression, its value is assigned to result.

4. Formal Process Description

This section describes unambiguously the method for use case specification and class discovery.

Let U be the use case model of the system. The set of business values exchanged in all use

cases is called the gain-loss set and is denoted by V. Let Au be the set of agents of use case u,

u∈U, and Vu ⊆ V the gain-loss subset exchanged by the agents of u.

Definition 1. The statechart for an agent a, a∈Au, is the ordered quadruplet sca = (Sa, Ta⊆Sa×Sa,

Va, gla), where Sa is the set of states, Ta is the set of transitions, Va ⊆ Vu is a set of values and gla is

the gain-loss function defined as,

gla : Ta → W × Va

where W = {0,1} is the set of weights. Function gla assigns to each transition t in Ta a value v

from Va weighted by w, w∈W.

The process of generating class diagrams and OCL specifications from a use case model is

shown in Figure 11. The notation used is given in Table 1. The lower limit of the number of itera-

tions in the process is determined by the number of use cases in use case model U. Procedure

reduce_uc_to_sc takes a use case u, the actors Actu of u, the actor a initiating u, and the lost-

gain set V (discovered thus far) as inputs and returns the set of statecharts SCu for the agents in u.

 procedure generate_cld_oclspec_from_ucm(U: use case model)

1) V = ∅
2) forall usecases u∈U do begin
3) loop
4) outcome = reduce_uc_to_sc(u, Actu, a, V)
5) if outcome = success then
6) exit
7) end

8) V = V ∪ Vu -- add the identified business values to the
 -- set of system business values

9) reduce_sc_to_cld_oclspec(SCu)
10) end

Figure 11. Procedure generate_cld_oclspec_from_ucm .

The loop beginning on line 3 will continue to execute until the use case invariant becomes bal-

anced. In line 8, the gain-loss set is updated with the new values discovered during the step of

converting the use case to a set of statecharts. Procedure reduce_sc_to_cld_oclspec re-

duces the set of statecharts for the use case under consideration to one or more class diagrams and

derives the use case OCL specification.

 procedure reduce_uc_to_sc(u, Actu, a: a∈∈∈∈Actu, V)
1) Au = { a}, Vu = ∅, Actu = Actu \ { a}
2) loop
3) sca = generate_sc(a, u)
4) Vu = Vu ∪ Va
5) SCu = SCu ∪ sca

6) if 0
1

=∑
=

m

j
iij vw and Actu = ∅ then

7) return success
8) else
9) a = identify_new_agent()
10) if a = null then
11) return failure
12) else

13) Au = Au ∪ a
14) end if
15) end if
16) end

Figure 12. Procedure reduce_uc_to_sc .

 procedure reduce_sc_to_cld_oclspec(SCu)
1) forall sca∈SCu do begin

 // extend the CD
2) create class for agent a and stereotype it as such
3) forall transitions t∈sca do begin

 v, w -- the value and weight associated with t
4) if class for v does not exist then
5) create value class for v
6) end if

7) if w > 0 then
8) create association link from the value class

 to the agent class
9) write a post-condition ev involving the value

 class and the agent class
10) Epost = Epost ∪ { ev}
11) else
12) create association link from the agent class

 to the value class
13) write a pre-condition ev involving the value

 class and the agent class
14) Epre = Epre ∪ { ev}
15) end if
16) add necessary collaboration paths
17) end
18) write frame assumptions from the point of view of the agent

 under consideration and update Einv
19) end

Figure 13. Procedure reduce_sc_to_cld_oclspec .

Procedure reduce_uc_to_sc is shown in Figure 12. In the initialization phase, Vu is set to the

empty set, and Au is set to the initiating actor a passed as an input to the procedure. In each itera-

tion, procedure generate_sc takes an agent as an input and generates its statechart. The state-

chart design may entail changes to the existing statecharts such as adding new states and/or new

transitions. The discovered gain-loss values Va are added to Vu. The termination conditions,

evaluated on lines 6 and 10, test if the use case invariant is balanced. If the invariant is satisfied

and the set of actors Actu is empty, the procedure terminates successfully; else a new agent is

identified by procedure identify_new_agent . This agent is found as follows. If the set of

actors Actu is non-empty, identify_new_agent removes one actor from Actu and returns it.

Otherwise, the procedure identifies a new counter-actor using the knowledge that for some busi-

ness value vi in Vu, 0
1

≠∑
=

m

j
iij vw , where || uSCm= is the number of statecharts (one for each

agent) and wij is the weight associated with vi in statechart scj∈SCu. If a new agent cannot be iden-

tified, procedure reduce_uc_to_sc returns failure, which causes backtracking in the top-level

procedure. The order in which the agents are considered does not affect the resulting class dia-

gram or OCL specification.

Procedure reduce_sc_to_cld_oclspec , shown in Figure 13, has m iterations, where

m = |SCu| is the cardinality of the set of statecharts passed to it. The statecharts are processed one

at a time. In each iteration, the class diagram and the OCL specification are extended with new

classes/class relationships and OCL constraints, respectively. The context for the new constraints

is the agent whose statechart is being processed. A pre-condition/post-condition is defined for

each value lost/gained by the agent on line 9/13. For each new constraint the developer adds the

PassTwoPointTollGate PassSingleTollGate

OperatorRegisterVechicleDriver

PayBill Bank

Figure 14. Use case diagram for the EZ pass system.

expressions necessary to specify the semantic relationships with objects other than the instance of

the agent under consideration. If necessary, frame assumptions are added on line 18.

5. Applying the Process to a Distributed Software System

To test the feasibility of the proposed approach, we applied the invariant-based process to a real-

world distributed system [17]. In the EZ Pass system, drivers of authorized vehicles are charged

at tollgates automatically. They pass through special lanes called EZ lanes. To use the system, a

driver has to register and to install an electronic tag (gizmo) in his/her vehicle. The vehicle regis-

tration includes the owner’s personal data, account number and vehicle details. The owner’s ac-

count is debited automatically at the end of every month. Each gizmo has a unique identifier that

is read by the sensors installed at the tollgates. The information read is stored by the system and

used to debit the respective account. The amount to be debited depends on the kind of the vehicle.

When an authorized vehicle passes through an EZ lane, a green light comes on, and the amount to

be debited is displayed. If an unauthorized vehicle passes through it, a yellow light comes on and

a road camera takes a photo of the plate, used to fine the vehicle’s owner (fine processing is out-

side the system scope). There are EZ lanes where the same type of vehicles pay a fixed amount,

for example at a toll bridge, and EZ lanes where the amount depends on the type of vehicle and

the distance traveled, for example on a highway. For the latter, the system stores the entrance

tollgate and the exit tollgate.

The use case diagram for the EZ Pass system is shown in Figure 14. The textual descriptions

for use cases Register Vehicle and Pass Single Tollgate are as follows.

Register Vehicle Use Case
Description:

This use case describes vehicle registration.
Actor(s):

Driver, Operator, and Bank
Flow of events
Basic Flow

1. A driver provides an operator with contact infor mation, including their
name and mailing address, the vehicle type and the vehicle's registra-
tion. In response, the system stores the informatio n and prompts the
driver to provide a valid bank account. This bank a ccount which will be
debited automatically at the end of each billing cy cle.

2. The driver provides a bank account. The system v erifies the account with
the bank.

3. The system provides the driver with a gizmo and stores the bank account
information, the gizmo ID associated with the regis tered car, and the
starting date of the billing cycle.

Exceptional Flow of Events:
� The driver can cancel the registration at any point . The system rolls

back to its state prior to the registration.
� In step (2), if the verification fails the registra tion is cancelled.

Pre-conditions
� The driver has a valid vehicle registration and a v alid bank account.

Post-condition
� The driver receives a gizmo with a unique ID
� The driver, vehicle and gizmo are entered in the sy stem.

Pass Single Tollgate Use Case
Description:

This use case describes the system's behavior in re sponse to a vehicle passing
through a single tollgate.

Actor(s):
Driver

Flow of events
Basic Flow

1. The use case begins when a vehicle with a gizmo passes through a single
tollgate. The tollgate sensor reads the gizmo's ID. The system records
the passage, including date, time, location, and ra te, displays the
amount the driver will be charged, and turns the gr een light on.

Exceptional Flow of Events:
� The gizmo is invalid or missing. The system turns t he yellow light on and

a photo of the vehicle is taken.
Pre-conditions

None
Post-condition

� The vehicle's account is updated with the passage i nformation.

Figure 15 shows the value added invariant for use case Register Vehicle . The statecharts in

Figure 16 are designed using procedure reduce_uc_to_sc . They verify that the joint gain-

loss value sets for actors Operator and Bank balance with the value set for Driver . The class

diagram and the OCL constraints generated from the set of statecharts using procedure

reduce_sc_to_cld_oclspec are shown in Figure 17 and Figure 18, respectively. The class

attributes have been abstracted from the characteristic features of the business objects in the tex-

tual use case description. The post-condition on Operator involving the collection registrations

and the keyword @pre is interpreted as providing a registration to a new vehicle.

account
vehicle
contact info

gizmo

Set of gizmos
Set of gizmos
 excluding gizmo
Customer

Set of
accounts

Set of accounts
 including account

Operator'Operator

RegisterVehicle

Bank'Bank

RegisterVehicle

Driver'Driver

RegisterVehicle

Figure 15. Value added invariant for Register Vehicle use case.

(-)contactInfo (-)account (-)vehicle (+)register (+)gizmo

0 1 2 3 4 5

Driver

0 1 2

(+)verify (-)confirm

Bank

(+)contactInfo (+)vehicle

0 1 2 3 4

(+)account (-)verify

5 6 7

(-)gizmo(-)register(+)confirm

Operator

Figure 16. Agents’ statecharts for the Register Vehicle use case.

Vehicle
type : String

ContactInfo
address : String

Gizmo
id : int

1

1

1

1

Registration
validFrom : Date

1

1

1

1

Driver
name : String

<<entity>>

1..*

1

1..*

1

1

1

1

1
1 1..*1 1..*

1

0..*

1

0..*

Account

11

1..*

1

1..*

+owner

1

VerifyReq

11

Bank
<<entity>>

Verification

11

0..*

1

Operator
empno : int

<<entity>>
1

0..*

1

0..*

1

0..*

1

0..*

0..*

1

0..*

1

1..* 11..* 1

0..*

1

0..*

1

1

0..* 0..*

1

1

0..*

Figure 17. Class diagram for the Register Vehicle use case.

Next, we consider use case Pass Single Tollgate . The only actor interacting with this

use case is Driver . The invariant is instrumental in identifying its counter-actors and in evolv-

ing further the system’s software architecture. The driver exchanges electronic money (the fact

that the actual payment occurs later is immaterial) for speedy passage. To model the creation of a

passage object, we introduce a counter-actor, named Counter (meaning counting not counter-

acting), providing a passage every time a registered vehicle is detected at an EZ lane and calculat-

ing the amount of money due in exchange for that passage. To calculate the passage rate, agent

Counter needs information about the passage’s location. If agent Counter receives a location

pre:
 vehicle
 vehicle.gizmo->isEmpty
 account.valid
 contactInfo

post:
 gizmo
 vehicle.gizmo=gizmo
 registration->notEmpty
 Vehicle.allInstances->forAll(v1, v2 |
 v1 <> v2 implies v1.gizmo <> v2.gizmo
 gizmo->includes(registration.gizmo)
 registration.validFrom = todaypre:

 -- gizmos : Set(Gizmo)
 gizmos->nonEmpty
 gizmos->forAll(g1, g2 |
 g1 <> g2 implies g1.ID <> g2.ID
 -- registrations : Set(Registration)
 registration->nonEmpty
 registration->includes(registration)
 contacts -- Set(Contact)

post:
 gizmos->size = gizmos@pre->size - 1
 registration->size = registration@pre->size - 1
 contacts->includes(contactInfo)
 vehicles = vehicles@pre->including(vehicle)

pre:
 -- accounts : Set(Account)
 accounts

post:
 accounts =
 accounts@pre->including(accoun)t)

Operator'Operator

RegisterVehicle

Bank'Bank

RegisterVehicle

Driver'Driver

RegisterVehicle

Figure 18. OCL specification for Register Vehicle use case.

value, then there must be an agent providing this value. To balance the invariant, we introduce a

new counter-actor, named Lane in Figure 19, to provide the location value. The resulting class

diagram and OCL specification are shown in Figures 21 and 22, respectively. Note that since

Gizmo ID is related to Registration , which in turn is related through class Gizmo to Ve-

hicle (see Figure 17), the vehicle type is known, and the amount charged can be determined

based on the rate in Price and stored in Passage .

money
location
gizmo ID

pass

Driver Driver'

PassSingleTollGate

Counter Counter'

PassSingleTollGate

money
gizmo ID

pass

location

Lane'Lane

PassSingleTollGate

(+)location

0 1 2 3

Counter
(-)passage(+)gizmoID

(+)passage

0 1 2

Driver
(-)gizmoID

(-)location

0 1

Lane

Figure 19. Value added invariant for

PassSingleTollGate use case.

Figure 20. Agents’ statecharts for the

PassSingleTollGate use case.

The invariants, diagrams, and specifications for the other two use cases are designed similarly.

Price
amt : Double

Lane
<<entity>>

Location
location : String

10..* 10..*

0..*

1

0..*

1

Photo
date : Date

11

Passage
date : Date
amt : Double

charge()

1

0..*

1

0..*

Counter
<<entity>>

0..*

1

0..*

1

create
GizmoData

1
1..*

1
1..*

1

0..*

1

0..*

Driver
name : String

<<entity>>

1

0..*

1

0..*

Registration
validFrom : Date

0..*

1

0..*

1 11Account

1
1..*

1
1..*

11

Figure 21. Class diagram for the PassSingleTollGate use case.

post:
 pass
 pass.location = location
 pass.amt = pass.charge(location.price,
 gizmoData.vehicleType)

post:
 passages->exclude(pass)
 passages->size =
 passages@pre->size - 1
 ID

pre:
 gizmo.registration.valid = true
 gizmo.ID

pre:
 passages->includes(pass)

pre:
 location

Driver Driver'

PassSingleTollGate

Counter Counter'

PassSingleTollGate

Lane'Lane

PassSingleTollGate

Figure 22. OCL specification for PassSingleTollGate use case.

EZ Pass is a mid-sized system of moderate complexity. Our experience with developing EZ Pass

shows that the consistency of the designed models is better than that of the models produced with

the CRC, Noun-phrase, Common class pattern, or Use case-driven approaches. We attribute this

to the constraints imposed on the models’ elements, e.g., classes, class associations, and associa-

tion multiplicities, by the use case invariants and statechart diagrams.

6. Discussion

Our work is related to several object-oriented methods dealing with user requirements specifica-

tion and analysis. We already discussed Jacobson’s use cases. In what follows, we discuss how

Fusion, Catalysis and ANZAC relate to the value added invariant.

In Fusion [5], a specification consists of an interface model and object model. The interface

model includes declarative specifications of system operations, expressed as schemata written in

natural language and the temporal ordering of actions captured by regular grammar expressions.

The object model describes the information entities the system deals with in order to fulfill re-

quests coming from its environment. Our approach has a number of similarities to the analysis

model in Fusion. In particular, analogously to Fusion operations, we define declaratively, but in

OCL, the value brought to the actor initiating a use case execution. Instead of regular grammar

expressions, we employ statecharts to define the logical order of the actions occurring on the sys-

tem-environment border. Besides the differences between the two methods in terms of the formal-

isms used, schemata versus OCL expressions, regular expressions versus statecharts, and entity-

relationship diagrams versus classes, there are deeper methodological differences. The value

added invariant binds quantitatively the exchanged business objects. The statechart composition

operation synthesizes the system structure from the behavioral descriptions of the use case agents.

In Fusion, the object model makes a separation between the classes that lie within the system

boundary and those ones that lie outside it. For us, this dichotomy is not absolute. We include the

classes that lie outside the system boundary in the system model because in order to interact with

them the system has to maintain knowledge about them.

Catalysis [22] is a component-oriented development method. Catalysis defines a use case as a

goal-oriented collaboration (action) between a system and an actor. Catalysis uses OCL post-

conditions over application types as a way of defining declaratively the effect of an action. Ca-

talysis introduced the idea of representing change as instance snapshots diagrams expressing can-

didate types and their associations at a particular point in time. In these diagrams, the result of a

use case execution is expressed by showing which associations are deleted and added to the dia-

gram. The value added invariant takes the idea of snapshot diagrams a step further by expressing

quantitatively the exchange of types (business objects in our parlance) and using the equations

over types as a practical guideline for class discovery, test for completeness, and method of justi-

fying types’ existence. Catalysis focuses only on the outcome of a use case execution without

formally describing the sequence of events leading to the outcome. Catalysis ignores the question

of who would possess a type when the new owner is not an actor. To express the ownership

change we define counter-actors. Our approach strengthens a major innovation of Catalysis—the

type model of a use case as the link between a use case and the different UML diagrams, e.g.,

sequence and collaboration diagrams. An important distinction between Catalysis and the value

added invariant is that Catalysis visualizes the type model, while we use the domain dictionary to

compose the system architecture. Catalysis, influenced by SOMA [9] extends class descriptions

with assertions and rules of the if/then and when/then form to encapsulate global knowledge in

local entities. In its current form, the value added invariant relies on UML rules, e.g., OCL con-

straints on class models and statecharts. Both Catalysis and the value added invariant fall in the

category of translational approaches. A translational methodology regards the development proc-

ess as a sequence of distinct models together with a procedure translating from one to the next,

e.g., Executable UML. In the value added invariant the analysis level architecture is composed

out of the agents’ statecharts. We do not make use of the more subjective refinement.

ANZAC [21] is a methodology employing OCL in its declarative, goal-based use case speci-

fications. ANZAC introduces new modeling artifacts, collectively called ANZAC specification,

maintained separately from the use case specification. The latter adds extra cost to the software

processes because of the need to maintain two different specifications. The extra cost should be

offset by the benefits brought in by the new specification formalism. Adopting ANZAC would

require staff training and process change, entailed by the introduction of the new modeling arti-

facts. In contrast, our goal is to enrich the analyst’s arsenal of tools in an unobtrusive way.

In analysis, use cases are decomposed into conceptual components and their external interac-

tions are mapped to component interactions. Cognitively, this includes the following activities:

discovering components, discovering messages, allocating operations to components, and defin-

ing the components information structures. Since components support each other's information

needs, the activities above are interdependent. The task of realizing a use case is, by and large,

explorative, and it may involve backtracking. Guidelines for realizing a use case and for assessing

the goodness of a use case realization other than drawing partially constructive sequence dia-

grams representing individual scenarios, are practically missing. Our work alleviates this situation

because it provides a way to test analysis-level class models by checking if they satisfied the in-

variant of the use case they realize.

Harel refers to the stark difference between inter-object and intra-object behaviors as the

grand duality of system behavior and argues that we are far from having a good algorithmic un-

derstanding of this duality [8]. In this respect, the invariant-based approach is a means for deriv-

ing the inter-object behavior, i.e., use case behavior, from the agents’ intra-object behaviors,

whose specification is guided by an algebraic invariant, steering the exploratory derivation proc-

ess. Our experience shows, that the upfront investment in constructing the invariants is offset by

reducing the probability of backtracking later in the development lifecycle. The proposed process

of class discovery converges quickly because the invariants constitute unambiguous guidelines

for developers to follow. The invariants narrow down the choices that developers have to make.

Even though backtracking is possible, design changes beyond the initial stage of the use case re-

alization are predominantly transformational.

There is a growing consensus that new techniques for formal modeling and for analyzing

properties of the environment, as opposed to the behavior of the software, are needed [29], [18].

The demand comes from the realization that satisfactory analysis cannot be performed in isolation

from the context in which the system will operate. The approach proposed in this work relates

directly to context modeling, since it captures properties of actors and exchange of business do-

main objects crossing the system boundary.

We define precisely when a use case ceases to expect any more input. The value added in-

variant delimits the boundaries of a use case, thus serving as a pragmatic guideline to require-

ments engineers. The invariant addresses directly the problem of horizontal consistency. It en-

sures that the integration of new classes and relationships in the class model is functionally and

semantically correct. The balance of the value added invariant serves as a litmus test for the qual-

ity and completeness of the software architecture. Since the invariant is defined over business

objects, it safeguards system analysts from entering design (the infamous “analysis-paralysis”

problem). The composition technique deriving class diagrams from agent statecharts resolves a

major weakness of the UML languages for system's dynamics—the lack of seamless integration

between state-change models and static structure models. The Unified Process (UP) and agile

methods could benefit from incorporating the value added invariant as it guides the transition

from informal requirements towards formal models. The discontinuity in model transformation

observed in UP is diminished since the proposed invariant formalizes requirements modeling and

environment modeling.

Conclusion

In this paper we proposed a method for deriving collaborations of classes realizing a use case

model through a sequence of model transformations and for specifying formally use cases with

OCL constraints. The presented method is based on the notion of value added invariant of a use

case. We used these algebraic invariants as a means of discovering of classes, class relationships,

and OCL specifications from narrative use case descriptions. The use case specification is defined

as a set of pre- and post-conditions defined over the business objects exchanged during the execu-

tion of a use case instance. All constraints are specified from an agent’s, that is, partial point of

view. The derived OCL expressions define declaratively the use case under consideration. We

defined formally the proposed process, and demonstrated with a real-world system how it can be

used by system analysts to transform a set of use cases to class diagrams and OCL specifications.

This procedure fills the gap between the outside behavioral system description as offered by the

use case model and the analysis level class model. The proposed approach resolves the vertical

consistency problem between a use case and its use case realization-analysis. It reinforces Jacob-

son’s most important factor of success, namely, system development through model transforma-

tion. Currently, we are developing a method for requirements verification through model anima-

tion using LTSA [16] that will use as an input the agent statechart descriptions and business ob-

jects. Having declarative formal use case specifications opens up interesting research topics such

as automatic generation of runtime constraint checking implementations and test generation (test

cases and test procedures), which we plan to explore.

References

[1] S.Ambler, “Toward Executable UML,” Software Development, Jan. 2002.

[2] A.Borgida, J.Mylopoulos, and R.Reiter, “On the Frame Problem in Procedure Specification,” IEEE Trans. On
Soft. Eng., 21(10), 1995.

[3] CHAOS, CHAOS Research Report, http://www.standishgroup.com, 2003.

[4] A.Cockburn, “Structuring use cases with goals,” Journal of Object-Oriented Programming, Sep/Oct 1997.

[5] D.Coleman, P.Arnold, S.Bodoff, C.Dollin, H.Gilchrist, F.Hayes, P.Jeremaes, Object-Oriented Development: The
Fusion Method. Prentice-Hall, 1994.

[6] S.Cook and J.Daniels, Designing Object Systems: Object-Oriented Modeling with Syntropy. Prentice-Hall, 1994.

[7] W.Damm and D.Harel, “LSCs: Breathing Life into Message Sequence Charts,” Formal Methods in System De-
sign, 19(1), 2001.

[8] B.P.Douglas, Real Time UML, 3rd Ed., Addison-Wesley, Boston, 2004.

[9] I.Graham, “Business Process Re-engineering with SOMA,” Proc. of Object Expo Europe, Dorking, England,
1994.

[10] G.Engels, J.Kuster, R.Heckel, and L.Groenewegen, “A Methodology for Specifying and Analyzing Consistency of
Object-Oriented Behavioral Models,” ACM ESEC/FSE, Vienna, Austria, 2001.

[11] J.Ivari, “Object-Orientation as Structural, Functional and Behavioral Modeling: A Comparison of Six Methods for
Object-Oriented Analysis,” Inf. and Software Technology, 37(3), 1995.

[12] I.Jacobson, Object-Oriented Software Engineering: A Use Case Driven Approach, Addison-Wesley, 1992.

[13] I.Jacobson, G.Booch, and J.Rumbaugh, The Unified Software Development Process, Addison-Wesley, 99. 1999.

[14] C.Jones, Systematic Software Development Using VDM. Prentice-Hall, 1986.

[15] L.Maciaszek, Requirements Analysis and System Design, Addison Wesley, 2001.

[16] J.Magee and J.Kramer, Concurrency: State Models and Java Programs, John Wiley & Sons Ltd., 1999.

[17] A.Moreira and J.Araújo, “Generating object-Z specifications from use cases,” International Conference on Enter-
prise Information Systems, Setúbal, Portugal, March 1999.

[18] B.A.Nuseibeh and S.M.Easterbrook, “Requirements Engineering: A Roadmap,” In A.C.W. Finkelstein (ed) The
Future of Software Engineering, IEEE Computer Society Press, 2000.

[19] OMG, OMG Unified Modeling Language Specification, Version 1.5, March 2003.

[20] B.Roussev, “Generating OCL Specifications and Class diagrams from Use Cases: A Newtonian Approach,” In
Proc. 36th Hawaii Int’l Conference on System and Sciences, HICSS’36, Hawaii, 2003.

[21] S.Sendall, Specifying Reactive System Behavior. Ph.D. Thesis, EPFL, Lausanne, 2002.

[22] D.D’Souza and A.Wills, Objects, Components and Frameworks with UML: The Catalysis Approach. Addison-
Wesley 1998.

[23] J.M.Spivey, The Z Notation: A Reference Manual. Prentice-Hall, 1989.

[24] S.Uchitel, J.Kramer, and J.Magee, “Incremental Elaboration of Scenario-Based Specifications and Behavior Mod-
els Using Implied Scenarios,” ACM Trans. on Software Engineering and Methodology, 13(1), pp 37-85, 2004.

[25] J.Warmer and A.Kleppe, The Object Constraint Language: Precise Modeling with UML, Addison-Wesley, Read-
ing, MA, 1998.

[26] J.Whittle and J.Schumann, “Generating Statechart Designs from Scenarios,” In Proc. of 22nd Int'l. Conference on
Software Engineering, ICSE’00, Limerick, Ireland, 2000.

[27] R.Wieringa, “A Survey of Structured and Object-Oriented Software Specification Methods and Techniques,”
ACM Computing Surveys, 30(4), Dec. 1998.

[28] R.Wirfs-Brock and B.Wilkerson, “Object-oriented design: A responsibility driven approach,” In Proc. of OOP-
SLA’89, pp.71-75, 1989.

[29] P.Zave and M.Jackson, “Four dark corners of requirements engineering,” ACM Transcations on Software Engi-
neering and Methodology, 6(1), 1-30, Jan. 1997.

