Integration of the Standard Template Library
and the Microsoft Foundation Class

Paul Wolfgang and Yang Song

1 Introduction

Both the Microsoft Foundation Class (MFC) [1] and
the Standard Template Library (STL) [2] provide
generalized containers and afacility to iterate over all
of the objects within a container. However, the
approach taken is different. Within the MFC the
iteration mechanism is dependent upon the container,
while in the STL there is a common iteration
mechanism so that an algorithm can operate on each
element of a container without knowledge of the
container's type. The MFC containers support
persistent storage, which is not a feature of the STL.

This paper presents a small example of a Windows®
application using the STL containers in place of the
corresponding MFC containers.

2 Example — Scribble.

2.1 Description of the Problem
The MFC Tutoria [3] includes a simple graphics

Ciocument

N

r_strokelist _..|

[DC000000|+e
0000+

[CCoooooooO|«e
[CCoooo O] e

Figure 1 Scribble Document Structure

application known as Scribble. The purpose of
Scribble is to let the user draw a set of strokes with
the mouse. The result is saved in a file (called a
document) which can be opened and updated by
adding additional strokes. (There is no method for
deleting a stroke.) The user aso has the option of
specifying the thickness and color of the pen.

Scribble’'s data structure consists of one or more
strokes. Each stroke is the record of the mouse
position from the time when the user clicks on left
mouse key to the time when the user releases the
mouse button. In MFC approach, a new class
CSt r oke, which is derived from class CObj ect , is
defined. This contains a data member of
CArray<CPoi nt, CPoint> with other data
members to record and work on each stroke. The
document class, CScri bbDoc, is derived from
CDocument . It contains a list of stokes using the
MFC template class CTypedPtrList<
CObLi st, CStroke* >.

Figure 1 illustrates the document data structure.

CTypedPtrlist of CStroke objects.
Each CStrake contains a CArray of
ZPoint objects.

L Arrays of point

2.2 Type definitions

2.2.1 MFC Implementation

In the MFC implementation, the list of strokes is
stored in the member m strokelLi st which is
defined as a ClypedPtrList< COoject,
CSt r oke* >. The class CSt r oke, in turn, contains
aCArray< CPoint, CPoint > tocontainthe
array of points that constitute the stroke.

2.2.2 STL Implementation

The class CSt r okelist is defined to replace the
CTypedPtrLi st< CObject, CStroke* > as
follows:

cl ass CStrokelist: public CObject,
public std::list<CStroke*>

{

publi c:
CStrokeList(){}
CSt rokelLi st (const CStrokelLi st &) ;
DECLARE_SERI AL(CSt r okelLi st)

publi c:
vi rtual
void Serialize(CArchive& ar);

i
The CArray<CPoi nt, CPoint> in CStroke
isreplaced by ast d: : | i st <CPoi nt >.

2.3 Using the STL algorithms and
iterators

2.3.1 Inserting points into a stroke

In the original MFC implementation, points were
added to a stroke by the following statement:
m pStrokeCur ->
m_poi nt Array. Add(poi nt);
In the STL implementation this becomes:

m pSt rokeCur —>
m_poi nt Array. push_back(poi nt);

2.3.2 Drawing all strokes

In the origina MFC implementation, the list of
strokes was traversed and each stroke drawn by the
following code:

PCSI TI ON pos = strokeList.front();
whil e (pos != NULL)

{
CSt roke* pStroke =

st rokelLi st. Get Next (pos) ;
pSt r oke- >Dr awSt r oke(pDC) ;

}

We make two changes. The first obvious change is to
replace the MFC list iteration with the corresponding
STL iteration. Theresult is as follows:
for (std::list<CStroke*>::iterator
i = strokeList. begin();
i != strokelList.end(); ++i)
(*i)->Drawst roke(pDC) ;

The second change is to apply the for_each
algorithm. Unfortunately, the f or _each agorithm
takes as its third argument a function of one
argument, that argument being the type obtained by
de-referencing the iterator. Specifically, we must
convert the expression:
(*i)->Drawst roke(pDC) ;

into a call to a function of one argument, where that
argument is the dereferenced iterator. Stroustrup[4]
shows how to do this using the binders and adapters.
The function nmem funl is a function of one
parameter, the a pointer to member function that
takes an arbitrary argument. The result of this
function, is a function object that takes two
arguments, the first of which is a pointer to a class,
and the second is the same arbitrary second
argument. Thus, the expression

(*i)->Drawst roke(pDC) ;
may be replaced by
mem funl(&CSt r oke: : Dr awSt r oke)
(*i, pDO);
We can now apply the bi nd2nd binder to convert
this expression into a call to a function taking one
agrument:

bi nd2nd(mem f uni(
&CSt r oke: : DrawSt roke), pDC) (*i);

The loop can now be replaced by a cal to the
f or _each agorithm:

for_each(strokeli st. begin(),
st rokelLi st. end(),
bi nd2nd(mem f uni(
&CSt r oke: : Drawst roke), pDQ));

2.3.3 Drawing a stroke
The origina code to draw a stroke was as follows:
pDC- >MoveTo(m poi nt Array[0]);
for (int i=1;

i < mpointArray. GetSize(); i++)
{

}

pDC- >Li neTo(m poi ntArray[i]);

We also make two changes. The first is to use the
vector iterator as follows:
pDC- >MoveTo(m poi nt Array. begin());
for (vector<CPoint>::iterator i=
m_poi nt Array. begi n();

i = mpointArray.end(); ++i)

pDC- >Li neTo(*i);
Now the member function we are caling is not a
member of the class pointed to by the objects in the
container, but rather it is a member of the class CDC,
which encapsulates the Windows® drawing context.
The same nem funl adapter may be used as
follows:

mem funl(&CDC: : Li neTo) (pDC, *i);
Since Li neTo is an overloaded function, we need to
give the compiler some help resolving the ambiguity.
Thisis done as follows:
t ypedef BOCL
(CDC: :*ptr_to_fcn_of _PA NT) (PO NT);
ptr _to fcn_of PONT p =

&CDC: : Li neTo;

mem funl(p) (pDC, *i)
Since the loop variable is now the second argument,
and the pDC is the first, we use bi nd1st to call the
f or _each algorithm asfollows:
for_each(m poi nt Array. begi n(),

m _poi nt Array. end(),

bi ndi1st (std:: mem funl(p), pDC));

2.4 Serialization

2.4.1 Brief description of the MFC
serialization

MFC provides a method for saving and retrieving a
class to/from a file. The general approach is to
write/read the raw bytes to the file preceded by some
type identification. This is accomplished using the
class Cnj ect as an abstract base class, the virtual
function seri ali ze, and the class CArchi ve.
CAr chi ve encapsulates the file and provides
overloaded insertion (<<) and extraction (>>)
operators. These operators are provided for the built-
in types, the standard Windows® types such as
WORD, DWORD, and PO NT, and pointers to
CObj ect . The insertion operator for pointers to
CObj ect writes type identification to the file, and
then calls the seri al i ze member function. The
extraction operator verifies the type identification and
then callstheseri al i ze member function.

2.4.2 The serialize function

The generalize scheme for the ser i al i ze function
isasfollows:
void CW/C ass:: Serialize(

CAr chi ve& ar)

{
Clbject::Serialize(ar);
if (ar.IsStoring())
{
/1 insert the menber
/1 objects into ar
}
el se
/1 extract the nmenber
/1 objects from ar
}
}

2.4.3 Serializing the stroke list and the
stroke

The straightforward implementation of seri al i ze
for CSt r okeList and CSt r oke are asfollows:

voi d CStrokelList::Serialize(
CAr chi ve& ar)

{
Clbject::Serialize(ar);
if(ar.lsStoring())
{
ar << (WORD) size();
for(list<CStroke*>::iterator
it = begin();
it I=end(); ++it)
ar << *jt,;
}
el se
{
WORD s;
ar >> s; /1 get size
clear();
for (int i =0; i !'=s; i ++4)
{
ar >> tenp;
push_back(tenmp);
}
}
}

void CStroke::Serialize(
CAr chi ve& ar)
{

Clbject::Serialize(ar);

if (ar.IsStoring())
{
ar << (WORD) m nPenW dt h;
ar <<
(WORD) m poi nt Array. size();
for (vector<CPoint>::iterator
i = m_pointArray. begin();
i = mpointArray.end();
++i)
ar << *j,;
}
el se
{
WORD w,
ar >> w, /1 pen w dth
m nPenWdth = w,
m_poi nt Array. cl ear();
ar >> w, /] array size
CPoi nt poi nt;
m _poi nt Array. reserve(w);
for (int i =0; i <w ++i)
{
ar >> point;
m_poi nt Array. push_back(
poi nt);

}

2.4.4 Archive iterators

Since CAr chi ve is defined to work like i st r eam
and ostream it is desrable to define a

CArchi ve_i nput _iterator and a
CArchi ve_out put _iterator that will work
like the i stream.iterator and

ostream.iterator. The loops can then be
replaced by a call to the copy algorithm.

2.4.4.1 CArchive_output_iterator

Adapting the output_iterator to become the
CAr chi ve_out put _iterator is very
dtraightforward. Merely replace ostream with
CAr chi ve. Theresult isasfollows:

tenpl ate <class T>
cl ass CArchive_output _iterator
public
std::iterator<std::output_iterator_
tag, void, void>
{
pr ot ect ed:
CAr chi ve* archive
publi c:
CAr chi ve_out put _iterator(
CAr chi ve& s) archive(&s) {}

CAr chi ve_out put _i terat or <T>&
oper at or =(const T& val ue)
{

*archi ve << val ue;
return *this;
}
CAr chi ve_out put _i terat or <T>&
operator*() { return *this; }
CAr chi ve_out put _i terat or <T>&
operator++() { return *this;

}
CAr chi ve_out put _i terat or <T>&
oper at or ++(i nt)
{ return *this; }
b

2.4.4.2 CArchive_input_iterator

The loop to read a stroke must terminate after all of
the points for that stroke have been read. This is not
at the end of the input stream. We will need to passto
the copy algorithm a
CAr chi ve_i nput _i t erator that represents the
current file position as the first argument, and a
CArchi ve_i nput _i terator that represents the
position at which the copy operaton should stop. If
we were copying from a standard array, the copy call
would look something like this:

copy(start, start+n, destination);

Therefore, we overload the + operator so that a
CArchive_input _iterator plusanint will
result in a CArchi ve_i nput _iterator object
that can be used by the equality operator called by the
copy agorithm to terminate the loop.

Ini stream.i t er at or the datavaue is extracted
from the i st r eamwhen the iterator object is first
created and whenever the ++ operator is called. The
dereferencing operator (*) then retrieves the saved
value. Since we do not want to extract an object from
the CAr chi ve once the specified number of objects
have been retrieved, we set a flag to indicate the need
to retrieve a new object, and have the actual
extraction performed by the * operator. The resulting
implementation of CAr chi ve_i nput _i t er at or
isasfollows:

tenpl ate <class T>

cl ass CArchive_input_iterator
std::iterator<std::input_iterator _t
ag, T, ptrdiff_t>

friend bool operator==(const

CArchi ve_i nput _iterator<T>& X,
const

CArchive_input _iterator<T>& y);

friend bool operator!=(const
CArchi ve_i nput _iterator<T>& X,

const

CArchive_input_iterator<T> & y);
pr ot ect ed:

CAr chi ve* archive;

T val ue;

bool fl ag; /1 True to
// indicate that value is defined

i nt count; /] Count of the

/1 nunber of times ++ has been
/1 applied O the target value for
/1 the nunber of advances
publi c:
CArchive_input _iterator() :
archive(0), flag(false),
count (0) {}
CArchi ve_i nput _iterator(
CArchi ve& s) :
archi ve(&s), count(0),
flag(false) {}
const T& operator*()

if (flag)

{
return val ue;

}

el se

{ _
*archi ve >> val ue;
flag = true;
return val ue;

}

}

CArchive_i nput _iterator<T>&
oper at or ++()

{
++count ;
flag = fal se;
return *this;
}

CArchi ve_i nput _iterator<T>
oper at or ++(i nt)

{
CArchi ve_i nput _iterator<T>
tnp = *this;
++*t hi s;
return tnp;
}

CArchi ve_i nput _iterator<T>
operator+(int delta)

{
CArchi ve_i nput _iterator<T>
tnp = *this;
t np. count += delta;
return tnp;

}s

tenpl ate <class T>

i nl i ne bool operator==(const
CArchi ve_i nput _iterator<T>& X,
const
CArchive_input _iterator<T>& y)

return x.archive == y.archive &&
X.count == y.count;

}

tenpl ate <class T>

i nl i ne bool operator!=(const
CArchi ve_i nput _iterator<T>& X,
const
CArchive_input _iterator<T>& y)

{ return !'(x ==vy); }

2.4.5 Serializing CStrokeList and
CStroke using Archive Iterators

The loops in CStrokeList::serialize and
CStroke: : seri al i ze are then replaced by calls
to the copy algorithm as follows:

Output of aCSt r okeList:

CAr chi ve_out put _i t er at or <CSt r oke* >
oi (ar);
copy(begin(), end(), oi);
Input of aCSt r okeList

CAr chi ve_i nput _i t er at or <CSt r oke* >
ii(ar);
copy(ii, ii + s,
back_inserter(*this));
Output of aCSt r oke

CAr chi ve_out put _i t er at or <CPoi nt >
oi (ar);
copy(m_poi nt Array. begi n(),
m poi nt Array. end(), o0i);
Input of aCSt r oke
CAr chi ve_i nput _i t er at or <CPoi nt >
ii(ar);
copy(ii, ii + w
back_i nserter(m_pointArray));
3 Conclusion

The STL containers can be easily adapted to be used
in Windows® applications in place of the MFC
collection classes. By adding the CAr chi ve input
and output iterators, the use of the standard
algorithms can be applied to the serialization process.

The STL containers are more general than the MFC
collection classes. By separating the iterators from
the containers themselves, and by providing a
common interface for all containers, the STL
container choice is independent of the algorithm. The
Scribble example uses a linked list of arrays to
represent the strokes. This was replicated in the STL
version. The STL version could easily be changed to
use an array (vector) of lists, or a list of lists, or an
array of arrays.

We first developed this example using Microsoft’s
Visua C++ version 5.0. We experienced numerous
difficulties requiring us to define a class, MY CPoint
to extend the CPoint class and developing modified
versons of the function binders and adapters.
Microsoft’'s Visual C++ version 6.0 does not require
these work-arounds.

4 References

[1] Shepherd, George and Wingo, Scot. MFC
Internals. Addison-Wesley, 1996.

[2] Stepanov, A. A. and Lee, M. The Standard
Template Library. Technical Report HPL-94-34,
Hewlet-Packard Laboratories, April 1994.

[3] The Microsoft Developer Studio Help Filesand
Example Files.

[4] Stroustrup, Bjarne. The C++ Programming
Language Third Edition. Addison-Wesley, 1997.

Paul Wolfgang is a Staff Engineer at Boeing and an
Adjunct Professor at Temple Univesity. He can be
reached a Paul.Wolfgang@Boeing.com or at
wolfgang@fal con.cis.temple.edu.

Yang Song is a graduate student at Temple
University. She can be reached at
yangsong@astro.ocis.temple.edul.

