
Integration of the Standard Template Library
and the Microsoft Foundation Class

Paul Wolfgang and Yang Song

1 Introduction

Both the Microsoft Foundation Class (MFC) [1] and
the Standard Template Library (STL) [2] provide
generalized containers and a facility to iterate over all
of the objects within a container. However, the
approach taken is different. Within the MFC the
iteration mechanism is dependent upon the container,
while in the STL there is a common iteration
mechanism so that an algorithm can operate on each
element of a container without knowledge of the
container’s type. The MFC containers support
persistent storage, which is not a feature of the STL.

This paper presents a small example of a Windows®
application using the STL containers in place of the
corresponding MFC containers.

2 Example – Scribble.

2.1 Description of the Problem

The MFC Tutorial [3] includes a simple graphics

application known as Scribble. The purpose of
Scribble is to let the user draw a set of strokes with
the mouse. The result is saved in a file (called a
document) which can be opened and updated by
adding additional strokes. (There is no method for
deleting a stroke.) The user also has the option of
specifying the thickness and color of the pen.

Scribble’s data structure consists of one or more
strokes. Each stroke is the record of the mouse
position from the time when the user clicks on left
mouse key to the time when the user releases the
mouse button. In MFC approach, a new class
CStroke, which is derived from class CObject, is
defined. This contains a data member of
CArray<CPoint, CPoint> with other data
members to record and work on each stroke. The
document class, CScribbDoc, is derived from
CDocument. It contains a list of stokes using the
MFC template class CTypedPtrList<
CObList, CStroke* >.

Figure 1 illustrates the document data structure.

Figure 1 Scribble Document Structure



2.2 Type definitions

2.2.1 MFC Implementation

In the MFC implementation, the list of strokes is
stored in the member m_strokeList which is
defined as a CTypedPtrList< CObject,
CStroke* >. The class CStroke, in turn, contains
a CArray< CPoint, CPoint > to contain the
array of points that constitute the stroke.

2.2.2 STL Implementation

The class CStrokeList is defined to replace the
CTypedPtrList< CObject, CStroke* > as
follows:
class CStrokeList: public CObject,
public std::list<CStroke*>
{
public:

CStrokeList(){}
CStrokeList(const CStrokeList&);
DECLARE_SERIAL(CStrokeList)

public:
virtual
void Serialize(CArchive& ar);

};

The CArray<CPoint, CPoint> in CStroke
is replaced by a std::list<CPoint>.

2.3 Using the STL algorithms and
iterators

2.3.1 Inserting points into a stroke

In the original MFC implementation, points were
added to a stroke by the following statement:
m_pStrokeCur ->

m_pointArray.Add(point);

In the STL implementation this becomes:

m_pStrokeCur –>
m_pointArray.push_back(point);

2.3.2 Drawing all strokes

In the original MFC implementation, the list of
strokes was traversed and each stroke drawn by the
following code:
POSITION pos = strokeList.front();
while (pos != NULL)
{

CStroke* pStroke =

strokeList.GetNext(pos);
pStroke->DrawStroke(pDC);

}

We make two changes. The first obvious change is to
replace the MFC list iteration with the corresponding
STL iteration. The result is as follows:

for (std::list<CStroke*>::iterator
i = strokeList.begin();
i != strokeList.end(); ++i)

(*i)->DrawStroke(pDC);

The second change is to apply the for_each
algorithm. Unfortunately, the for_each algorithm
takes as its third argument a function of one
argument, that argument being the type obtained by
de-referencing the iterator. Specifically, we must
convert the expression:

(*i)->DrawStroke(pDC);

into a call to a function of one argument, where that
argument is the dereferenced iterator. Stroustrup[4]
shows how to do this using the binders and adapters.
The function mem_fun1 is a function of one
parameter, the a pointer to member function that
takes an arbitrary argument. The result of this
function, is a function object that takes two
arguments, the first of which is a pointer to a class,
and the second is the same arbitrary second
argument. Thus, the expression

(*i)->DrawStroke(pDC);

may be replaced by

mem_fun1(&CStroke::DrawStroke)
(*i, pDC);

We can now apply the bind2nd binder to convert
this expression into a call to a function taking one
agrument:
bind2nd(mem_fun1(

&CStroke::DrawStroke), pDC)(*i);

The loop can now be replaced by a call to the
for_each algorithm:

for_each(strokeList.begin(),
strokeList.end(),
bind2nd(mem_fun1(

&CStroke::DrawStroke), pDC));

2.3.3 Drawing a stroke
The original code to draw a stroke was as follows:
pDC->MoveTo(m_pointArray[0]);
for (int i=1;

i < m_pointArray.GetSize(); i++)
{

pDC->LineTo(m_pointArray[i]);
}



We also make two changes. The first is to use the
vector iterator as follows:

pDC->MoveTo(m_pointArray.begin());
for (vector<CPoint>::iterator i=
m_pointArray.begin();

i != m_pointArray.end(); ++i)
pDC->LineTo(*i);

Now the member function we are calling is not a
member of the class pointed to by the objects in the
container, but rather it is a member of the class CDC,
which encapsulates the Windows® drawing context.
The same mem_fun1 adapter may be used as
follows:

mem_fun1(&CDC::LineTo)(pDC, *i);

Since LineTo is an overloaded function, we need to
give the compiler some help resolving the ambiguity.
This is done as follows:
typedef BOOL
(CDC::*ptr_to_fcn_of_POINT)(POINT);
ptr_to_fcn_of_POINT p = 

&CDC::LineTo;
mem_fun1(p)(pDC, *i)

Since the loop variable is now the second argument,
and the pDC is the first, we use bind1st to call the
for_each algorithm as follows:

for_each(m_pointArray.begin(),
m_pointArray.end(),
bind1st(std::mem_fun1(p), pDC));

2.4 Serialization

2.4.1 Brief description of the MFC
serialization

MFC provides a method for saving and retrieving a
class to/from a file. The general approach is to
write/read the raw bytes to the file preceded by some
type identification. This is accomplished using the
class CObject as an abstract base class, the virtual
function serialize, and the class CArchive.
CArchive encapsulates the file and provides
overloaded insertion (<<) and extraction (>>)
operators. These operators are provided for the built-
in types, the standard Windows® types such as
WORD, DWORD, and POINT, and pointers to
CObject. The insertion operator for pointers to
CObject writes type identification to the file, and
then calls the serialize member function. The
extraction operator verifies the type identification and
then calls the serialize member function.

2.4.2 The serialize function

The generalize scheme for the serialize function
is as follows:

void CMyClass::Serialize(
CArchive& ar)
{

CObject::Serialize(ar);
if (ar.IsStoring())
{

// insert the member
// objects into ar

}
else
{

// extract the member
// objects from ar

}
}

2.4.3 Serializing the stroke list and the
stroke

The straightforward implementation of serialize
for CStrokeList and CStroke are as follows:

void CStrokeList::Serialize(
CArchive& ar)

{
CObject::Serialize(ar);

if(ar.IsStoring())
{

ar << (WORD) size();
for(list<CStroke*>::iterator

it = begin();
it != end(); ++it)

ar << *it;
}
else
{

WORD s;
ar >> s; // get size
clear();
for (int i = 0; i !=s; i ++)
{

ar >> temp;
push_back(temp);

}
}

}

void CStroke::Serialize(
CArchive& ar)

{
CObject::Serialize(ar);



if (ar.IsStoring())
{

ar << (WORD)m_nPenWidth;
ar <<
(WORD) m_pointArray.size();
for (vector<CPoint>::iterator

i = m_pointArray.begin();
i != m_pointArray.end();
++i)
ar << *i;

}
else
{

WORD w;
ar >> w; // pen width
m_nPenWidth = w;
m_pointArray.clear();
ar >> w; // array size
CPoint point;
m_pointArray.reserve(w);
for (int i = 0; i < w; ++i)
{

ar >> point;
m_pointArray.push_back(

point);
}

}
}

2.4.4 Archive iterators

Since CArchive is defined to work like istream
and ostream, it is desirable to define a
CArchive_input_iterator and a
CArchive_output_iterator that will work
like the istream_iterator and
ostream_iterator. The loops can then be
replaced by a call to the copy algorithm.

2.4.4.1 CArchive_output_iterator

Adapting the output_iterator to become the
CArchive_output_iterator is very
straightforward. Merely replace ostream with
CArchive. The result is as follows:

template <class T>
class CArchive_output_iterator :

public
std::iterator<std::output_iterator_
tag, void, void>
{
protected:

CArchive* archive;
public:

CArchive_output_iterator(
CArchive& s) : archive(&s) {}

CArchive_output_iterator<T>&
operator=(const T& value)

{
*archive << value;
return *this;

}
CArchive_output_iterator<T>&

operator*() { return *this; }
CArchive_output_iterator<T>&

operator++() { return *this;
}

CArchive_output_iterator<T>&
operator++(int)

{ return *this; }
};

2.4.4.2 CArchive_input_iterator

The loop to read a stroke must terminate after all of
the points for that stroke have been read. This is not
at the end of the input stream. We will need to pass to
the copy algorithm a
CArchive_input_iterator that represents the
current file position as the first argument, and a
CArchive_input_iterator that represents the
position at which the copy operaton should stop. If
we were copying from a standard array, the copy call
would look something like this:
copy(start, start+n, destination);

Therefore, we overload the + operator so that a
CArchive_input_iterator plus an int will
result in a CArchive_input_iterator object
that can be used by the equality operator called by the
copy algorithm to terminate the loop.

In istream_iterator the data value is extracted
from the istream when the iterator object is first
created and whenever the ++ operator is called. The
dereferencing operator (*) then retrieves the saved
value. Since we do not want to extract an object from
the CArchive once the specified number of objects
have been retrieved, we set a flag to indicate the need
to retrieve a new object, and have the actual
extraction performed by the * operator. The resulting
implementation of CArchive_input_iterator
is as follows:
template <class T>
class CArchive_input_iterator :
std::iterator<std::input_iterator_t
ag, T, ptrdiff_t>
{
friend bool operator==(const
CArchive_input_iterator<T>& x,

const
CArchive_input_iterator<T>& y);



friend bool operator!=(const
CArchive_input_iterator<T>& x,

const
CArchive_input_iterator<T> & y);
protected:

CArchive* archive;
T value;
bool flag; // True to

// indicate that value is defined
int count; // Count of the

// number of times ++ has been
// applied Or the target value for
// the number of advances
public:

CArchive_input_iterator() :
archive(0), flag(false),

count(0) {}
CArchive_input_iterator(

CArchive& s) :
archive(&s), count(0),
flag(false) {}

const T& operator*()
{

if (flag)
{

return value;
}
else
{

*archive >> value;
flag = true;
return value;

}
}
CArchive_input_iterator<T>&

operator++()
{

++count;
flag = false;
return *this;

}
CArchive_input_iterator<T>

operator++(int)
{

CArchive_input_iterator<T>
tmp = *this;

++*this;
return tmp;

}
CArchive_input_iterator<T>

operator+(int delta)
{

CArchive_input_iterator<T>
tmp = *this;
tmp.count += delta;
return tmp;

}

};

template <class T>
inline bool operator==(const

CArchive_input_iterator<T>& x,
const
CArchive_input_iterator<T>& y)

{
return x.archive == y.archive &&

x.count == y.count;
}

template <class T>
inline bool operator!=(const

CArchive_input_iterator<T>& x,
const
CArchive_input_iterator<T>& y)

{ return !(x == y); }

2.4.5 Serializing CStrokeList and
CStroke using Archive Iterators

The loops in CStrokeList::serialize and
CStroke::serialize are then replaced by calls
to the copy algorithm as follows:

Output of a CStrokeList:

CArchive_output_iterator<CStroke*>
oi(ar);

copy(begin(), end(), oi);

Input of a CStrokeList

CArchive_input_iterator<CStroke*>
ii(ar);

copy(ii, ii + s,
back_inserter(*this));

Output of a CStroke

CArchive_output_iterator<CPoint>
oi(ar);

copy(m_pointArray.begin(),
m_pointArray.end(), oi);

Input of a CStroke

CArchive_input_iterator<CPoint>
ii(ar);

copy(ii, ii + w,
back_inserter(m_pointArray));

3 Conclusion

The STL containers can be easily adapted to be used
in Windows® applications in place of the MFC
collection classes. By adding the CArchive input
and output iterators, the use of the standard
algorithms can be applied to the serialization process.



The STL containers are more general than the MFC
collection classes. By separating the iterators from
the containers themselves, and by providing a
common interface for all containers, the STL
container choice is independent of the algorithm. The
Scribble example uses a linked list of arrays to
represent the strokes. This was replicated in the STL
version. The STL version could easily be changed to
use an array (vector) of lists, or a list of lists, or an
array of arrays.

We first developed this example using Microsoft’s
Visual C++ version 5.0. We experienced numerous
difficulties requiring us to define a class, MYCPoint
to extend the CPoint class and developing modified
versions of the function binders and adapters.
Microsoft’s Visual C++ version 6.0 does not require
these work-arounds.

4 References
[1] Shepherd, George and Wingo, Scot. MFC

Internals. Addison-Wesley, 1996.
[2] Stepanov, A. A. and Lee, M. The Standard

Template Library. Technical Report HPL-94-34,
Hewlet-Packard Laboratories, April 1994.

[3] The Microsoft Developer Studio Help Files and
Example Files.

[4] Stroustrup, Bjarne. The C++ Programming
Language Third Edition. Addison-Wesley, 1997.

Paul Wolfgang is a Staff Engineer at Boeing and an
Adjunct Professor at Temple Univesity. He can be
reached at Paul.Wolfgang@Boeing.com or at
wolfgang@falcon.cis.temple.edu.

Yang Song is a graduate student at Temple
University. She can be reached at
yangsong@astro.ocis.temple.edu.


