

Code Snippets

Justin A. Roman, Tanisha Rankin,

Grae Cullen, and Paul Wolfgang

Fall Semester 2008

CIS 4339 – Project in Computer Science

Temple University Computer Science

Professor Paul Wolfgang

Ch
ap

te
r:

 T
ab

le
 o

f C
on

te
nt

s

2

Table of Contents

Intro .. 3

Development Tools ... 4

Backend:.. 4

Frontend: .. 5

Versions/Architectures .. 5

Technical Matters .. 6

Database Diagram ... 6

Sample Problem XML... 7

Log In/Log Out ... 8

Add Category ... 9

Add/Edit Problem .. 10

Add/Remove a Teacher/Student .. 11

Running Student’s Code... 12

View Student’s Completed Work ... 13

Security ... 14

Using the Application .. 15

Student and Teacher: .. 15

Teacher: .. 17

Student: .. 22

Project Future ... 28

Known Issues ... 29

Ch
ap

te
r:

 In
tr

o

3

Intro
The purpose of this project was to develop a website which will primarily be used as a teaching aid for
computer science teachers/professors teaching the C language. The secondary objective of this website
is to allow students, or any other individual, to freely practice modern coding techniques. Professors will
be allowed to assign pre-defined problems which will be listed categorically based on level of difficulty.
Completed code will be submitted by the student where the server will save, compile, run, and check
the method. Pre-defined test cases will determine the validity of the student’s code. User logins will
allow the professor to check each student’s individual progress, which is updated after each properly
completed problem.

Ch
ap

te
r:

 D
ev

el
op

m
en

t T
oo

ls

4

Development Tools

Backend:

Java
Java is the backbone programming language of our project. We decided to use it because of its ease of
use and ease of integration with JSP and MySQL. The main reason for using an object-oriented
programming language such as Java is that each problem can be an instance of a Java class. We created
a Problem Java class to represent the many different problems found on our website. The attributes of
the problem being viewed are loaded in from the database.

JSP
JSP was used as our server side scripting language because it provides a simplified way to dynamically
generate web pages. On the server, a JSP engine interprets JSP tags and scriplets, generates content
(JavaBeans, JDBC, or include files), and sends the results back in the form of an HTML page to the
browser. This ensures that our pages can be hosted on any HTML-based web browser.

JSTL
JSTL is a collection of JSP tags that provide standard commands used to control how data is retrieved
and displayed. We used JSTL to access the database, and to set page and session variables.

MySQL
MySQL is the database software package that we use in many different ways throughout our
application. When deciding which database service to use we came to a decision rather quickly. MySQL
is a free software package that works seamlessly with all three of the abovementioned technologies.
SQL commands such as insert, update, and delete can all be easily written and manipulated in Java, JSP,
and JSTL.

Apache Tomcat
Apache Tomcat was chosen as our web server because Tomcat implements the Java Servlet and the
JavaServer Pages, and can provide a Java HTTP web server environment for Java code to run.

GCC
GCC, or GNU Compiler Collection, is the compiler used behind the scenes when a program is to be run
by a user or teacher. We needed a compiler to assemble the C code we pass it in a Unix environment.

XML
XML is used when storing all of the problem information in the database. We decided to use XML
rather than database columns because 1) there are a dynamic number of testpoints for each problem
and 2) it is easy for the Java code to parse through XML.

Sandbox
Sandbox is a program written by Professor Paul Wolfgang with the purpose of providing security to our
website. Sandbox is used every time a program is run on the server side. Sandbox limits the user by
disallowing him/her access to our source files. Sandbox was written in C++ because of the ease of string
manipulation.

Ch
ap

te
r:

 D
ev

el
op

m
en

t T
oo

ls

5

Frontend:

HTML/CSS
A lot of the programming, besides the JSP and Java code, was done in HTML since this is a web
application. CSS was used throughout our website to help with the navigation bars, the body text, and
some other aspects of the site.

JavaScript
JavaScript is used mostly for client side form validation, and to enhance page convenience. JavaScript
was used for returning to the editProblem.jsp and addProblem.jsp pages after a submission. It is also
used to load initial values into forms, as well as setting the focus of a page to a specific field.
Additionally, as an added convenience for the user, JavaScript was used to give the user the ability to
use tabs within the text area on the problem.jsp, addProblem.jsp, and editProblem.jsp pages.

Versions/Architectures
Apache Tomcat – 6.0.18
JVM by Sun Microsystems Inc. – 1.6.0_07-b06
Linux (AMD64) – 2.6.25.9-40.fc8

Ch
ap

te
r:

 T
ec

hn
ic

al
 M

at
te

rs

6

Technical Matters

Database Diagram

This is the list of tables that are used to store all pertinent information concerning our application, as
well as the keys that connect each table. All user information (name, email, and which user is logged
into the system), problem and category information, class registration, as well as keep track of the
student’s progress. The XML page for the problem is stored in the problem table as a BLOB (Binary
Large Object).

Ch
ap

te
r:

 T
ec

hn
ic

al
 M

at
te

rs

7

Sample Problem XML

The above is an example XML object describing all the fields required for a problem. Each problem XML
object is broken up into two parts, namely the “listing” section and the “testpoints” section. The
“listing” piece, as shown above, contains all the information that describes the problem including the
starting text and the completed answer.

The “testpoints” section contains the multiple tests created by the teacher. The inputs are taken from
what the professor enters and the expected return value for each test is derived from running the
teacher’s program with the given input values.

This XML write-up is zipped and saved in the database in addProbProcess.jsp. It is then later unzipped
and the information is extracted using an XML reader when the specific problem is being viewed in
problem.jsp.

Ch
ap

te
r:

 T
ec

hn
ic

al
 M

at
te

rs

8

Log In/Log Out

Log In
When a user attempts to log in to our website the first thing we do is check the submitted user name
and password against our database. If the user selects the radio button for student, we check the
information against the “users” table and if the radio button for teacher is selected, we check the
information against the “teachers” table. If loginProcess.jsp determines that the information is invalid,
we redirect the user to login.jsp with an error message describing the issue that arose during the login
attempt. If the submitted criteria match our database, the user is redirected to categories.jsp but
before that, there are a couple of actions performed. First, we check to see if the user is in the “log”
table of our database. If the user’s user name appears then this means he/she has a session elsewhere
(whether or not this is on the same computer). After removing any occurrences of the user name in the
“log” table, we insert into the table the newly created session ID and the user’s user name. This allows
for only one login session per user at a time since every page checks the user’s current session ID against
the one listed in the “log” table of the database. During the second action performed we create all the
necessary session attributes in order for the student/teacher to successfully navigate through our site.
These attributes include a user ID, first name, last name, account type (student or teacher), and a
maximum inactive interval.

Log Out
Logging out of our website invalidates any session variables created during the login process. The page,
logout.jsp, also deletes the row that contains the current session ID from the “log” table. Logging out
makes sure that no one can use our website as the previous user since every page checks the current
session ID against the one listed in the “log” table of the database.

Ch
ap

te
r:

 T
ec

hn
ic

al
 M

at
te

rs

9

Add Category
Only a teacher has the ability to add a new category to the database. The category name, description,
and difficulty are all required when doing this. The aforementioned information is taken from the
submitted addCategory.jsp page and added into the categories table of the database. This event takes
place in the addCatProcess.jsp page. A simple SQL insert statement is performed to add this information
to the database.

Ch
ap

te
r:

 T
ec

hn
ic

al
 M

at
te

rs

10

Add/Edit Problem

From ‘C’ to Problem Object
The first step in storing a problem is to create the Problem Object for a given problem from the user
input. This is done with the ProblemParser object. The ProblemParser object takes the problem name,
problem description, the completed function, and a String array, 1 or more dimensions, of test points,
and takes that data and constructs a Problem object. The Problem object is a Java representation of the
problem. From it you can get data such as types of the arguments, or return type. The parser will
extract that information from the teacher code. However, the “correct” answers are obtained by
actually running the code. In order to run code, we create a ProgramBean object, set the
ProgramBean’s problem as the current problem, and call the teacherTest function. From here there are
a number of possible paths for the code to run.

Results
The result is either submission success, or one of five different failures. The first failure is in the case of
a certain test point did not compile. This can be caused by invalid c-code, or invalid syntax in the test
points. Anything that would fail to compile on GCC, gets sent back with a message about syntax and the
GCC compile error/warnings message. The second failure is a failure of the parser, that is, the parse is
unable to parse the function submitted. The only way this can be caused is if the function has
unsupported options, such as return type of a pointer (*), other than character. Although it works with
C code, if you type in complete junk it will not handle it very gracefully. However, in the future it could
throw the InvalidFunctionException in more situations. These could all be handled in the current JSP
code. The third type of submission failure is the InvalidTestPointsException, which is caused by putting
the wrong number of arguments in for a function, compared to the number of arguments you have in
the test points. The fourth type of submission failure is if there is a Java exception during the building
and running of the GCC compiler process. This has yet to happen. Any generic Exceptions that might
happen beyond these planned paths will be caught by our error.jsp page. Submission success, on the
other hand, adds the newly created problem to the database. If the problem, cannot be added to the
database, that is the fifth submission failure. This also, has yet to happen.

From Problem object to XML
In order to add a Problem object to the database, it is converted into XML. Not only is the actual text of
the function added, along with the description and test points, all the parsed data such as return type
and number of arguments is added to the XML string also. This XML string is then compressed and
added to the database using a BlobBean object.

Edit: Full Circle back from XML
The process for editing a problem is generally the same, with one key difference. The original data used
for creating the Problem object was read from the XML in the problem.jsp page. The process is nearly
the same, with one difference being that the database is being updated with a SQL update statement
rather than a SQL insertion.

Ch
ap

te
r:

 T
ec

hn
ic

al
 M

at
te

rs

11

Add/Remove a Teacher/Student
Since this system will be used as a teaching aide, we will allow the students to share all of his/her
completed programs with a teacher. The student user must have the teacher’s email address in order to
add the teacher. The student will go to the myTeachers.jsp page that will list, in table format, the name,
email address, a button to view a teacher’s problems, and a button to remove a teacher. This table
includes any teacher the student is currently sharing their work with. If the student is not currently
sharing their work, then a message will be displayed. The bottom of myTeachers.jsp has a form that has
a text box for the student to provide the teacher’s email address. This form will submit to the share.jsp
page, a processing page that will access the database and attempt to insert the student’s ID and the
teacher’s ID to the “classes” table. If the student has already entered the teacher’s email, the student
will be forwarded back to the myTeachers.jsp page and an error message will be displayed. However,
upon successful insertion, the student will still return to the myTeachers.jsp page and the table will be
updated to include the new addition. If the student decides to stop showing their work to a teacher,
they simply click on the remove button on the table. This button will submit to the removeClassID.jsp
page, a processing page that will delete from the classes table the row containing the specified teacher
and student. A teacher user has a page similar to the student’s myTeachers.jsp page called
myStudents.jsp. This teacher’s page has all of the same functionality except the teacher does not have
the capability to add a student to his/her class.

Ch
ap

te
r:

 T
ec

hn
ic

al
 M

at
te

rs

12

Running Student’s Code

Preparation
The problem.jsp page either loads the student’s last attempt from the database or puts the start text
into the submission box if there is no previously made attempt saved in the database. The student can
then change the code as needed.

Submission
When the student hits the “Submit” button, a number of things happen. The results.jsp page is included
where the student’s results are checked against the expected values. If the student has not submitted
the problem before, a SQL insert statement is performed where the submitted text is saved along with
completion date and a Boolean value of whether or not the submitted answer is correct. On the other
hand, if the student has submitted before and they are simply resubmitting his/her newly edited
solution, a SQL update statement is performed updating the fields described earlier.

Hitting the submit button also causes results.jsp to be included in the problem.jsp page. This page
actually displays the results that the student gets for their problem. Additionally, it updates the
database as to whether the student has submitted a correct answer.

Testing the Student Submission
In order to actually test the submission, the results.jsp page gets the number of test points from the
already initialized ProgramBean, and then runs runProgram function for each of the test points. Each
runProgram call will return true if the entered C code compiled and ran. If the code did not compile and
run properly, we display the message in the results box, and discontinue testing the rest of the test
points. However, if the code does compile and run, we change the getProgramOutput() call with the
getExpected() call. If the two returned strings are equal, we print out a green block in the table. If the
two strings do not match, meaning the answer is incorrect, we print out a red background in the table
square indicating success or failure.

The Actual Running of the Program
The ProgramBean runs the program with the following steps. First, the runProgram method makes a
new directory in which to put the C file. Then the actual C file is written. The user entered function is
printed to the file. Next the rest of the C file is produced by the Program object’s cFile method, and
written to the file. The C file is then compiled into an executable. We then use the sandbox program to
run the executable, in a “sandbox” which does not allow the executable access to any system files. The
sandbox program actually changes root, and runs the program as a non-privileged user in that new root
directory. That sandbox program will return zero if the program ran successfully. If the sandbox
program returned successfully, the output from that program is simply returned from the runProgram
Java method to the caller. If the return value of sandbox is nonzero, that means the program timed out.
In the case of a time out the runProgram function returns a String “Program Timeout.” The runProgram
method will also return the compiler error messages, if the program does not compile. The method may
also catch an Exception, and return a string representation of it.

Ch
ap

te
r:

 T
ec

hn
ic

al
 M

at
te

rs

13

View Student’s Completed Work
A teacher has the ability to view all of a student’s completed problems by going to the myStudents.jsp
page. Once a student has registered for a teacher’s class, the myStudents.jsp page will provide that
student’s information in table format. For each student, it will list their name, email address, a button
to view the student’s problems, and a button to remove the student. By clicking on the view problem
button the teacher will be redirected to studentReport.jsp. This page will list the students correctly
completed problems. The table is generated by accessing the database and getting the information
from the completed table. This includes completion date, category name, problem name (with a link to
the problem), and the problem text. The teacher can view a student’s answer to a problem in a read-
only text area. If a teacher deletes a problem that a student has already completed, this table will be
updated to reflect the change.

Ch
ap

te
r:

 T
ec

hn
ic

al
 M

at
te

rs

14

Security

Sandbox

The base sandbox is in the directory sandbox_base. It contains the above directory structure.
The home sub-directory is empty.

Sandbox performs the following steps:

1. Removes any directory of the name sandbox_user-name
2. Creates a directory sandbox_user-name
3. Copies sandbox_base to sandbox_user-name
4. Creates a directory sandbox_user-name/home/user-name
5. Copies the user's program to sandbox_user-name/home/user-name
6. Changes the owner of sandbox_user-name/home/user-name to user-name
7. Changes the root to sandbox_user-name
8. Performs a fork.
9. In the child process:

a. sets the user-id to the user-name's user-id
b. limits the process to a single process (no children)
c. arms a 5-second time out
d. executes the program

10. In the parent process:
a. Wait for the child process to terminate
b. Return the exit status of the child process.

Ch
ap

te
r:

 U
si

ng
 th

e
A

pp
lic

at
io

n

15

Using the Application

Student and Teacher:

Log In

Logging into our website is very simple. Click the submit button after entering your registered login
name, your password, and selecting the radio button that describes what type of account you will be
logging in as.

Log Out
Logging out of our website is just as simple, if not simpler. Every page contains a navigation bar along
the top and bottom with the rightmost link being labeled “Logout.” Clicking this link will log you out of
the system and redirect you to login.jsp.

Ch
ap

te
r:

 U
si

ng
 th

e
A

pp
lic

at
io

n

16

View Categories and the List of Problems

After a user is logged into our system, they will be redirected to the category page. This page is
dynamically loaded with information from the categories and problems table. The categories are
displayed in order of difficulty and then alphabetically. The number of categories displayed per row is
pre-defined as four, and each category will list the first four problems ordered by problem difficulty. If
the number of problems for a specified category is less than four, then just the available problems will
be listed. Each problem name is a link to the problem.jsp page. The last link for each category is titled
“More…” and this link will take the user to the displayCategory.jsp page. This page will display all
problems for the specified category ordered by problem difficulty and then by problem name.

Ch
ap

te
r:

 T
ea

ch
er

:

17

Teacher:

Add a Category

A teacher has the ability to add a category on this page. Adding a category requires that the teacher
enters a category name, description, and difficulty for the soon to be created category.

Ch
ap

te
r:

 T
ea

ch
er

:

18

Add a Problem

In order to add a problem to the website, please follow these steps:

1. Enter a unique descriptive name.
2. Enter a problem description, which should tell the student exactly what the student must do in

order to complete the problem.
3. Select a difficulty level for the problem. This level will be used in the sorting of problem. The easier

problems are listed first.
4. Select a category in which to place the problem. You may add new categories elsewhere on the

page.
5. The complete function must be the correct code for the problem described in the problem

description. The student’s answers will be matched against the answer this function produces.
Even if the student is right, the website will assume the answers your code produces will be correct.

6. Indicate the number of arguments your function requires. This must match the number of
arguments in the “Complete Function” section.

7. After you indicate the number of arguments, click the “Set Number of Parameters Button.”
8. You will then be able to set the number of test points to use.
9. The site will warn you with a popup that changing the number of test points will remove and test

points you have already saved. Click “Ok” to continue.

Ch
ap

te
r:

 T
ea

ch
er

:

19

10. You are now about to type in test points.
11. Each test point is typed on a new line. If you have more than one argument, each argument is

placed in a box in a particular row.
12. Click “Submit Problem!” when you are finished.

Assuming everything is correct, you will get a submission success. If not, you will receive a submission
failed message and a reason as to why it failed. Click the back button, or “Redo Submission” button, and
try to correct whatever mistake was made.

Edit a Problem
The process for editing a problem is nearly the same as adding a problem. There are two key additional
things when editing a problem. First, if you change a problem, even in a superficial way, the student is
not considered to have completed that problem. The student has to resubmit the problem, to see if its
answers match the answers of the newly edited problem. Additionally, as the program is written, the
test points are lost each time you edit a problem. So you will have to retype the test points each time
you edit a problem. Another warning, avoid directly typing in problem ID number in the address bar,
like “editProblem.jsp?problemID=95”. This can cause a bug, you should first view the problem you want
to edit, and then click the edit button. Skipping directly to the editProblem.jsp page can cause
problems.

Ch
ap

te
r:

 T
ea

ch
er

:

20

View a Student’s Progress and Submitted Answers

A teacher has the ability to view the progress of the students registered for his/her class. The page,
studentsReport.jsp, lists the students correctly completed problems. The table includes completion
date, category name, problem name (with a link to the problem), and the problem text. The “problem
text” column includes the student’s correct answer in a read-only textarea allowing the teacher to view
how the student went about answering the problem.

Ch
ap

te
r:

 T
ea

ch
er

:

21

View a Class/Remove a Student from Your Class

The myStudents.jsp page allows the logged in teacher to view a list of his/her registered students along
with email address. On this page, the teacher can click the button labeled “See Problems” which brings
the teacher to the page previously described. The “Remove Student” button removes the student from
this list. You can then no longer view the student’s completed problems.

Ch
ap

te
r:

 T
ea

ch
er

:

22

Student:

Register an Account

The registration.jsp and registrationProcess.jsp pages allow students to register accounts. The student
must enter all of the requested information with the two password fields being equal to each other and
the two email address fields being equal to each other. If a field is empty, passwords or emails do not
match, or the username requested is already registered the user will be redirected to this page with an
error message along the top. In this screenshot, the error message says “A required field is missing.”

NOTE: Teachers who wish to register must contact an administrator.

Ch
ap

te
r:

 T
ea

ch
er

:

23

Enter/Exit a Class

The myTeachers.jsp page allows the logged in student to view a list of his/her registered teachers along
with email address. On this page, the student can click the button labeled “View Problems” which
brings the student to the classProblems.jsp page. The “Remove” button unregisters the student from
the respective teacher’s class. By doing this, that teacher can no longer view your correctly completed
problems.

This page also allows you to enter a teacher’s email address with whom you want to share your
completed problems. The email provided must belong to a registered teacher otherwise an error
message will be returned. By submitting a valid teacher email address, you are essentially joining
his/her class.

Ch
ap

te
r:

 T
ea

ch
er

:

24

View Class Problems

This page, classProblems.jsp, can be accessed by clicking the “View Problems” link previously mentioned
or by clicking on the teacher’s name found at the bottom of problem.jsp. The table includes four
columns, namely category name, problem name, view problem, and completed. The “View Problem”
button points the user to the problem.jsp page with the specified problem. The “Completed” column
shows green if the student successfully completed the respective problem or shows red if the student
either did not start the problem or did not complete it successfully.

NOTE: A teacher can view another teacher’s problem by coming to this page. He/she can do so by
clicking on the teacher’s name found at the bottom of problem.jsp. The “Completed” column will not be
displayed for teachers.

Ch
ap

te
r:

 T
ea

ch
er

:

25

Compile, Run, Test, and Save Problems

In order to submit a function, you must type it into the text area beneath the label “Enter your code
below.” Be sure to include any includes your function will need to run. When you are happy with the
function hit submit. Whether you’re submitted answer is correct or not, the attempt is saved. If the
answer you submit does not compile, then the results window will show the compiler errors and
warnings (shown above). The function must compile with no errors or warnings before the site tests
your results against the results stored from the teacher’s function.

Ch
ap

te
r:

 T
ea

ch
er

:

26

If the submitted function compiles, the answer your function returns for each test case will be compared
with each test case’s expected value. In the above example, the submitted problem was only correct for
one test case. The correct test case is displayed in green. The incorrect test cases are shown in red. It
may be useful to note, whether or not the solution your function provided was correct, the correct
answers are shown. The correct answers are shown in the “Expected” column, in the following syntax:
functionName(testValueArg1, testValueArg2, testValueArgN) → correctAnswer. Your answer is shown
in the next box, in the “This Run” column. The “Correct” column is green for correct, and red for
incorrect. If the answer is correct for all test points, the website shows that problem as completed in
your teachers’ list of problems for you.

Ch
ap

te
r:

 T
ea

ch
er

:

27

In the example above, all the answers are correct, and all the answers are shown in green. Once this
happens, your teacher can see the work you have done and when you completed it.

Ch
ap

te
r:

 P
ro

je
ct

 F
ut

ur
e

28

Project Future

What Did Not Get Done
 Have a button to show the current problem’s solution
 Problem Navigation (i.e. previous, next, random)
 Pointer return types other than char
 Deactivate Account

What Could Get Done
 Better Navigation
 More Preferences (e.g. “Display My Email” checkbox)
 Allow teacher to decide if solution should be shown
 Allow teacher to comment on Student’s completed problem
 Student’s “my attempted problems” page
 Teacher assign problems to class, student view assigned problems
 Keep track of student’s completed problems on categories.jsp and viewCategory.jsp with a check or

color difference
 Forgot Password Link?
 Link to “How to Use our Website” (show example/walkthrough)
 *Allow teacher to view a student’s attempted problems
 Edit/Remove categories
 *Put either an X or OK along with colors for the colorblind

Ch
ap

te
r:

 K
no

w
n

Is
su

es

29

Known Issues

Disregard for CSS File
Type of Error: Cosmetic
Browser Specific: Unknown
Frontend/Backend: Frontend
Frequency: Occasional
Description: The main page, categories.jsp, will occasionally disregard the linked CSS file causing
unwanted bullets in the “class=blank” list items found under the categories.

Navigation Bars Not Centered
Type of Error: Cosmetic
Browser Specific: Internet Explorer 7 and earlier
Frontend/Backend: Frontend
Frequency: Always
Description: Internet Explorer will display the top and bottom navigation bars slightly askew to the right
showing a bit of white on the left which causes web items to look unaligned. This issue is fixed in
Internet Explorer 8. We implemented a temporary fix by making the whole background of the
navigation bar the same color as that of the list items.

Password Textbox Size
Type of Error: Cosmetic
Browser Specific: Internet Explorer
Frontend/Backend: Frontend
Frequency: Always
Description: Internet Explorer will display the password textboxes a few pixels smaller than normal text
textboxes of the same width.

