SOFTWARE PRODUCTIVITY

Choosing Ada Tasking Models
for Real-time Systems

A recoding project reveals a few of the major problems with writing real-time

ince November 1984 work has

been done at Computer Sciences
Corp. (CSC) to recode portions of a
large, real-time computer system in the
Ada language. The system being stud-
ied has been under development at
CSC since the early 1970s for use in
an embedded shipboard weapons sys-
tem. It is written in CMS-2 and the
Ultra/32 assembly languages and sup-
ports multiprocessing, memory sharing,
and real-time interrupt services on a
special-purpose, onboard computer.

One project involved the construc-
tion of the Ada language in skeletal
versions of several radar system appli-
cations modules and 20 or so executive
service handlers. These components
were combined into a small mock-up
designed to simulate the scheduling
and dispatching functions of the
executive related to the applications
modules and their executive service
requests (ESRs).

The original goal of the project was
to stay within the framework of the
original design for the scheduling and
dispatching processes of the executive
while at the same time taking advan-
tage of the tasking, priority and pre-
emption support provided by the Ada
language. The tasking structure of the
resulting system was subsequently re-
viewed with respect to three factors:

o the accuracy with which it mod-
eled the executive,

o the degree to which the Ada task-
ing, priority, and preemption mecha-
nisms were utilized and

o the appropriateness of the choice
of this tasking structure for use in
modeling the system being studied.

As a result of this review, the tasking
structure of the system was rewritten.

Basic Work Units
Both the weapons software system
and the Ada language address modu-

168 DEFENSE ELECTRONICS APRIL 1987

systems in the Ada language.

Application Module Task

loop

. —— 7 alternatives
. —— one per entry
R select
reference *
(through .
dispatcher) or
to a task —_— accept . . .do
(module)_ reference to
entry point the entry
point task

.
.
or
.
.
end select;
end loop;

end ACCEPT_BLOCK;

By Frank L. Friedman and Paul A.T. Wolfgang

Entry Point Task

.
.
pragma PRIORITY (P);
loop

S accept . . .do

. (code to

. save entry

. arguments)

end ACCEPT_BLOCK;

. (module

. entry point

o code)

end loop;

end ENTRY_POINT_TASK;

end APPLICATION_MODULE_TASK;

Tasking schematic for entry point reference in

application moduel tasks

Tasking schematic for entry point references in application module tasks.

larization and reusability, controlled
data access, and specification and use
of tasks (called modules in the weapons
system) as the basic system work units.
The weapons software is highly modu-
larized and consists of many small,
functionally complete components
organized in a hierarchical system
structure. Module interfaces are care-
fully controlled through the use of well
defined and documented message
packets and a combination of code and
style conventions that limits access to
several levels of common data. The
modularized, hierarchical system struc-
ture, combined with the consistent use
of coding, style, and naming conven-
tions, have produced a system that is
easy to read, considering the low level
of the implementation languages. The

system structure and the implementa-
tion conventions have also contributed
to a high degree of component reuse
as the weapons software system has
evolved.

The reusability concept was a major
motivating factor in the design of the
Ada language. The data abstraction
facilities support the encapsulation of
data and operations in a manner con-
ducive to ensuring clearly defined inter-

Frank Friedman is associate professor and
department chairman at Temple University’s
department of computer and information
science and a senior computer scientist at
Computer Sciences Corp. defense systems
division. Paul A.T. Wolfgang, formerly lead
scientist at Computer Sciences Corp., is the
current manager of software engineering at
Boeing-Vertol Co.




faces while hiding implementation
details. The Ada language was also
designed to handle concurrency, pro-
viding an explicit tasking mechanism
for representing interprocess communi-
cation and control algorithms without
forcing the programmer to step outside
the high-level language environment.

Thus, the Ada language has the
potential of supporting the behavior
of the weapons systems and its execu-
tive. The primary goal of this work is
to ascertain the extent to which features
of the current executive execution
model can be mapped into the Ada
language task model. Also being stud-
ied is the extent to which the Ada
language run-time environment must
be augmented to support specialized
features of the executive such as
changing priorities, task and entry
point priority assignment and preemp-
tion restrictions.

The scope of the experiment is
limited to an analysis of a small subset
of weapons system tactical applications
modules and of the scheduling and
dispatching of these modules. System
functions related to initialization, peri-
odic rescheduling, priority assignment,
preemption, common data access and
module communication were studied
and recoded in skeletal form in the
Ada language.

Executive Overview

The executive is divided into two
major functional units: an executive
service program that provides the
nucleus of executive services to control
the CPU, input/output channels and
memory; and a dependent executive
program that provides user-dependent
services for a particular tactical appli-
cation. These services include system
initialization, interrupt handling, sched-
uling and dispatching, memory man-
agement, message processing, input/
output and device processing, error
processing and recovery, inter-computer
communications, COmmon Service rou-
tines (such as mathematical functions),
and performance measurement and
debugging support.

Five tactical applications systems
are serviced by the executive. The
basic work unit of these systems is the
single-function tactical applications
module. These modules perform func-
tions related to carrying out the system
mission, including the acquisition,

processing, evaluation and display of
tactical data.

Tactical application modules may be
scheduled for processing at any one
of seven entry points, one for each of
the primary processing activities per-
formed by the module. The entry
points for all modules are the same:
one each for initialization, message
processing, error processing, successor

SOFTWARE PRODUCTIVITY

processing, buffer complete functions,
channel complete functions, and peri-
odic processing. For most modules,
however, one or more of the seven
entries will be undefined (null) and
therefore unable to be scheduled.

The scheduling and eventual execu-
tion (dispatching) of all module entry
points is managed through a priority
schedule queue (PSQ). The executive

“Systematics General Corporation.
Call us toll free: 1-800-225-8897.

We are very supportive.

Your TEMPEST environment demands the best—not just in preventive
maintenance and repair, but to certify that the equipment continues to
meet the test of TEMPEST. To service these needs, you need a Qualified
TEMPEST Service Engineer from Systematics General Corporation.

Our Qualified TEMPEST Engineers keep all TEMPEST equipment operating
at peak performance and reliability —whether it was sold by SGC or not.

When you need support you can be secure with, there’s only one answer -

Circle Reader Service No. 51
DEFENSE ELECTRONICS APRIL 1987 169



uses a two-tier priority scheme with a
preemption priority (the major priority)
governing execution preemption and
a scheduling priority (the minor prior-
ity) used for maintaining the order in
the PSQ. A schedulable module entry
point may be dispatched (subject to
preemption restrictions) when it reaches
the front of the PSQ. Priorities asso-
ciated with a module entry point may
be altered at execution time via requests
from that module or others.

The scheduling of a module’s initial-
ization, error processing, message
processing and successor entry points
may be done by other tactical applica-
tion modules via ESRs. The buffer and
channel-complete entries are scheduled
directly by the executive, not through
requests from other applications
modules. Module initialization is sched-
uled directly by the executive whenever
system initialization is required.

Periodic entries are scheduled direct-
ly by the executive each time a count-
down clock interrupt occurs. Schedul-
able periodic entries are stored in a

loop
accept RUN (...) do

. save arg'uments (if any)

end; — accept-do
— ensure presmption is allowed
— ensure no active entry wntﬁ same 1
module id

. —dispatch entry pointif OK
SCREEN_FOR_RUN ‘
(..., DISPATCH-OK); .
if DiSPATCH@,.GK then o
OtSPATCH..ENTRY (- ) and if;

end loop; ; ‘ -

separate periodic queue (PQ) ordered
by “next-time-to-go.” At each count-
down clock interrupt, all ready period-
ics are deleted from the periodic queue
and entered in the PSQ, subject to
conditions concerning duplicate peri-
odic entries in the PSQ. If a periodic
entry is reschedulable, a new time-to-
go is determined and the entry is
reinserted into the periodic queue. The
reschedulable and multischeduling
status of a module’s periodic entrance
may be changed via requests to the

SOFTWARE PRODUCTIVITY

executive.

The reschedule and muitischedule
attributes of a periodic entry are used
to determine the conditions for reinser-
tion of a periodic entry into the peri-
odic queue. Each time a periodic entry
is scheduled for execution (deleted from
the periodic queue and entered into
the PSQ) these attributes are evaluated.
If the reschedule indicator is off, the
entry is not reinserted into the periodic
queue. If the multischedule indicator
is off, the entry is reinserted only if
the reschedule indicator is on and the
entry is not already present in the
periodic queue.

Preemption of an executing module
entry point may occur only when an
entry point of another module with a
higher preemption priority has reached
the head of the PSQ and the system is
in a preemptive state. Preemption is not
allowed if the preempting entry is from
the same module as the currently exe-
cuting entry, or if it is from a module
with a previously activated but pre-
empted entry waiting for completion.




SOFTWARE PRODUCTIVITY

Scheduling and Dispatching

The main task components of the
original mock-up are an executive
task, an external environments task,
and a collection of applications
modules tasks.

The executive task serves as the
parent for all ESR processing modules.
It contains an entry point for each
supported ESR and interrupt and

operates at the next-to-highest priority
level in the system.

The external environments task pro-
vides a coarse simulation of interrupts
external to the portion of the executive
being modeled. This task provides a
mechanism for processing periodic
entry points—removing from the peri-
odic queue and inserting into the
priority schedule queue—and for the

Circle Reader Service No. 35
172 DEFENSE ELECTRONICS APRIL 1987

random insertion into the PSQ of other
schedulable entries. The external envi-
ronments task runs at the highest
system priority level, and has a pro-
grammed delay permitting other tasks
to execute when the external environ-
ments task has completed its work.

The collection of applications mod-
ule tasks consists of eight tasks for
each module: a top level task with a
family of seven entry points and seven
lower level tasks—one for each entry—
which model the functions to be per-
formed at each entry.

In developing this model, the first
problem to be resolved was the assign-
ment of a priority value to each entry
point of a module, a feature that was
an integral part of the scheduling and
dispatching process of the executive.
The Ada language does not allow
priorities to be assigned directly to task
entries, so a tasking model was required
that permitted priorities to be assigned
to each system component responsible
for entry point processing.

An Ada language model was chosen
consisting of a single top-level task
with a family of seven entries. Under-
neath this task, another level of tasking
was added that allowed each scheduled
entry point to be assigned a unique,
although static, priority. In this model,
each schedulable entry in a task con-
sisted solely of an accept-do block
containing a statement referencing
another task that actually carried out
the functions of that entry. This task
was assigned a priority, P, that reflec-
ted its relative level of importance in
the executive.

Limitations of the First Model

Unfortunately, the executive sched-
uling and dispatching scheme could
not be completely and accurately repre-
sented within the first Ada language
model. Aside from the dynamic priority
requirement, which could not be
handled within the model, other diffi-
culties were encountered with respect
to the executive priority and preemp-
tion schemes.

One problem was caused by the
two-tier priority scheme (with 66 dif-
ferent levels of urgency) used by the
executive. The Ada language supports
only a single-tier priority scheme. A
function was required in order to map
the two-tier priority scheme to the
single level of Ada and vice-versa.



The executive preemption scheme
presented another source difficulty in
the design of the Ada language mock-
up. The executive allows one module
entry to preempt another only if the
executing module is in a preemptive
mode, and then only if: the preemption
(major) priority of the waiting module
entry is higher than the preemption
priority of the executing module and
the waiting module entry is not in the
currently executing module nor is it in
any module that has been preempted.

Only one module entry can be active
(executing or temporarily suspended)
for each preemption level (1 through
4) and for each module. Those condi-
tions require that the Ada language
model of the executive keep track of
the preemption level and module iden-
tification for all active module entries.
That is a step in the wrong direction,
since one of the primary goals in the
project is to use the Ada language
task model as much as possible to
keep track of the environment and
status of preempted tasks so the entire

scheme would be transparent to the
programmer.

First Model Design Review

The selection of a tasking structure
for an embedded computer program
is one of the more important system
design decisions that must be made.
The Ada language tasking and priority
features offer a variety of tasking
strategies that might be used to any
given problem. While data structuring
and packaging considerations should
receive emphasis during the design of
a system, tasking strategy issues also
should be dealt with early in the
design process.

The current literature on tasking in
the Ada language provides little guid-
ance with regard to tasking strategy
choices. Most tasking examples appear
to be designed to maximize concur-
rency as constrained solely by an
abstract problem description that con-
tains little information about perform-
ance requirements and underlying
hardware architecture.

SOFTWARE PRODUCTIVITY

The use of the Ada language and
related design and implementation
methodologies is intended to reduce
the impact of hardware related con-
straints upon all phases of the software
development process, thereby providing
greater adaptability and portability of
the Ada language software. Given the
current and near-future state of the
Ada language compiler and run-time-
support technology, it seems unreason-
able to continue to study the design
of real-time system models without
consideration of the hardware and
performance constraints that must be
faced. Despite recent advances and
continuing research, these constraints
in on-board systems are evident, and
a high degree of parallel computation
seems remote.

The structure of the executive being
modeled was dictated by severe mem-
ory constraints imposed by the host
computer. As illustrated by the pre-
emption model description at the end
of the previous section, the current
system does no time-slicing, and pre-




SOFTWARE PRODUCTIVITY

emption is highly restricted, thereby
minimizing the frequency of process
state changes and the amount of
memory required by these changes.
The review of the first scheduling
and dispatching model was conducted
with those issues in mind. The Ada
language’s tasking support was useful
in maintaining the desired tasking and
management relationship between the

executive task, the external environ-
ment task and the collection of appli-
cations modules tasks taken as a whole.
However, it could not be used to
manage the scheduling and dispatching
of the individual module entry point
tasks. It was necessary to write explicit
Ada language code to manage module
entry points.

This Ada language tasking model

maintenance costs low.

Our products
protect the equipment
that protects America...

Barry isolators that control vibration, structureborne noise,
and shock, protect military equipment — from the most
sensitive electronic components to the most powerful
engines. They virtually guarantee equipment and engine
performance and they do it economically by keeping

We have designed and developed specialized isolators
that have kept pace with the sophisticated electronics
of modern weapon systems which require ever-increasing
protection to ensure reliability under hazardous conditions.
When performance depends on
protection — contact Barry Controls.

m BARRY-.
-’ CONTROLS

700 Pleasant Street, Watertown, MA 02172
Telephone 617/923-1150

2323 Valley Street, P.O. Box 7710, Burbank, CA 91505
Telephone 818/843-1000

aunitot Barry Wright

Circle Reader Service No. 33

174 DEFENSE ELECTRONICS APRIL 1987

did not provide an accurate represen-
tation of the parallelism of the execu-
tive. The model allowed for the con-
current activation of all module entry
points, while the executive allows for
only a single active entry per module
per preemption level. The Ada language
model also precluded the dynamic
assignment of priorities to each module
entry, since the Ada language does not
allow for either dynamic priorities or
entry priorities. The model carried with
it the overhead of excessive tasking,
with minimal benefit in terms of the
utilization of the tasking support pro-
vided by the Ada language. While the
model may have been of interest
because of the theoretical level of con-
currency that it provided, little of this
concurrency could be realized in prac-
tice because of the constrained hard-
ware and system design environment.

Another Tasking Strategy

As a result of this assessment, it
was decided to rewrite the system with
each applications module represented
as a single package encapsulating its
own data structures and seven top-
level procedures each representing a
single module entry point. The only
tasks that remained were the executive
task, the external environment task and
four new preemption level tasks. Each
of those tasks was responsible for con-
trolling the scheduling and dispatching
of all module entry procedures having
a given preemption level.

This second model mirrors the
existing system much more closely
than the first and has the added
advantages of less tasking overhead
and a simpler component structure. It
also allows for dynamic priority assign-
ment, since the changing and evalua-
tion of entry priorities is now table-
driven, as is the version of the executive
being modeled.

The new Ada language model per-
mits the utilization of the Ada tasking
support to a greater extent than before.
Each of the four preemption level tasks
(named PREEMPT-LEVEL-1 through
PREEMPT-LEVEL-4) operates at a
different priority level (ranging from
PRIORITY’LAST-2 for the task
servicing preemption level 1 down to
PRIORITY’LAST-5 for the task
servicing preemption level 4). Since the
dispatching and execution of a module
entry point of preemption level P (1




< P < 4) takes place under the control
of task PREEMPT-LEVEL-P, a
higher-level entry point cannot be pre-
empted by a lower-level one. Further-
more, because each preemption-level
task is implemented using a conven-
tional loop/accept construct, a ren-
dezvous with the task that services
preemption level P can only occur
when no level P entry point is active.

The Ada language tasking model
guarantees that there can be no more
than one active entry for each pre-
emption level and that a higher-level
entry cannot be preempted by a lower-
level one.

Other Modeling Issues

In addition to the tasking issue,
many other problems arose from our
efforts to model the weapons system
in the Ada language. Most of those
problems relate to the structuring of
data, and the degree of hardware-
dependent detail required to achieve
adequate data definitions with respect
to numeric accuracy, time and space

efficiency, intersystem and intercom-
puter communication and meaningful
representations of the abstract struc-
tures being modeled.

Eventually enough should be learned
about the Ada language, its compilers
and run-time system implementations
for specific hardware, so that conven-
ient and efficient solutions may be
found. Appropriate solutions will be-
come apparent only when the entire
system is redesigned with the Ada
language, portability, adaptability and
maintainability in mind. Perhaps appro-
priate solutions will be possible only
in assembly language. Whatever the
case, the path to the successful and
effective use of the Ada language may
be more difficult for the real-time,
embedded systems domain than for
any other applications area. That in
itself seems contradictory, considering
the original purpose for the develop-
ment of the Ada language.

Problems Remain
Considerable work remains to be

SOFTWARE PRODUCTIVITY

done with the current system mock-up.
Some of this work is essential for the
completion of the evaluation of the use

-of the Ada language in implementing

the scheduling and dispatching func-
tions of the executive. Other work in-
volves the executive functions not yet
addressed by the current limited mock-
up, such as alternative strategies for
implementing the various message com-
munication techniques, error processing
and exception handling and input/
output and channel/ buffer processing.

The Ada language potentially can
support much, but not all, of the
underlying behavior of the executive.
Since we are examining only a small
part of the executive, it is certain that
we have uncovered a few of the major.
problems associated with writing real-
time systems in the Ada language. The
planned evaluation of additional
weapons system components for input/
output processing, interrupt, error, and
message handling, common service
routines and other implementation-
dependent issues will most likely reveal




SOFTWARE PRODUCTIVITY

additional problems.

It might be argued that most, if not
all of these problems, are unique to
the executive, specifically to its original
design. It is possible that all of them
can be eliminated by redesigning the
system for eventual recoding in the
Ada language. At this point, we are
not convinced. We believe that the
Ada language tasking model, including
the preemption/priority scheme and
the termination mechanism, may not
be sufficient to support a typical real-
time tactical embedded computer sys-
tem. We are concerned too, about the
efficiency with which the Ada language
run-time systems will support recoded
executive functions and about the
portability of such systems. Others (see
references to NAVSEA 83 and Payton
83 below) have similar reservations.
Unfortunately, an Ada environment
appropriate to realistic studies in these
areas is not likely to be available in
the near future. DE

BIBLIOGRAPHY

[Booch 83]

Booch, Grady, Software Engineering with
Ada, Benjamin/Cummings Publishing Com-
pany Inc., Menlo Park, CA 1983.

[Booch 84]

Booch, Grady, “Dear Ada,” ACM Ada Let-
ters (I11,5), March, April, 1984, pp. 29-32.
[CSC 85]

Computer Sciences Corporation, “Observa-
tions on Modeling a Real-Time Embedded
Computer System Using Ada,” IR&D Technical
Report No. SP-IRD 4, Moorestown, N.J.,
June, 198S.

[Intermetrics 83]

Intermetrics, “An Analysis of the Problems
Associated with the CMS-2 to Ada Transition,”
Report 0967-LP-598-9720, prepared by Inter-
metrics Incorporated, Bethesda, MD, for the
Naval Sea Systems Command, Washington,
DC, June, 1983.

[NAVSEA 83]

NAVSEA, “A Plan for the AEGIS Transition
to Ada,” Report 0967-LP-598-9730, prepared
for the Naval Sea Systems Command, Wash-
ington, DC, June, 1983.

[Payton 83]

Payton, Teri F., and Michael J. Horton,
“Study Report on the Transition of RNTDS
to Ada,” Report FR(A)-3020, prepared by Sys-
tems Development Corporation, Paoli, PA, for
the Naval Sea Systems Command (Code 06L3),
Washington, DC, 31 May, 1983.

[Softech 83]

Softech, “CMS-2 to Ada Transition Plan,”
Report 0967-LP-598-9750, prepared by Softech
Incorporated, Falls Church, VA., for the Naval
Sea Systems Command, Washington, DC,
August, 1983.

[Softech 84]

Softech, Slides for Course L401, “Real-Time

Systems in Ada,” Parts 1 and 2., 1984.

— Circle Reader Service No. 54




