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Abstract

The postal network is an interconnection network that
possesses many desirable properties which are important
in network design and applications. It includes hypercubes
and Fibonacci cubes as its special cases. The postal net-
work can also be considered as a flexible version of the
hypercube which relaxes the restriction on the number of
nodes and thus makes it possible to construct multicom-
puters with arbitrary sizes. Basically, the postal network
forms a series (with series number�) that is based on the
sequenceN�(n) = N�(n � 1) + N�(n � �), wheren is
the dimension andN�(n) represents the number of nodes
in an n-dimensional postal network in series�. In this
paper, we study topological properties of postal networks
and relationships between different postal networks. One
application of postal networks is also shown in implement-
ing barrier synchronization using a special spanning tree
called a postal tree.

1 Introduction

The use of undirected graphs as interconnection topolo-
gies for large multicomputer systems has been an active
research area in the past decades. The hypercube has
been a popular topology because of its strong connectiv-
ity, regularity, symmetry, and ability to embed many other
topologies. Unfortunately, the number of nodes2n in an
n-dimensional hypercube (n-cube) grows rapidly asn in-
creases. This limits considerably the choice of the number
of nodes in the graph. The Fibonacci cube (FC) proposed
by Hsu [4] is a special subcube of a hypercube based on
Fibonacci numbers. It has been shown that the Fibonacci
cube can efficiently emulate many hypercube algorithms.
Fibonacci cubes use fewer links than comparable hyper-
cubes and their size does not increase as fast as hypercubes.
The structural analysis of the Fibonacci cube has been ex-
tensively studied in [4], its applications in [2], and its ex-
tensions in [6].
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In this paper, we propose a series of network topolo-
gies calledpostal networkswith their names coming from
the postal model[1] of communication. Postal networks
include both hypercubes and Fibonacci cubes as special
cases. Like Fibonacci cubes, postal networks can also be
viewed as resulting from a hypercube after some nodes be-
come faulty. Therefore, the postal network not only allows
the construction of multicomputers of arbitrary sizes but
also exposes the nature of hypercubes operating in a grace-
fully degraded mode. Basically, then-dimensional postal
network in series�, PN�(n), is based on the generalized
Fibonacci sequenceN�(n) = N�(n � 1) + N�(n � �).
The postal network series can also be considered as a flex-
ible version of the hypercube which relaxes the restriction
on the number of nodes and thus makes it possible to con-
struct multicomputers with arbitrary sizes.

We show that the postal network series still maintains
many desirable properties of hypercubes, such as existence
of a Hamming distance path between any two nodes and
a simple routing algorithm. Moreover, postal networks
support efficient collective communication using the postal
model [1] which can fine tune the communication structure
based on network latency in the underlying system. Specif-
ically, this model incorporates a latency parameter� mea-
suring the inverse of the ratio between the time it takes an
originator of a message to send it and the time that passes
until the recipient of the message receives it. IfN�(n) rep-
resents the maximum number of nodes that can be reached
in timen on a one-port model exhibiting�. Then the fol-
lowing equation holds:

N�(n) =
n

N�(n� 1) +N�(n� �); if n � �
1; otherwise

Therefore, if� in the postal network is selected based
on the given latency parameter in the underlying network,
efficient broadcast and gather operations can be carried out,
i.e., a broadcast (gather) operation can be done in a mini-
mum of steps.

The main features of the postal network can be summa-
rized as follows:

� The series of postal networks allows more choices in
constructing systems of different sizes.

� The series contains both hypercubes and Fibonacci
cubes as its special cases.



� The series number� can be carefully selected to
match the latency parameter in the underlying com-
munication network to support efficient collective
communication.

Our study focuses on topological properties and com-
munication aspects of the postal network. Relationships
between different postal networks are also studied. The
purpose of this study is not just to propose a “new” inter-
connection network, but to extend the existing ones such
as hypercubes and Fibonacci cubes. We try to gain some
insights on these popular networks, operated under cer-
tain relaxed conditions and/or degraded modes, by study-
ing their topological properties, routing capability, and the
ability of simulating other structures through embedding.

2 Postal Networks

Normally, a graph model is used to represent a point-to-
point multicomputer topology. We use graphG = (V;E)
to represent an interconnection network, whereV is a ver-
tex set with each element representing a processor (also
called a node) andE is an edge set with each element
corresponding to a communication link connecting two
nodes. Letb(m) representm consecutive bits ofb; for ex-
ample,0(4) = 0000, and symbolk denote a concatena-
tion operation; for example,01kf0; 1g = f010; 011g and
0(2)1kf01; 10g= f00101; 00110g.

Definition 1: Assume that graphsPN�(n) =
(V�(n); E�(n)), PN�(n� 1) = (V�(n� 1); E�(n� 1)),
andPN�(n��) = (V�(n��); E�(n��)). ThenV�(n) =
0kV�(n � 1) [ 10(��1)kV�(n � �) for n > �. As ini-
tial conditions for recursion,V�(n) = f0(n); 0(n�1)1; :::;
010(n�2); 10(n�1)g, 1 � n � �. Two nodes inPN�(n)
are connected by an edge inE�(n) if and only if their la-
bels differ in exactly one bit position.

A PN�(n) is called apostal networkwith dimensionn
and series number�. The number of bits in a node address
is the same as its dimension. Figure 1 shows examples
of PN3(n) for n = 1; 2; 3; 4; 5. A PN3 of dimensionn
consists of onePN3 of dimensionn � 1 and onePN3 of
dimensionn� 3. Figure 2 shows examples ofPN4(n) for
n = 1; 2; 3; 4; 5; 6.

Theorem 1: A PN1(n) is ann-cubeQ(n) and aPN2(n)
is ann-dimensional Fibonacci cubeFC(n).

Proof: When� = 1, V1(n) = 0kV1(n� 1)[ 1kV1(n� 1).
Therefore,PN1(n) matches exactly the definition of the
n-cubeQ(n). Similarly, when� = 2, V2(n) = 0kV2(n �
1) [ 10kV2(n � 2). Recall that the Fibonacci cube is
defined as follows [4]: Assume that graphsFC(n) =
(V (n); E(n)), FC(n � 1) = (V (n � 1); E(n � 1)), and
FC(n � 2) = (V (n � 2); E(n � 2)). ThenV (n) =
0kV (n � 1) [ 10kV (n � 2). Two nodes inFC(n) are
connected by an edge inE(n) if and only if their labels
differ in exactly one bit position. As initial conditions for
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Figure 1: Postal networkPN3: (a)n = 1, (b) n = 2, (c)
n = 3, (d)n = 4, (e)n = 5.

recursion,V (2) = fg, V (3) = f0; 1g. Therefore,PN2(n)
also matches the definition of then-dimensional Fibonacci
cubeFC(n).

Despite its asymmetric structure, the postal network still
maintains many desirable properties from the hypercube
network. Based on the definition of the postal network,
the vertex setV�(k) of PN�(k) can be partitioned into
10(��1)kV�(k��) and0kV�(k�1). The following lemma
shows the relationship between these two vertex sets.

Lemma: For each node in10(��1)kV�(k � �) there is
exactly one neighbor in0kV�(k � 1), i.e., the addresses of
these two nodes differ in exactly one bit.

Proof: Randomly pick a node in10(��1)kV�(k � �). This
node comes from a node inV�(k � �) with 10(��1) at-
tached in front. Based on the recursive definition of the
postal network,0(��1)kV�(k��) is a subset ofV�(k� 1)
and it always appears as the first term of the recursive defi-
nition ofV�(k�1) until V�(k�1) is resolved intoV�(k�
�). Therefore, there is at least one node in0kV�(k�1) that
is the neighbor of the selected node in10(��1)kV�(k��).
In addition, each node in10(��1)kV�(k � �) has exactly
one neighbor in0kV�(k � 1), because the address of each
node in10(��1)kV�(k � �) starts with 1 while the one in
0kV�(k � 1) starts with 0.

Theorem 2: There exists a Hamming distance path for any
two nodes inPN�(n).
Proof: We prove this theorem by induction onn for any�.
We first show that this theorem holds forn = 1; 2; :::; �.
Since each of these networks is a two-level tree that con-
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Figure 2: Postal networkPN4: (a)n = 1, (b) n = 2, (c)
n = 3, (d)n = 4, (e)n = 5, (f) n = 6.

tainsn nodes:0(n); 0(n�1)1; :::; 010(n�2); 10(n�1). Obvi-
ously, the root node0(n) directly connects to all the other
nodes. Since any two leaf nodes differ in two bits, they are
two Hamming distance apart and a Hamming distance path
exists between any two leaf nodes, since each leaf node can
reach another leaf node via the root node.

Assume that this theorem holds for alln < k (for k >
�, since we have proved the theorem forn = 1; 2; :::; �).
Whenn = k, V�(k) = 0kV�(k� 1)[ 10(��1)kV�(k��).
Therefore, nodes inV�(k) can be partitioned into0kV�(k�
1) and10(��1)kV�(k � �).

We randomly select two nodes, if both nodes belong to
0kV�(k � 1) (or 10(��1)kV�(k � �)) this theorem holds
based on the induction assumption. We only need to con-
sider cases when one node is in0kV�(k � 1) and the other
is in 10(��1)kV�(k � �). Based on Lemma, for each node
in 10(��1)kV�(k � �) there is exactly one neighbor in
0kV�(k � 1). The Hamming distance path can be con-
structed recursively the following two cases:

(1) If the source is in10(��1)kV�(k � �), the first link
in the path should connect the source to its neighbor in
0kV�(k� 1). The rest of the links in the path can be deter-
mined recursively in0kV�(k � 1).

(2) If the source is in0kV�(k � 1), we first deter-
mine a Hamming distance path within0kV�(k � 1) that
connects the source to the neighbor of the destination in
0kV�(k � 1). The last link connects the neighbor of the
destination in0kV�(k � 1) to the destination node which

is in 10(��1)kV�(k � �).

Theorem 3: The diameter ofPN�(n) is the following:

d(PN�(n)) =

(
n � = 1
2dn

�
e � 1 � 6= 1 and(n� 1 mod �) = 0

2dn
�
e � 6= 1 and(n� 1 mod �) 6= 0

Proof: When� = 1, PN�(n) is ann-cubeQ(n) which
has a diameter ofn. We only need to consider cases when
� 6= 1, i.e., there are no adjacent 1 bits in a node address.
Based on the recursive definition of the postal network, the
maximum number of 1 bits in a node address increases by
one whenn increases for�, i.e., the distance between two
1 bits is at least� and there are at mostdn

�
e 1 bits in a

node address. In the extreme case, the positions of 1 bits in
two nodes are all different. When(n � 1 mod �) 6= 0,
it is possible that both nodes havedn

�
e 1 bits. When

(n � 1 mod �) = 0, only one node may havedn
�
e bits

and the other node may have at mostdn
�
e � 1 1 bits at dif-

ferent bit positions. The above two situations correspond
to two nodes that have the longest Hamming distance in the
network, i.e., their distance corresponds to the diameter of
the network.

Based on the above result, the diameter of a postal net-
work is a fraction of its dimensionn. However, postal net-
works with a large� contain fewer nodes than the ones
with a small� under the same dimension condition. The
number of nodes and links in a given postal network is
given in the following theorem.
Theorem 4: LetN�(n) andL�(n) be the number of nodes
and links inPN�(n), respectively, then

N�(n) =
n

n+ 1 n � �
N�(n� 1) +N�(n� �) n > �

and

L�(n) =
n

n n � �
L�(n� 1) + L�(n � �) +N�(n� �) n > �

Proof: The expression forN�(n) is straightforward from
the definition of the postal network. The number of links
L�(n) in PN�(n) is the summation of the number of links
L�(n�1) inPN�(n�1) and the number of linksL�(n��)
in PN�(n � �). In addition, we should include links that
connectPN�(n�1) toPN�(n��). Based on Lemma, we
know that for each node inPN�(n��) there exists exactly
one neighbor inPN�(n � 1). That is, exactlyN�(n� �)
links exist, each of which connects one node inPN�(n�1)
to one node inPN�(n� �).

Note thatN�(n) belongs to a recurrence relation of
form

f(n) = C0N(n) + C1N(n � 1) + C2N(n� 2) + � � �
+C�N(n� �) (1)

whereCi’s are constants. It is also called alinear recur-
rence relation with constant coefficients. It is also known



Table 1: Number of nodes inQ = PN1, FC = PN2, PN3,
andPN4.

k 1 2 3 4 5 6 7 8 9
N1(k) 2 4 8 16 32 64 128 256 512
N2(k) 2 3 5 8 13 21 34 55 89
N3(k) 2 3 4 6 9 13 19 28 41
N4(k) 2 3 4 5 7 10 14 19 26

as a�th-order recurrence relation. Assume thatri’s are
distinct roots of thecharacteristic equation

C0N
� + C1N

��1 + C2N
��2 + � � �+C� = 0 (2)

Then

N(n) = A1r
n

1 +A2r
n

2 +A3r
n

3 + � � �+A�r
n

� (3)

whereA1; A2; A3; :::; A� are constants which are to be de-
termined by the boundary conditions, i.e., the known val-
ues ofN(i)’s. For example, when� = 2,

N2(n) = N2(n� 1) +N2(n� 2)

The corresponding characteristic equation isN2�N�1 =

0 which has the two distinct rootsr1 = 1+
p
5

2 , r2 = 1�p5
2 .

It follows that

N2(n) = A1

�
1 +

p
5

2

�n

+A2

�
1�p

5

2

�n

is the solution, whereA1 andA2 are to be determined from
the boundary conditionsN2(1) = 1 andN2(2) = 2. Note
that if the characteristic equation (2) has multiple roots
(i.e., not all roots are distinct),N(n) is calculated differ-
ently. See [3] for details.

There is no general procedure for determining the so-
lution of a difference equation, especially for a high-order
equation. That is, for a large value of�, a closed form
expression for eitherN�(n) or L�(n) is unlikely. Ta-
bles 1 and 2 showN�(n) and L�(n) for different �’s
andn’s. From these tables, we can see that when series
number� increases, the increase rates for the number of
nodes and links both reduce. To estimateN�(n), we have
N�(n) = N�(n�1)+N�(n��)�N�(n�1)+N�(n�1)
� 2n. Also, we haveN�(n) = N�(n � 1) + N�(n � �)
�N�(n� �) +N�(n� �) � 2b

n

�
c. Combining the above

two conditions, we have2b
n

�
c � N�(n) � 2n

Furthermore, we can obtain a tighter upper bound on
N�(n) when� > 1 as given in the following theorem. The
theorem indicates that as� gets larger, the number of nodes

in a PN�(n), N�(n) = O

��
1 + 1p

��1

�n�1�
, is much

smaller than that of a hypercube,N1(n) = 2n.

Table 2: Number of links inQ = PN1, FC = PN2, PN3, and
PN4.

k 1 2 3 4 5 6 7 8 9
L1(k) 1 4 12 32 80 192 448 1024 2304
L2(k) 1 2 5 10 20 38 71 130 235
L3(k) 1 2 3 6 11 18 30 50 81
L4(k) 1 2 3 4 7 12 19 28 42

Theorem 5: When� > 1,

N�(n) � (�+ 1)

�
1 +

1p
�� 1

�n�1

Proof: We prove this theorem by induction onn for any
given� > 1. First, for1 � n � �, we have

N�(n) = n+ 1 � �+ 1 � (�+ 1)

�
1 +

1p
�� 1

�n�1

Now, suppose the upper bound holds forn = k � 1; k �
2; : : : ; k�� (k > �). We prove that it also holds forn = k.
Note that

N�(k) = N�(k � 1) +N�(k � �)

� (�+ 1)

��
1 + 1p

��1

�k�2
+
�
1 + 1p

��1

�k���1�

= (�+ 1)
�
1 + 1p

��1

�k���1 ��
1 + 1p

��1

���1
+ 1

�

only need to show that�
1 +

1p
�� 1

���1

+ 1 �
�
1 +

1p
�� 1

��

Or equivalently,�
1 +

1p
�� 1

��

�
�
1 +

1p
�� 1

���1

� 1 (4)

In fact, from the left hand side of (4), we have�
1 +

1p
�� 1

���1�
1p
�� 1

�
�
�
1 +

�� 1p
�� 1

�
1p
�� 1

� 1

Thus, Theorem 5 holds.
Similarly, we can estimateL�(n). The following theo-

rem gives the relationship betweenL�(n) andN�(n) and
an upper onL�(n).
Theorem 6: When� > 1,

L�(n) <
�
n� 2

�+ 1
+ 1

�
N�(n) � (n+ �� 1)

�
1 +

1p
�� 1

�n�1

Proof: We prove this theorem by induction onn for any
givenn > 1. First, whenn = 1, L�(1) = 1 andN�(1) =



2. Clearly,L�(n) < (n�2
�+1 + 1)N�(n) given� > 1. When

2 � n � �, we have

L�(n) = N�(n)� 1 <
�
n� 2

�+ 1
+ 1

�
N�(n)

Now, suppose the upper bound holds forn = k � 1; k �
2; : : : ; k�� (k > �). We will prove it also holds forn = k.
Note that

L�(k) = L�(k � 1) + L�(k � �) +N�(k � �)

<

�
(k � 1)� 2

�+ 1
+ 1

�
N�(k � 1) +�

(k � �)� 2

�+ 1
+ 1

�
N�(k � �) +N�(k � �)

=
�
k � 2

�+ 1
+ 1

�
[N�(k � 1) +N�(k � �)]�

1

�+ 1
[N�(k � 1) +N�(k � �)]

<

�
k � 2

�+ 1
+ 1

�
[N�(k � 1) +N�(k � �)]

=
�
k � 2

�+ 1
+ 1

�
N�(k)

Thus, we have

L�(n) <
�
n� 2

�+ 1
+ 1

�
N�(n)

Moreover, by Theorem 5, we obtain an upper bound on
L�(n):

L�(n) <

�
n� 2

�+ 1
+ 1

�
(�+ 1)

�
1 +

1p
�� 1

�n�1

= (n+ �� 1)

�
1 +

1p
�� 1

�n�1

3 Routing

In this section, we study routing algorithms for the
postal network. Efficient interprocessor communication is
a key to the performance of a point-to-point multicomputer
system. We consider hereunicasting, which is a one-to-
one communication between a source and a destination.
Although the postal network is asymmetric, a simple rout-
ing algorithm can still be constructed based on the follow-
ing result that determines whether a given bit sequence be-
longs to a node address in a postal network.
Theorem 7: Ann-bit sequence is the address of a node in
PN�(n) if and only if any two 1 bits (if any) are separated
by at least� bit positions.
Proof: Let’s consider a systematic way of generating all
the possiblen-bit sequences such that any two 1 bits (if

any) are separated by at least� bit positions. Assume that
we have constructedS�(i)’s for all i < n, whereS�(i)
stands for all the possiblei-bit sequences such that any two
1 bits (if any) are separated by at least� bit positions. Let’s
consider the leftmost bit (the 1st bit) of the nodes inS�(n):
If it is 0, then the number of different arrangements for the
rest ofn � 1 bits should all be inS�(n � 1). If it is 1,
then based on the constraint that any two 1 bits must be
separated by at least� bit positions, the next� � 1 bits
must be all 0’s. The number of different arrangements for
the rest ofn� � bits should all be inS�(n� �). Based on
the above observation, it is clear thatPN�(n) andS�(n)
are the same.

The above result provides a simple way of defining a
postal network and more importantly it offers a simple
way of generating all the nodes in a postal network. For
example, nodes inPN4(6) are 000000, 000001, 000010,
000100, 001000, 010000, 100000, 010001, 100001,
100010. Among these nodes, the node addresses have
two 1 bits or less that are separated by at least 4 bit po-
sitions. We usedistance1(node) to represent mini-
mum distance between 1 bits in a given node address.
When there is at most one 1 bit in a node address, the
distance1 of the corresponding node is1. For example,
distance1(000100) =1 anddistance1(010001) = 4.

We consider here adaptive and minimal routing. An
adaptive routing algorithm allows all messages to use any
minimal paths. The challenge is to exploit all the possi-
ble routes while still keeping routing distance minimum.
Since the postal network can be considered as an incom-
plete hypercube with several missing nodes, the traditional
dimension-ordered routing is no longer applicable here.
For example, consider two nodes 01000 (the sources)
and 10010 (the destinationd), the exclusive-or of their ad-
dresses is 01000� 10010 = 11010. If the dimensions are
resolved following an increasing order of dimensions: 1, 2
and 4, an illegal intermediate node 11000 (with two neigh-
boring 1 bits) will be generated in the corresponding path:
01000! 11000! 10000! 10010.

In order to avoid generating illegal intermediate nodes,
we should ensure that each intermediate node is legal. That
is, the distance between two 1 bits (if any) in the node ad-
dress should be at least�. To make the routing algorithm
adaptive, no additional constraint is added, i.e., a dimen-
sion can be randomly selected as long as it meets the above
requirement.

Consider a unicasting froms to d in PN�(n). Let
si denote complementing theith bit of s, for example
100102 = 11010, andr(i) denote theith bit of r. The
adaptive and minimal routing algorithm for the postal net-
work is the following:

For source nodes with messagem:

1. r := s� d; /* calculate relative addressr */
2. randomly selecti such thatr(i) = 1 and

distance1(s
i) � �; /* select a neighbor */

3. send(m; ri) to si.
/* send messagem together with the updated



relative address to the selected neighbor */

For all intermediate nodest (including destinationd):

1. receive(m; r); /* receive messagem together
with relative addressr */

2. if r = 0 then nodet is the destination andstop;
3. randomly selecti such thatr(i) = 1 and

distance1(t
i) � �;

4. send(m; ri) to ti.

To carry out step 3 of the above procedure, we first pick
up a neighbor. If the address of this neighbor meets the
condition in Theorem 7 (this can be done in constant time),
it is done; otherwise, another neighbor is selected. In the
worst case, all the neighbors, except the last one, fail the
condition. That is, if the current node isk distance away
from the destination, it may needk � 1 selection steps.
Thus, step 3 may needO(n) time in the worst case.

Consider(s; d) = (100010; 000001) with r = 100011
in PN4(6). At the first step, two legal neighbors (ofs) are
100000 and 000010. 100011 is an illegal neighbor, since
its distance1(10001) = 1 which is less than� = 4. Dur-
ing the second step, at node 100000, there are two choices
of the next intermediate node: 100001 and 000000; at node
000010, there is only one choice which is node 000000.
Therefore, three minimal routing paths can be generated:

100010! 100000! 100001! 000001

100010! 100000! 000000! 000001

100010! 000010! 000000! 000001

Note that if distance1(s � d = r) � �, there is no
constraint on selecting intermediate nodes. Routing will be
the same as in a regular hypercube. For example, consider
(s; d) = (10000; 00001) in PN3(5), i.e.,� = 3. Clearly,
distance1(s � d = 10001) � 3. The e-cube routing in
hypercubes can be applied for this case. In fact,s andd are
contained in 2-cube�000�, where� is a don’t care.�000�
contains four nodes00000, 00001, 10000, and10001. The
following theorem shows a general case.
Theorem 8: In aPN�(n), if distance1(s� d) � � thens
andd are two nodes in ak-cube, wherek � H(s; d).

The above theorem can be easily derived from the above
observation. To determine the smallest cube that contains
s andd, assuming thatdistance1(s � d) � �, one simple
approach is to replace all the 1 bits ins � d by � and the
remaining bits are replaced by the corresponding bits ins
(or d). For example,s� d = 11011� 01001 = 10010, the
smallest cube that containss andd is �10 � 1.

The minimal routing approach can be easily extended
to the one for non-minimal routing. For example in non-
minimal routing, we can separate 1’s (calledpreferred di-
mensions) from 0’s (calledspare dimensions) in r = s�d.
In minimal routing, only preferred dimensions are resolved
by changing each of them to 0. In non-minimal routing,
spare dimensions can also be used which are changed from

0’s and 1’s, but to reach the destination, these 1’s still need
to be changed back to 0’s. At each step, thedistance1 con-
dition still needs to be enforced to ensure that each interme-
diate node is legal. Consider a unicasting froms =100000
to d =000000 inPN4, s � d = 100000, a non-minimal
routing that uses preferred dimension 1 and spare dimen-
sion 6 generates the following path100000! 100001!
000001! 000000.

4 Embedding

In this section, we study relationships between regular
hypercubes, Fibonacci cubes, and postal networks. Ef-
ficient embedding of a guest networkG into a host net-
workH is important in parallel/distributed processing, es-
pecially for a newly proposed network used as a host net-
work. Not only do embedding results demonstrate com-
putational equivalence (or near-equivalence) between net-
works of different topology, but efficient embeddings lead
to efficient simulations of algorithms originally designed
for G on hostH .

Based on the definition of the postal network series,
link connections follow the same rule: Two nodes are con-
nected if and only if their addresses differ in exactly one bit
position. Therefore, to show that one postal network con-
tains another postal network as its subgraph, we only need
to show that the vertex set of the former contains the vertex
set of the latter. Specifically, a graphH contains a graph
G if one of the following two conditions holds: (1)V (H)

containsV (G). (2) V
0

(H) containsV (G), whereV
0

(H)
is derived fromV (H) by removing certain bit positions of
all the nodes inV (H).

For example,PN2(4) containsPN3(4) based on Con-
dition (1), becauseV (PN2(4)) = f0000; 0001; 0010;
0100; 0101; 1000; 1001; 1010g containsV (PN3(4)) =
f0000; 0001; 0010; 0100; 1000; 1001g. Also, PN2(4)
contains PN2(3) based on Condition (2), because
V (PN2(3)) = f000; 001; 010; 100; 101g is derived by
removing either the 1st or 4th bit of all the nodes in
V (PN2(4)).

The following theorem shows relationships between
postal networks within the same series.
Theorem 9: PN�1(n1) containsPN�1(n2) as its sub-
graph if and only ifn1 > n2.
Proof: Based on the definition of the postal network,
PN�1(n1) containsPN��1(n1 � 1). ClearlyPN�1(n1)
also containsPN��1(n2), wheren1 > n2.

The following theorem shows that for a given dimension
n1, a network with a small series number (with a small�
value) contains a network with a large series number.
Theorem 10: PN�1(n1) containsPN�2(n1) as its sub-
graph if and only if�1 < �2.
Proof: We prove this theorem by induction. Whenn1 �
�1, PN�1(n1) = PN�2(n1). When�1 < n1 � �2,
we can easily verify thatPN�1(n1) containsPN�2(n1).
Whenn1 > �2, based on the recursive definition of both



series and the induction assumption,PN�1(n1) contains
PN�2(n1).

The following theorem shows that under certain condi-
tions a network with a large series number contains a net-
work with a small series number.

Theorem 11:GivenPN�1(n1), PN�2(n2), and�1 > �2.
If dn1

�1
e > dn2

�2
e thenPN�1(n1) containsPN�2(n2) as its

subgraph. Ifdn1
�2
e = dn2

�2
e andn1 � c�1 � n2 � c�2 then

PN�1(n1) containsPN�2(n2) as its subgraph, wherec is
a constant.
Proof: We reorganize postal networks in series� in groups,
each of which contains� consecutive networks, i.e., the
nth network in series� is in groupdn

�
e. For example, in

seriesPN3(n), fPN3(1); PN3(2); PN3(3)g forms group
1, fPN3(4); PN3(5); PN3(6)g forms group 2, and so on.
Therefore, each network in the series has a group number
dn
�
e and a number within the groupn � (dn

�
e � 1)�. The

theorem is reduced to prove the following: Consider two
networks from different series with the same group num-
ber and the same number within the group, the one with a
larger series number contains the one with a smaller series
number. The above fact can be proved by induction from
group to group using the following fact: Theith network
in groupj (j > 1) is constructed from the network that just
precedes it and theith network in groupj � 1.

Corollary : PN�(n1) contains then2-cubeQ(n2) as its
subgraph if and only ifn1 + dn1

�1
e(1� �1) � n2.

This corollary is derived directly from Theorem 11 and
can be used to derive the largest hypercube as a subgraph
of a given postal network. For example, forPN2(9) the
largest hypercube is ann2-cube such that9+d 92e(1�2) �
n2, i.e.,n2 = 4.

We have the following simple process to determine all
the largest subcubes inPN�(n1): We start with ann1-bit
of 0’s and then replacen2 bits (which is determined from
the above Corollary) of 0’s by�’s such that any two�’s are
separated by at least�. For example, givenPN4(6), based
on the above Corollary, the largest subcube is a 2-cube. All
the possible 2-cubes inPN4(6) are�0000�, 0 � 000�, and
�000 � 0.

5 Application: Barrier Synchronization Us-
ing Postal Trees

In this section, we first study thepostal tree, PT�(n),
which is a special spanning tree of the postal network
PN�(n). We then look at one of its applications in im-
plementing barrier synchronization, an important type of
collective communication in a multicomputer system.

Many numerical problems can be solved using itera-
tive algorithms that successively compute better approx-
imations to an answer, terminating when either the final
answer has been computed or the final answer has con-
verged. These algorithms normally require all the iterative
processes to be synchronized at the end of each iteration.

More specifically, these processes,process(i), can be de-
scribed by the following algorithm:

do not converged!
code to implement processi
barrier (wait for all n processes to complete)

od

In the above algorithm,barrier represents a barrier syn-
chronization point which waits for alln processes to com-
plete. This type of synchronization is calledbarrier syn-
chronization[5] because the delay point at the end of each
iteration represents a barrier that all processes have to ar-
rive at before any of them is allowed to pass. There are
many ways of implementing barriers, among themtree
barrier [7] is the widely used one. In this approach, two
phases are used. In thereductionphase, all participat-
ing processes engage in a reduction operation by sending
and/or receiving synchronization messages following a tree
structure where the root node eventually receives the re-
duced message and decides that all the processes have ar-
rived at the barrier. In the next phase which is called dis-
tribution phase, the root node broadcasts a synchronization
message following the same tree to inform all the processes
to proceed. Normally, the reduction phase is carried out by
a collective communication called gather and the distribu-
tion phase is implemented by another collective communi-
cation called broadcast. Both of which use a spanning tree
in the given network to collect and distribute messages.

In order to determine an optimal spanning tree structure
for tree barrier, we have to look at the underlying commu-
nication mechanism. If communication delay is considered
as part of overall performance, thepostal model[1] can be
used which is based on� = l=s, wheres is the time it
takes for a node to send the next message andl is the net-
work latency. For example, assumes = 2 andl = 4 then
� = 2. If the source node sends a message at time 0, it
has to waits = 2 time steps before sending the message to
another neighbor at time 2. The message sent at time 0 will
reach the corresponding neighbor at timel = 4. Similarly,
the one sent at time 2 will reach another neighbor at time
6, etc. Under the one-port model (in which each node can
send and receive one message at a time), the binomial tree
is optimal when� = 1. An optimal tree for a specific� is
constructed based on:

N�(n) =
n

N�(n� 1) +N�(n� �); if n � �
1; otherwise

whereN�(n) represents the maximum number of nodes
that can be reached in timen on a one-port model ex-
hibiting �. Note that before timen < �, only the source
node has a copy of the message, although several copies
have been sent from the source node since time0 and they
are still in transit. Clearly, the parameter� in the postal
model matches the series number� in the postal network.
It is easy to derive the corresponding optimal tree struc-
ture as: PT�(n) is constructed out ofPT�(n � 1) and
PT�(n � �), with the root node ofPT�(n � �) as the
child of the root node ofPT�(n�1). As initial conditions,
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Figure 3: Postal trees: (a)PT3(3), (b)PT3(4), (c)PT3(5),
and (d)PT3(6).

PT�(i) (1 � i < �) consists ofi+ 1 nodes in a two-level
tree. Clearly,PT�(n) is a spanning tree ofPN�(n). More
formally, we have the following definition of a postal tree.

Definition 2: A postal treePT�(n) of PN�(n) is defined
as follows: (Base)PT�(n) = PN�(n) for 1 � n � �.
(Recursion) For� < n, aPT�(n) consists ofPT�(n� 1)
andPT�(n� �) by connecting the root ofPT�(n� �) as
the child of the root ofPT�(n� 1).

Figure 3 shows the structure of postal treesPT3(n) for
n = 3; 4; 5; 6. Clearly,PT3(n) has the same vertex set as
PN3(n). Hence,PT3(n) is a spanning tree ofPN3(n).
Figure 4 shows two different spanning trees in a fully-
connected network with eight nodes, when� = 6 with
s = 1 andl = 6. Clearly, the binomial tree implementa-
tion (Figure 4 (a)) requires 18 units to complete a broadcast
and it is no longer optimal. The optimal tree (Figure 4 (b))
needs only 12 units to complete a broadcast. Note that this
postal model can be applied to any topology as long as it
has sufficient connectivity.

Based on the above analysis, we can see that parameter
� plays an important role in selecting networks from differ-
ent series. Because� defines the ratio of the time it takes
for a node to send the next message to the communication
latency, it should be carefully selected to minimize com-
munication delay especially for collective communication.
For example, if we are to select a network of eight nodes
from a series and� = 1, PN1(3) is better thanPN2(4).
Here we simplify the selection process without considering
other factors. In designing an actual multicomputer sys-
tem, different factors should be considered and weighted
against each other.
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Figure 4: Comparison with� = 6: (a) binomial trees
PT1(3) and (b) optimal spanning treePT6(6).

6 Conclusions

We have proposed a series of networks called postal net-
works that contain both hypercubes and Fibonacci cubes as
their special cases. We have shown that these networks still
maintain some desirable properties of hypercubes. Rela-
tionships between different networks have also been stud-
ied. Postal networks can be used to complement several
existing network topologies such as hypercubes and Fi-
bonacci cubes. Because each postal network can also be
considered as an incomplete hypercube after some nodes
become faulty, the study of postal networks will also pro-
vide some insights on the behavior of the cube-based sys-
tems operated in a degraded mode. Our future work will
focus on embedding other popular structures such as bi-
nary trees in postal networks. Another interesting issue is
to determine postal networks from a given faulty hyper-
cube.
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