
International Journal of Foundations of Computer Science
c� World Scienti�c Publishing Company

ON COST�OPTIMAL MERGE OF TWO INTRANSITIVE SORTED

SEQUENCES �

JIE WU

Department of Computer Science and Engineering

Florida Atlantic University

Boca Raton� FL �����

E�mail� jie�cse�fau�edu

and

STEPHEN OLARIU

Department of Computer Science

Old Dominion University

Norfolk� VA 	�
	�

E�mail� olariu�cs�odu�edu

Received �received date�
Revised �revised date�

Communicated by Editor�s name

ABSTRACT

The problem of merging two intransitive sorted sequences �that is� to generate a
sorted total order without the transitive property� is considered� A cost�optimal parallel
merging algorithm is proposed under the EREW PRAM model� This algorithm has
a run time of O�log� n� using O�n� log� n� processors� The cost�optimal merge in the
strong sense is still an open problem�

Keywords� Hamiltonian path� merging� PRAM� sorting� tournament�

�� Introduction

In this paper we consider the problem of merging two intransitive sorted se�

quences� Consider a total order � on set N � but without the transitive property�

That is� if ui � uj and uj � uk� it is not necessary that ui � uk� The total order

requires that for any two elements ui and uj � either ui � uj or uj � ui�

A intransitive sorted sequence is a sequence of elements� u�u����un� in N � such

that

u� � u� � ���� un�

It has been proved that for any subset of N � the elements in the subset can be

arranged in a sorted sequence �more than one may exist�� The intransitive total

�This work was supported in part by NSF grant CCR ��		
�
 and grant ANI 		�
�

�

�

u
2

u
3

u
4u

5

u
1

Figure �� A tournament of �ve players�

order is also called a tournament which is a directed graph with its underlying graph

completely connected� Each player in a tournament is represented by a vertex� An

edge� ui � uj � exists if player ui beats player uj � A sorted sequence corresponds to

a Hamiltonian path of the graph� Figure � shows a tournament of �ve players� One

intransitive total order is u� � u� � u� � u� � u�� When � is transitive� the

intransitive total order arrangement is reduced to a regular sorting problem� Unlike

the regular sorting problem� more than one solution exists for the generalized sorting

problem� For example� u� � u� � u� � u� � u� is another intransitive total order

for the example of Figure ��

A parallel algorithm is cost�optimal for a given problem if the product of the run

time and the number of processors used matches the sequential complexity of the

problem� regardless of the run time of the parallel algorithm� A parallel algorithm

is cost�optimal in the strong sense� or strongly cost�optimal� if its run time cannot

be improved by any other cost�optimal parallel algorithms�

In this paper� we consider the problem of merging� which deals with merging

two given sorted subsequences into one sorted sequence� Sorting and merging are

related� for example� the two�way merge strategy can be used to generate a two�way

merge sort� However� sorting and merging are di	erent with di	erent lower bounds

on computational complexity� For example� under the CREW PRAM model� the

lower bound on the regular sorting is O�logn�� whereas the lower bound on the

regular merging is O�log logn��

Merging two intransitive sorted subsequences poses new challenges� The tradi�

tional merging by ranking
�� and bitonic merging

� cannot be applied� Because

both concepts of ranking and bitonic sequences use the transitive property� In this

paper� we propose a divide�and�conquer approach called split�and�merge that re�

peatedly splits a pair of merging sequences into two independent pairs of merging

subsequences� This split�and�merge algorithm has a run time of O�log� n� using

(d)

split

cut cut+1

p

q

(a)

p

q

split

first =1 last =m

first =1 last =np p

p

q

split

(c)

(b)

p

q

split

q q

Figure
� Three possible split�and�merge situations�

O�n� log� n� processors under the EREW PRAM model� Clearly� this solution is

cost�optimal�

This paper is organized as follows� Section
 proposes the cost�optmal merge

process� Section � discusses related work and some open problems� The paper

concludes in Section ��

�� Cost�Optimal Merge

We use p
���n� and q
���m� to represent two given sorted sequences and p
i�

represents a speci�c element� We �rst introduce a split�and�merge process that

splits a pair of sequences into two independent pairs of subsequences� Two pairs

are merged once two subsequences in each pair have been merged� This process is

done recursively by calling the split�and�merge process� Let p
split� be the center

of sequence p and it is called the splitting point� firstp �firstq� and lastp �lastq�

denote indices for the �rst and last elements of sequence p �q�� respectively�

The general steps are the following�

� Select the center element of p as the splitting point and it is denoted as p
split��

� If p
split� beats the �rst element of q �i�e�� p
split� � q
firstq��� then sub�

sequence p
firstp�� split� �the white subsequence in Figure
 �a�� is merged

with an empty subsequence of q� followed by merging p
split� ���lastp� with

q
firstq��lastq� �the two gray subsequences in Figure
 �a���

� If p
split� is beaten by the last element of q �i�e�� q
lastq� � p
split��� then

p
firstp��split � �� is merged with q
firstq ��lastq�� followed by p
split��lastp�

�

par merge�p
firstp��lastp�� q
firstq ��lastq���
�� case of

� �firstp �� lastp�� return q
firstq��lastq�
�� �firstq �� lastq�� return p
firstp��lastp�
�� end of case

�� split �� b
firstp�lastp

� c
�� if p
split�� q
firstq � then
�� p
firstp��split� k par merge�q
firstq��lastq�� p
split� ���lastp��
�� else if q
lastq�� p
split� then
�� par merge�q
firstq ��lastq�� p
firstp��split� ��� k p
split��lastp�
��� else cut �� cut�p
split�� q
firstq��lastq��
��� par merge�q
firstq��cut�� p
firstp��split��k
�
� par merge�q
cut� ���lastq�� p
split� ���lastp��

cut�s� r
first��last���

�� cut �� b first�last
� c

� if r
cut�� s � s� r
cut� �� then
�� return cut
�� else if r
cut� � s then
�� cut�s� r
cut��last��
�� else cut�s� r
first��cut��

�see Figure
 �b���

� If both of the above two cases fail �see Figure
 �c��� we use a binary search on

q to �nd a cutting point �denoted as cut as shown in Figure
 �d�� in q� that is�

q
cut�� p
split� and p
split�� q
cut���� The �nal sequence is constructed by

merging p
firstp��split� with q
firstq ��cut� �two white subsequences in Figure

 �d��� followed by the result of merging p
split����lastp� with q
cutq����lastq�

�two gray subsequences in Figure
 �d���

� The role of p and q is alternated in the subsequent recursive merging process

to ensure the sizes of both p and q are reduced by at least half in every two

consecutive rounds�

We use k as a concatenation operation to combine two sequences� The merging

process starts by calling par merge�p
���n�� q
���m��� To simplify our discussion�

we assume n � m� The splitting process is done by locating the splitting point at

p and the cutting point at q� The cutting point is located through a binary search

process �cut��

It is not necessary that merging sequences have to be split into pieces of unit

size� par merge can be modi�ed based on the following split�and�merge process�

where par merge terminates whenever the size of both sequences is less than or

equal to a prede�ned value� and then� an optimal sequential merging algorithm is

applied�

�

.

.

.

leaf

O(log n)

level 1

level 2

level 3

Figure �� A sample split�and�merge tree�

split�and�merge�

� Use par merge�p
���n�� q
���n��� however� the recursive call is terminated when�

ever the sizes of both p and q are less than or equal to log� n�

� When a recursive call terminates� an optimal sequential merge algorithm is

applied to combine every pair of subsequences�

To support the above split�and�merge strategy in the par merge algorithm�

The following statement is inserted to the case statement�
�lastp � firstp� �

log� n� �
�lastq � firstq� � log� n�� seq merge�p
firstp��lastp�� q
firstq ��lastq���

where seq merge is a regular optimal sequential merge algorithm�

Figure � shows a sample split�and�merge tree� where each node corresponds to

a split�and�merge process� Each node �process� may generate up to two nodes �two

split�and�merge processes�� and therefore� this is a binary tree� The depth of the

tree is bounded by O�log n�� since the size of each sequence �p or q� is reduced by

half in every two consecutive rounds� An optimal sequential merging algorithm is

applied to each leaf in the tree�

Theorem �� The run time for the split�and�merge algorithm is O�log� n� with

O�n� log� n� processors under the EREW PRAM model�

Proof� The split�and�merge process consists of two phases� parallel split and se�

quential merge� At the parallel split phase� consider a new tree by deleting all

leaf nodes �gray nodes in Figure �� of the split�and�merge tree� Since the number

of elements associated with two sequences at each node is bounded by ��log� n�

in the new tree� whereas the total number of elements in two original sequences

is O�n�� the number of leaf nodes in this new tree is bounded O�n� log� n�� that

�

is� the number of parallel splits is bounded by that number� Therefore� there is

a su�cient number of processors to handle concurrent splitting activities �within

the same level�� We only need to calculate the run time of the longest path� Note

that each node in a path corresponds to a cutting process �that identi�es a cut�

using a binary search� The size of each sequence is reduced by at least half in two

consecutive rounds� Therefore� the overall cost is bounded by

dlogne� dlogn�
e� dlogn�
e� dlogn��e� dlogn��e� ���

which is O�log� n�� Sequential merge is used at each leaf of the split�and�merge tree�

Throughout the split�and�merge process� no concurrent read or write is needed�

consequently� only the EREW PRAM model is needed�

The cost of a sequential merge at each leaf node is equal to the number of

elements in the two subsequences to be merged� which is bounded by
 log� n �

O�log� n�� However� the number of leaf nodes could be more than O�n� log� n��

In fact� the size of both p and q is reduced by at least half by two consecutive

rounds generating up to four new branches in the split�and�merge tree� Consider a

complete binary tree with a depth of
log�n� log� n�� the total number of leaf nodes

is
� log�n� log
� n� � �n� log� n��� which is clearly more than n� log� n �the number

of processors�� We divide leaf nodes into two groups� a leaf node with a size of

log� n or more is assigned to group one and a node with a size less than log� n

is assigned to group two� Each leaf node in group one is assigned to a distinct

processor� Leaf nodes in group two are assigned in sequence to a processor until its

load is no less than log� n �but less than
log� n� and� then� a new processor is used

for the assignment� Clearly� these sequential merges can be done within
 log� n �

O�log� n� using no more than
n� log� n � O�n� log� n� processors� Therefore� the

overall run time is O�log� n� using O�n� log� n� processors�

Because the product of the run time and the number of processors is O�n�

which matches the lower bound for sequential computation� the proposed algorithm

is cost�optimal�

�� Related Work and Open Problems

Cole
�� shows that the cost�optimal merge of regular sorted sequences in the

strong sense under the EREW PRAM model is O�logn� using O�n� logn� proces�

sors� It is not clear that our solution is cost�optimal in the strong sense for merging

two intransitive sorted sequences� Therefore� the cost�optimal solution in the strong

sense still remains open�

Several parallel algorithms have been proposed
�� �� �� to determine a Hamilto�

nian path in a tournament� Wu
�� proposes a pipelined solution under the EREW

PRAM model using a new data structure called semi�heap� Basically� in semi�heap�

the notion of max is replaced by max� de�ned on the intrasitive order �� Speci��

cally� a semi�heap for a given intransitive total order � is a complete binary tree�

For every node u in the tree� u � max�fu� L�u�� R�u�g� where L�u� and R�u� are

left and right child of u� respectively� max� is de�ned as u � max�fu� L�u�� R�u�g

�

if both L�u� � maxfu� L�u�� R�u�g and R�u� � maxfu� L�u�� R�u�g are false� where

max is the regular maximum function�

Wu and Sheng
�� propose the notion of the sorted sequence of kings� A king u

in a tournament is a player who beats ��� any other player v directly or indirectly�

that is� either u � v or there exists a third player w such that u � w and w � v�

A sorted sequence of kings in a tournament of k players is a sequence of players�

u�u����un� such that ui � ui�� and ui in a king in sub�tournament fui� ui��� ���� ung

for i � ��
� ���� n� �� Clearly� the sorted sequence of kings adds extra constraints

on the intransitive sorted sequence� It has been proved that the sorted sequence of

kings exists in any tournament and an O�n�� solution based in a modi�ed insertion

sort is given in
��� On the other hand� optimal merge of two sorted sequence of

kings is still an uncharted territory�

Wu
�� also shows the intransitive sorted sequence as an approximation for rank�

ing players in a tournament� In general� the tournament ranking problem
�� is a

di�cult one without exhibiting �fairness�� Suppose ��
� ���� n is a ranking of players

with � representing the champion and i representing the ith place winner� Without

loss of generality� we assume that player ui is ranked in the ith place� For any pair

of players ui� uj with i � j� a happiness means that ui beats uj while an upset means

that uj beats ui� Clearly� a good ranking should have the minimum number of total

upsets� A median order is de�ned as a ranking of players with a minimum number

of total upsets� However� the problem of �nding a median order in a tournament

is NP�complete� It is shown in
�� that any median order must be an intransitive

sorted sequence�

�� Conclusion

In this paper� we have provided a cost�optimal merge of two intransitive sorted

sequences� which is a special total order without the transitive property� The pro�

posed solution is based on the EREW PRAM model with a run time of O�log� n�

using �n� log� n� processors� We have also discussed other related problems includ�

ing sorted sequence of kings and tournament ranking problem� Finally� we have

pointed out that the cost�optimal merge in the strong sense is still an open prob�

lem�

References

�� A� Bar�Noy and J� Naor� Sorting� minimal feedback sets� and Hamilton paths in
tournaments� SIAM Journal on Discrete Mathematics� �� ���� Feb� ���	�
��	�

�� K� Batcher� Sorting networks and their applications� Proc� of the AFIPS Spring

Joint Computing Conference� ���
� �	
�����

�� R� Cole� Parallel merge sort� SIAM Journal on Computing� ��� �� ��

�

	�

��

�� P� Hell and M� Rosenfeld� The complexity of �nding generalized paths in tourna�
ments� Journal of Algorithms� ��
�� �� �	���	��

�� K� B� Reid and L� W� Beineke� Tournaments� Chapter
 in� L� W� Beineke and R�
Wilson� eds�� Selected Topics in Graph Theory� Academic Press� New York� ��
��

�� D� Soroker� Fast parallel algorithms for �nding Hamilton paths and cycles in a

�

tournament� Journal of Algorithms� ��

� �
���
��

� J� Wu� On sorting an intransitive total ordered set using semi�heap� Proc� of IEEE
International Parallel and Distributed Processing Symposium� May �			� ��
�����

� J� Wu and L� Sheng� An e�cient sorting algorithm for a sequence of kings in a
tournament� Information Processing Letters�
�� �� �		�� ��
�����

�

