International Journal of Foundations of Computer Science
© World Scientific Publishing Company

ON COST-OPTIMAL MERGE OF TWO INTRANSITIVE SORTED
SEQUENCES *

JIE WU

Department of Computer Science and Engineering
Florida Atlantic University
Boca Raton, FL 33431
E-mail: jieQcse.fau.edu

and

STEPHEN OLARIU

Department of Computer Science
Old Dominion University
Norfolk, VA 23529
E-mail: olariu@cs.odu.edu

Received (received date)
Revised (revised date)
Communicated by Editor’s name

ABSTRACT

The problem of merging two intransitive sorted sequences (that is, to generate a
sorted total order without the transitive property) is considered. A cost-optimal parallel
merging algorithm is proposed under the EREW PRAM model. This algorithm has
a run time of O(log?n) using O(n/log?n) processors. The cost-optimal merge in the
strong sense is still an open problem.

Keywords: Hamiltonian path, merging, PRAM, sorting, tournament.

1. Introduction

In this paper we consider the problem of merging two intransitive sorted se-
quences. Consider a total order — on set N, but without the transitive property.
That is, if u; = u; and u; — uy, it is not necessary that u; — uy. The total order
requires that for any two elements u; and u;, either u; — u; or u; = u;.

A intransitive sorted sequence is a sequence of elements, uius...un, in N, such
that

Uy — U2 — ... = Up.

It has been proved that for any subset of N, the elements in the subset can be
arranged in a sorted sequence (more than one may exist). The intransitive total

*This work was supported in part by NSF grant CCR 9900646 and grant ANT 0073736.

Figure 1: A tournament of five players.

order is also called a tournament which is a directed graph with its underlying graph
completely connected. Each player in a tournament is represented by a vertex. An
edge, u; — uj, exists if player u; beats player u;. A sorted sequence corresponds to
a Hamiltonian path of the graph. Figure 1 shows a tournament of five players. One
intransitive total order is uz — us — us — us — u;. When — is transitive, the
intransitive total order arrangement is reduced to a regular sorting problem. Unlike
the regular sorting problem, more than one solution exists for the generalized sorting
problem. For example, uy — ug — us — us — u4 is another intransitive total order
for the example of Figure 1.

A parallel algorithm is cost-optimal for a given problem if the product of the run
time and the number of processors used matches the sequential complexity of the
problem, regardless of the run time of the parallel algorithm. A parallel algorithm
is cost-optimal in the strong sense, or strongly cost-optimal, if its run time cannot
be improved by any other cost-optimal parallel algorithms.

In this paper, we consider the problem of merging, which deals with merging
two given sorted subsequences into one sorted sequence. Sorting and merging are
related, for example, the two-way merge strategy can be used to generate a two-way
merge sort. However, sorting and merging are different with different lower bounds
on computational complexity. For example, under the CREW PRAM model, the
lower bound on the regular sorting is O(logn), whereas the lower bound on the
regular merging is O(loglogn).

Merging two intransitive sorted subsequences poses new challenges. The tradi-
tional merging by ranking [3] and bitonic merging [2] cannot be applied. Because
both concepts of ranking and bitonic sequences use the transitive property. In this
paper, we propose a divide-and-conquer approach called split-and-merge that re-
peatedly splits a pair of merging sequences into two independent pairs of merging
subsequences. This split-and-merge algorithm has a run time of O(log2 n) using

flrstpzl

split last, =n split
p p
q q
flrstq:]. (a) |aﬂq =m (b)
split split
p p
q q e
cut cut+l
(©) (d)

Figure 2: Three possible split-and-merge situations.

O(n/log®n) processors under the EREW PRAM model. Clearly, this solution is
cost-optimal.

This paper is organized as follows: Section 2 proposes the cost-optmal merge
process. Section 3 discusses related work and some open problems. The paper
concludes in Section 4.

2. Cost-Optimal Merge

We use p[l..n] and g¢[l..m] to represent two given sorted sequences and pli]
represents a specific element. We first introduce a split-and-merge process that
splits a pair of sequences into two independent pairs of subsequences. Two pairs
are merged once two subsequences in each pair have been merged. This process is
done recursively by calling the split-and-merge process. Let p[split] be the center
of sequence p and it is called the splitting point. first, (first,) and last, (lasty)
denote indices for the first and last elements of sequence p (g), respectively.

The general steps are the following:

e Select the center element of p as the splitting point and it is denoted as p[split].

o If p[split] beats the first element of ¢ (i.e., p[split] — ¢[first,]), then sub-
sequence p[firsty.. split] (the white subsequence in Figure 2 (a)) is merged
with an empty subsequence of ¢, followed by merging p[split + 1..last,] with
q[firsty.lasty] (the two gray subsequences in Figure 2 (a)).

o If p[split] is beaten by the last element of ¢ (i.e., g[last,] — p[split]), then
plfirst,..split — 1] is merged with g[first,..last,], followed by p[split..last,)

par_merge(p|[first,..lasty], g[firsty..lasty]):

1. case of

2. (first, £ lasty): return g[first,..last,]

3. (firsty £ lasty): return p[first,..last,]

4. end of case

5. split := LMJ

6. if p[split] — ¢[first,] then

7. plfirsty..split] | par_merge(q[first,..lasty], p[split + 1..lastp])
8. else if ¢[last,] — p[split] then

9. par_merge(q[first,..lasty], p[first,..split — 1]) || p[split..lasty]
10. else cut := cut(p[split], q[first,.lasty])

11. par_merge(q[first,..cut], p[first,..split])||

12. par_merge(g[cut + 1..last,], p[split + 1..lasty)])
cut(s,r[first.last]):

1. cut := LWJ

2. if rlcut] = s A's = r[cut + 1] then

3. return cut

4. else if r[cut] — s then

5. cut(s, r[cut..last])

6. else cut(s,r[first..cut])

(see Figure 2 (b)).

e If both of the above two cases fail (see Figure 2 (c)), we use a binary search on
q to find a cutting point (denoted as cut as shown in Figure 2 (d)) in g, that is,
q[cut] — p[split] and p[split] = q[cut+1]. The final sequence is constructed by
merging p|first,..split] with g[first,..cut] (two white subsequences in Figure
2 (d)), followed by the result of merging p[split+1..last,] with g[cuty+1..last,]
(two gray subsequences in Figure 2 (d)).

e The role of p and ¢ is alternated in the subsequent recursive merging process
to ensure the sizes of both p and ¢ are reduced by at least half in every two
consecutive rounds.

We use || as a concatenation operation to combine two sequences. The merging
process starts by calling par_merge(p[l..n],q[1..m]). To simplify our discussion,
we assume n = m. The splitting process is done by locating the splitting point at
p and the cutting point at ¢. The cutting point is located through a binary search
process (cut).

It is not necessary that merging sequences have to be split into pieces of unit
size. par_merge can be modified based on the following split-and-merge process,
where par_merge terminates whenever the size of both sequences is less than or
equal to a predefined value, and then, an optimal sequential merging algorithm is
applied.

leaf

Figure 3: A sample split-and-merge tree.

split-and-merge:

e Use par_merge(p[l..n], ¢[1..n]); however, the recursive call is terminated when-
ever the sizes of both p and ¢ are less than or equal to log” n.

e When a recursive call terminates, an optimal sequential merge algorithm is
applied to combine every pair of subsequences.

To support the above split-and-merge strategy in the par_merge algorithm.
The following statement is inserted to the case statement: [(last, — first,) <
log®n] A [(last, — first,) < log®n]: seq_merge(p[first,..lasty), q[first,.last,)),
where seq_merge is a regular optimal sequential merge algorithm.

Figure 3 shows a sample split-and-merge tree, where each node corresponds to
a split-and-merge process. Each node (process) may generate up to two nodes (two
split-and-merge processes), and therefore, this is a binary tree. The depth of the
tree is bounded by O(logn), since the size of each sequence (p or ¢) is reduced by
half in every two consecutive rounds. An optimal sequential merging algorithm is
applied to each leaf in the tree.

Theorem 1: The run time for the split-and-merge algorithm is O(log2 n) with
O(n/log®n) processors under the EREW PRAM model.

Proof: The split-and-merge process consists of two phases: parallel split and se-
quential merge. At the parallel split phase, consider a new tree by deleting all
leaf nodes (gray nodes in Figure 3) of the split-and-merge tree. Since the number
of elements associated with two sequences at each node is bounded by Q(log®n)
in the new tree, whereas the total number of elements in two original sequences
is O(n), the number of leaf nodes in this new tree is bounded O(n/log®n), that

is, the number of parallel splits is bounded by that number. Therefore, there is
a sufficient number of processors to handle concurrent splitting activities (within
the same level). We only need to calculate the run time of the longest path. Note
that each node in a path corresponds to a cutting process (that identifies a cut)
using a binary search. The size of each sequence is reduced by at least half in two
consecutive rounds. Therefore, the overall cost is bounded by

[logn] + [logn/2] + [logn/2] + [logn/4] + [logn/4] + ...

which is O(log® n). Sequential merge is used at each leaf of the split-and-merge tree.
Throughout the split-and-merge process, no concurrent read or write is needed;
consequently, only the EREW PRAM model is needed.

The cost of a sequential merge at each leaf node is equal to the number of
elements in the two subsequences to be merged, which is bounded by 210g2n =
O(log®n). However, the number of leaf nodes could be more than O(n/log?n).
In fact, the size of both p and ¢ is reduced by at least half by two consecutive
rounds generating up to four new branches in the split-and-merge tree. Consider a
complete binary tree with a depth of 2log(n/ log® n), the total number of leaf nodes
is 22log(n/log” n) — (n/log® n)?, which is clearly more than n/log® n (the number
of processors). We divide leaf nodes into two groups: a leaf node with a size of
logZn or more is assigned to group one and a node with a size less than log”n
is assigned to group two. Each leaf node in group one is assigned to a distinct
processor. Leaf nodes in group two are assigned in sequence to a processor until its
load is no less than log® n (but less than 2log? n) and, then, a new processor is used
for the assignment. Clearly, these sequential merges can be done within 2log?n =
O(log” n) using no more than 2n/log® n = O(n/log? n) processors. Therefore, the
overall run time is O(log® n) using O(n/log® n) processors. [|

Because the product of the run time and the number of processors is O(n)
which matches the lower bound for sequential computation, the proposed algorithm
is cost-optimal.

3. Related Work and Open Problems

Cole [3] shows that the cost-optimal merge of regular sorted sequences in the
strong sense under the EREW PRAM model is O(logn) using O(n/logn) proces-
sors. It is not clear that our solution is cost-optimal in the strong sense for merging
two intransitive sorted sequences. Therefore, the cost-optimal solution in the strong
sense still remains open.

Several parallel algorithms have been proposed [1, 4, 6] to determine a Hamilto-
nian path in a tournament. Wu [7] proposes a pipelined solution under the EREW
PRAM model using a new data structure called semi-heap. Basically, in semi-heap,
the notion of max is replaced by max_, defined on the intrasitive order —. Specifi-
cally, a semi-heap for a given intransitive total order — is a complete binary tree.
For every node u in the tree, u = max_,{u, L(u), R(u)}, where L(u) and R(u) are
left and right child of u, respectively. max_, is defined as u = max_, {u, L(u), R(u)}

if both L(u) = max{u, L(u), R(u)} and R(u) = max{u, L(u), R(u)} are false, where
max is the regular maximum function.

Wu and Sheng [8] propose the notion of the sorted sequence of kings. A king u
in a tournament is a player who beats (—) any other player v directly or indirectly;
that is, either u — v or there exists a third player w such that v — w and w — v.
A sorted sequence of kings in a tournament of k players is a sequence of players,
U1Us... Uy, such that u; — u;41 and u; in a king in sub-tournament {u;, w;y1, ..., un }
for i = 1,2,...,n — 1. Clearly, the sorted sequence of kings adds extra constraints
on the intransitive sorted sequence. It has been proved that the sorted sequence of
kings exists in any tournament and an O(n?) solution based in a modified insertion
sort is given in [8]. On the other hand, optimal merge of two sorted sequence of
kings is still an uncharted territory.

Wu [7] also shows the intransitive sorted sequence as an approximation for rank-
ing players in a tournament. In general, the tournament ranking problem [5] is a
difficult one without exhibiting “fairness”. Suppose 1,2, ...,7n is a ranking of players
with 1 representing the champion and ¢ representing the ith place winner. Without
loss of generality, we assume that player u; is ranked in the i¢th place. For any pair
of players u;, u; with ¢ < j, a happiness means that u; beats u; while an upset means
that u; beats u;. Clearly, a good ranking should have the minimum number of total
upsets. A median order is defined as a ranking of players with a minimum number
of total upsets. However, the problem of finding a median order in a tournament
is NP-complete. It is shown in [7] that any median order must be an intransitive
sorted sequence.

4. Conclusion

In this paper, we have provided a cost-optimal merge of two intransitive sorted
sequences, which is a special total order without the transitive property. The pro-
posed solution is based on the EREW PRAM model with a run time of O(log®n)
using (n/log®n) processors. We have also discussed other related problems includ-
ing sorted sequence of kings and tournament ranking problem. Finally, we have
pointed out that the cost-optimal merge in the strong sense is still an open prob-
lem.

References

1. A. Bar-Noy and J. Naor. Sorting, minimal feedback sets, and Hamilton paths in
tournaments. SIAM Journal on Discrete Mathematics. 3, (1), Feb. 1990, 7-20.

2. K. Batcher. Sorting networks and their applications. Proc. of the AFIPS Spring
Joint Computing Conference. 1968, 307-314.

3. R. Cole. Parallel merge sort. SIAM Journal on Computing. 17, 4, 1988, 770-785.

4. P. Hell and M. Rosenfeld. The complexity of finding generalized paths in tourna-
ments. Journal of Algorithms. 1983, 4, 303-309.

5. K. B. Reid and L. W. Beineke. Tournaments. Chapter 7 in: L. W. Beineke and R.
Wilson, eds., Selected Topics in Graph Theory, Academic Press, New York, 1979.

6. D. Soroker. Fast parallel algorithms for finding Hamilton paths and cycles in a

tournament. Journal of Algorithms. 1988, 276-286.

7. J. Wu. On sorting an intransitive total ordered set using semi-heap. Proc. of IEEE
International Parallel and Distributed Processing Symposium. May 2000, 257-262.

8. J. Wu and L. Sheng. An efficient sorting algorithm for a sequence of kings in a
tournament. Information Processing Letters. 79, 6, 2001, 297-299.

