
Secure Locking For Untrusted Clouds

Chiu C. Tan†, Qin Liu†‡, and Jie Wu†

†Department of Computer and Information Sciences, Temple University, USA
‡School of Information Science and Engineering, Central South University, P. R. China

Email:{cctan,jiewu}@temple.edu, gracelq628@yahoo.com.cn

Abstract—Migrating applications with strong consistency
requirements to public cloud platforms remains risky since the
data owner cannot verify the correctness of the public cloud’s
locking algorithm. In this paper, we identify new attacks that an
untrusted cloud provider can launch via control of the locking
mechanism and propose an extension to existing locking scheme
to address such attacks. Our solution modifies the read and
write locks to include a short history to allow data users to
verify the correctness of their assigned locks, and can also
prevent the cloud from re-ordering operations for financial
gain.

Keywords-Cloud computing; security; locks; read/write ac-
cess

I. INTRODUCTION

Cloud computing has drawn much attention in recent

years. The ability for users to dynamically scale their IT op-

erations depending on their needs, without making expensive

upfront investments, is a key attraction of using commercial

cloud computing services. Examples of applications using

such cloud services including using the cloud to perform

data mining [1] and other applications that archive digital

collections [2]. Many business and government entities

have indicated interest in increasing their use of cloud

services [3].

We believe that the next wave of cloud computing inno-

vations will shift away from cheaper storage and faster re-

sponse times towards offering higher value services, such as

concurrency control. Such offerings will allow data owners

to outsource even more IT operations, and cloud providers

can use this as a means of distinguishing themselves from

the competition. However, since third party cloud providers

are considered untrustworthy [4]–[6], we need to consider

the security implications of an untrusted cloud providing

such services. Here, an untrusted cloud will not perform

malicious actions, such as returning incorrect data to a user,

but may try to learn additional information from the stored

data, or subtly manipulate the protocols for financial benefit.

We also describe an untrusted cloud as a misbehaving

cloud in this paper. We will further explore the actions of

misbehaving cloud in subsequent sections.

In Fig. 1(a), we see that prior to outsourcing data to the

cloud, the data owner has to maintain a larger data storage

system, and data users will access the data from the data

owner directly. The data owner can implement traditional

Figure 1. Overview of data owners and users accessing a public cloud.

distributed system concurrency control techniques, such as

locks, to ensure consistency. Thus, when Alice is updating

the sensitive data, the system can issue Alice an exclusive

lock which will prevent Bob from reading that data. After

Alice has completed her updates, she releases the lock, and

Bob can then read the data.

Fig. 1(b) depicts the setup after the data owner has

migrated his data to a cloud provider. We see that the owner

needs only to maintain a small system to authenticate users,

while the cloud manages the data. To prevent the untrusted

cloud from learning the contents of the stored data, one

approach is to allow the data owner to store only encrypted

data on the cloud, and let users wanting to access data

to first obtain permission from the data owner and receive

the necessary keys to decrypt the data. The users can then

obtain the data from the cloud and decrypt it to receive the

information [7]. A misbehaving cloud does not learn the data

contents since all the information is encrypted. In essence,

after migrating the system to a cloud, the data owner can still

control data access through the encryption, while leaving the

cloud to be responsible for data storage operations.

However, since the data owner does not have control over

the system, the owner now has to rely on the untrusted cloud

provider to execute the concurrency control algorithm. The

untrusted cloud can attempt to manipulate the locking algo-

rithm to derive additional benefits. For example, consider a

cloud provider that is required to meet certain user query

response times. (Such provisions are increasingly popular in

cloud deployments to ensure quality-of-service (QoS).) Now,

let us assume that the cloud receives a string of requests

R,W,R,W,R,W within a period of time, where R is a

read request, and W is a write request to the same data.

To complete this sequence of operations correctly, the cloud

will have to lock after every access, and unlock once done,

leading to a total of 6 lock operations. On the other hand,

the untrusted cloud can re-order it to R,R,R,W,W,W , and

only need to perform lock operations 4 times. Any read

request after the first read is essentially free, since locks can

allow concurrent reads, and the cloud can give immediate

access without incurring any resources. A misbehaving

cloud that has too many clients and cannot meet the QoS

requirements will re-order the operations to avoid paying the

penalty. Traditional concurrency control research does not

address this type of problem since it assumes that the system

running the algorithm is trusted, while existing current cloud

security research focusing mainly on improving operations

on encrypted data [8] cannot be applied to this problem.

In this paper, we propose CloudLock, an efficient locking

protocol for an untrusted cloud providing infrastructure as a

service (IaaS). Our key contributions are as follows:

1) We are the first to explore possible attacks that can be

launched by an untrusted public cloud service provider

implementing concurrency protection using locks.

2) We extend existing locking algorithms to be imple-

mented by an untrusted cloud service provider. The

modification of well-studied locking techniques make

our solution more robust.

3) Our protocols modify the read and write locks to allow

users to quickly detect locking violations to ensure

the correctness of the data, and can also be used as

evidence to penalize the cloud provider.

We stress that the goal of this paper is to compliment

existing locking schemes to allow them to be executed by

an untrusted cloud provider, and not to design new schemes.

The rest of our paper is as follows: We present the problem

formulation in Section II, and our solution in Section III.

Section IV contains some additional discussion, Section V

contains related work, and Section VI concludes the paper.

II. PROBLEM FORMULATION

We consider a data owner wanting to store data in a public

cloud for multiple users to access. As shown in Fig. 1, all

users have to receive permissions to access the data from

the data owner.

A. System requirements and setup

The system requirements are expressed as a service level

agreement (SLA) between the owner and the cloud. There

are three requirements. The first is the confidentiality re-

quirement. This means that only authorized users can obtain

the data. The cloud provider is not considered an authorized

user. For a small portion of sensitive data, the owner requires

that the cloud provide a consistency requirement. This means

that any valid user will never read stale data, and any data

updates once committed will be read by any subsequent read.

Finally, the last requirement is a latency requirement, where

the cloud has to satisfy a user’s request within a given time.

We assume that the data owner maintains a server for

the purposes of authorizing users, issuing commands to the

cloud, and logging any information from authorized users

to keep track of the latency requirement. There is also a

central time server that can be maintained by the owner or

by a neutral third party. Before migrating the data to the

cloud, the data owner will generate a pair of public and

private keys. The data owner will also encrypt each piece of

data with its own data encryption key before uploading it to

the cloud provider.

A user, after being authorized by the data owner, will be

issued a pair of public and private keys by the data owner,

as well as the data encryption and decryption keys for each

piece of data he is authorized to access. With these keys, the

user can decrypt the data obtained from the cloud provider.

The cloud provider will run our locking scheme, which

will ensure that a user’s updates to the data will be reflected

by all subsequent users accessing it. Since locking is an

expensive operation (a write lock, for instance, precludes

any other user access to the data), locks will only apply

to sensitive data, as defined by the data owner. The cloud

provider will have a pair of public and private keys that is

used to create digital signatures.

We will first assume that any user will be able to verify

any other valid user’s signature, and elaborate more on this

later. We also assume that all communications between the

owner, cloud, and users are performed over secure channels

and are free from eavesdropping. Table I indicates the

notation used in this paper.

PKu,SKu User public/private keys

PKcloud,SKcloud Cloud public/private keys

rlni, wlnk Read (write) lock number i (k)

S(d, k) Signing data d with key k.

V (s, k) Verify signature s with key k.

E(d, k) Encrypt data d with key k.

D(c, k) Decrypt ciphertext c with key k.

Table I
TABLE OF NOTATION

B. Adversary model

This paper is primarily concerned with defending against a

misbehaving cloud provider. We use the term “misbehaving”

instead of “malicious”’ because the cloud will generally

adhere to the protocols, but may decide to cheat for finan-

cial benefits. This is stronger than the “honest-but-curious”

assumption usually made in cloud security research, since

the cloud will break protocol if there is a financial benefit

in doing so.

We assume the misbehaving cloud can launch confiden-

tiality attacks by trying to learn more about the contents of

the cloud data. This is a common type of attack considered

in cloud computing security [7], and is commonly addressed

by storing encrypted data in the cloud. Our solution also

adopts this same principal. A misbehaving cloud is capable

of launching locking attacks to manipulate the locking algo-

rithm to achieve economic gains. In this paper, we identify

a lock by its lock number. So, a lock with lock number i

should be issued after lock number i-1, and so on. The types

of locking attacks are as follows:

1) Issue incorrect lock number.

2) Issue the same lock to two or more users.

3) Fraudulently claim that the lock busy.

4) Deny issuing a lock.

5) Re-order user requests before issuing a lock.

The cloud’s motivation behind the locking attacks is

economic rather than malice. Providing efficient service with

concurrency protections involves more powerful hardware,

higher energy costs, and more network resources, all of

which incurs a higher operation cost for the cloud provider.

For example, an incorrect lock number may be issued be-

cause the cloud provider did not devote sufficient resources

to ensure changes are propagated to all the replicas, or that

the cloud may pretend that a lock is unavailable to mask

latency delays. The cloud may also schedule the order of

operations to minimize locking operations. This could have

a negative impact on users by delaying important updates.

Finally, our adversary model assumes that there is no

collusion between the different parties. Therefore, the cloud

and users will not collude to cheat the owner, nor will the

owner and users collude to frame the cloud provider. We also

assume that all users are honest and will not launch attacks,

such as not releasing the lock or to fraudulently claim to

possess a lock.

III. CLOUDLOCK PROTOCOL

CloudLock allows multiple users to read the data concur-

rently since the data remains consistent. Only when a user

wants to write to the data do we need to exclude other users.

We adopt the rule from [9], where a read lock is considered

a shared mode lock, and a write lock is considered an

exclusive mode lock. Once a data object is locked in an

exclusive mode, no other user can lock that object in either

mode. A data object locked in a shared mode can allow

access to other users.

A. Overview

The CloudLock protocol consists of interactions between

four parties: the data owner, a central time server, a data

user, and the cloud provider. The overview of operations is

that each time a user wishes to access data, the user will

first obtain a timestamp from the central time server before

querying the cloud for data. The purpose is to detect any re-

ordering of operations from the cloud. We assume that there

is a bounded delay ∆t. The cloud, after waiting for ∆t, will

have all the pending requests in a buffer. This process is

illustrated in Fig. 2. We see that the cloud will re-order the

Figure 2. Reordering using a timestamp

request based on the timestamp value from the central time

server.

After receiving the user’s request, the cloud will then

perform the necessary locking operations and return the data

and some other verification information to the user (we will

elaborate on this later). When the user releases the lock

and data updates, if any, back to the cloud, the user will

also update some information with the data owner, which

maintains a table, shown in Table II. Using this table, the

data owner is able to determine when a lock number was

requested, issued, and released, and thus determine whether

the latency requirement was met by the cloud.

Lock number Requested Received Returned

...

Table II
TABLE MAINTAINED BY DATA OWNER.

B. Protocol description

CloudLock uses two locks, a read lock and a write

lock, denoted as RLOCK(i) and WLOCK(k),
where RLOCK(i) = rlni, S(rlni, SKcloud), and

WLOCK(k) = wlnk, S(wlnk, SKcloud). The read

lock number and write lock number are rlni and wlnk. We

use “i” to denote a generic read lock number, and “k” to

denote a generic write lock number, for clarity.

Our solution relies on maintaining two sets of lock

numbers, each time the cloud returning both a read and

a write lock number to the user. The intuition is that a user

holding a RLOCK will use the WLOCK to verify that he

is indeed reading the latest version, and that a user holding

a WLOCK will use the RLOCK to determine whether he

has been waiting too long.

CloudLock uses the following rules to ensure safety: First,

multiple read locks can be issued safely; second, a write lock

can only be issued when all read locks are released; third,

while a write lock has been issued and not yet recovered,

no other locks, read or write, can be issued. Table III shows

the four possible cases, and Fig.. 3 shows the interactions

between the user and the cloud for each of the four cases.

Request read Request write

Issued RLOCK Case 1 Case 2

Issued WLOCK Case 3 Case 4

Table III
RLOCK AND WLOCK OPTIONS

We use the term assigned RLOCK(i) or assigned

WLOCK(k) as the current read (write) lock number as-

signed to the user. The term next WLOCK(k) indicates

that the next write lock number issued will be k. The term

last RLOCK(i) means that the latest read lock number

assigned is i and the next RLOCK number that has not

been assigned yet will be i+1. When a user releases a lock,

he will return a UNLOCK−RLOCK(i) or UNLOCK−
WLOCK(k) depending on which lock he requested. The

UNLOCK − RLOCK(i) is just the read lock number

and accompanying singnature, rlni, S(rlni, SKuser). The

unlocking of the write lock is similar.

The term DATA refers to the encryption of the data

d, E(d,K), and DATA′ refers to the data after being

written by a user, E(d′,K). The HIST acts like a hash

chain linking the current read and write lock numbers

with the contents on the data. This operation is per-

formed by a user when he releases a lock. A HIST (k, i)
is thus {H(wlnk|DATA), S(H(wlnk|DATA), SKuser),
rlni, S(wlnk|rlni, SK)user)}. For brevity, we will

omit the signatures S(H(wlnk|DATA), SKuser) and

S(wlnk|rlni, SK)user) in future discussion. Details of the

four cases are given below:

Case 1: This case occurs when a read lock as already been

issued and another user also wants a read lock. In this case,

we want to allow this user to read immediately. As shown

in Fig. 3(a), in addition to the lock numbers and DATA,

the cloud will return HIST (k − 1, < i). The < i refers to

a read lock number that is smaller than i. This HIST (k −
1, < i) is just H(wlnk−1|DATA), and its accompanying

signature, and rln<i, S(wlk−1|rln<i). The user will use

WLOCK(k) to verify that H(wlnk−1|DATA) to ensure

that he is reading the latest DATA. Then, the user checks

that his read lock rlni is correct. There could be other users

who have been issued rlns before-hand, but in any case, their

values, rl<i, have to be less than rli. The user also checks

that the smaller rln value is correctly associated with wlnk−1

by checking the signature S(wlnk−1|rln<i). The user can

only check rl<i, and not strictly rli−1, because the last read

lock issue could be the first read lock returned.

Case 2: This case occurs when a user wants to do a

write, but there is one or more read locks being issued.

The interactions are shown in Fig 3(b). The user will first

receive the assigned WLOCK(k) and the last RLOCK(i).
Since there are others holding on the the read lock, the cloud

cannot return the data. The user wait until the cloud returns

HIST (k − 1, i − 1) to him. Using WLOCK(k), the user

can verify HIST (k−1) to determine that he has been issued

the latest DATA. The last RLOCK(i) is used check that

there is a rlni−1 issued to a valid user, preventing the cloud

from claiming imaginary users with read locks.

Case 3: This case is where a WLOCK has been issued,

and a user wants to read. Using next WLOCK(k), the user

can check HIST (k − 1, < i) to verify that it is reading the

last written copy. The RLOCK(i) is used to check that the

smaller rln<i is correctly associated with S(wlnk−1|rln<i).
Case 4: The final case is where a write lock has already

been issued and another user also wants a write lock. As

before, the user will first receive the assigned WLOCK(k)
and last RLOCK(i). When the cloud eventually returns

DATA and HIST (k−1, i−1), the user uses WLOCK(k)
to verify HIST (k − 1, i − 1).

C. Security analysis

Here, we analyze the CloudLock scheme against the

various attacks. We first consider the confidentiality attack

launched by the cloud. In this attack, the cloud tries to learn

additional information about the stored data. We see that in

Fig. 3, the stored data is always encrypted with E(d, k),
so the cloud does not learn its contents. Similarly, all user

updates are also encrypted E(d′, k), so the cloud learns

nothing about the updates either. Next, we will analyze the

locking attacks that can be launched by the cloud.

Locking attack 1: Issuing an incorrect lock number.

This attack arises from an error in the cloud’s locking sys-

tem, possibly due to devoting insufficient resources needed

to reach all the replicas.

Each time the user is given the HIST , the user can

check whether the read lock number rlni and write lock

number wlnk when hashed, correctly matches the values in

HIST . The cloud cannot attempt to generate a fake HIST

because each HIST needs to be signed by a valid user with

knowledge of its private key SKuser. Since the cloud does

not know this key, the cloud cannot forge a signature.

Locking attack 2: Issuing the same lock to multiple users.

Under the multilock scheme, we can issue multiple

RLOCKS. Therefore, this attack consists of two scenarios:

one is where a RLOCK and WLOCK are issued at

the same time, and the other is when multiple WLOCKs

are issued. For both cases, this attack can be detected by

checking with the data owner’s table (Table II).

More specifically, let us consider the first case and as-

sume that Alice has obtained a read lock(RLOCK(7),
WLOCK(4), HIST (3, 6)), and before she unlocks,

the cloud issues a write lock to Bob (RLOCK(7),
WLOCK(4), HIST (3, 6)). Now, Bob’s operation is safe

since he is updating the latest copy of the DATA. However,

Alice is not safe, since the DATA she possess may change

before she releases the RLOCK. Now, if Alice releases her

lock before Bob, her entry will appear in the data owner’s

Figure 3. (a)-(d) Cloud user interactions under different cases.

table, and this will be detected when Bob logs his entry

to the table, and vice versa. Either way, the attack will

be detected and users will be notified. The case of having

multiple WLOCKs is similar.

Locking attack 3: Fraudulently claim that lock busy.

The attack occurs when a user wants a RLOCK, but the

cloud claims that a WLOCK has not been unlocked, or

when a user wants a WLOCK, but the cloud states that

the RLOCK has not been released. In the first instance,

lets assume the cloud has to return the next WLOCK(7)
number, and later, a supply HIST (6, < i). If the cloud does

not supply this HIST value, the cloud will be detected.

Since the cloud is bound to return this particular HIST ,

the user can check with the owner’s table to determine

when WLOCK(6) was issued and unlocked, and detect

this attack.

A similar process can be used to detect the second

instance. A minor variation is that since multiple RLOCKs

can be issued concurrently, the cloud could to create

phantom RLOCK users. For example, the cloud returns

(WLOCK(3), RLOCK(21)) to the user wanting the

WLOCK. In actuality, the read lock number is less than

21. This can be detected as a case of the cloud issuing an

incorrect number (locking attack 1), and can be detected

when HIST is returned because the cloud is unable to forge

the signature for S(wln2, rln21).

Locking attack 4: Denying issuing a lock.

The cloud that later detects it has accidentally issued an

incorrect lock number and may later deny issuing such a

lock. Since all lock numbers have to be signed by the cloud

using the cloud’s private key, the cloud cannot deny issuing

a lock number to a user.

Locking attack 5: Re-ordering user requests.

This attack can be detected using the central time server.

When users append their entries with the data owner after

releasing the locks, the timestamp from the central time

server can be affixed as well. Re-ordered entries will thus

be detected.

D. Key management

Here, we discuss the key management used in CloudLock.

The CloudLock protocol requires users to know which

public keys to use to authenticate signatures. This can be

achieved via a trusted on-line public key directory that can

used store a copy of every user’s public keys and verify

any signatures, or a trusted certificate authority (CA) can be

set up to issue certificates, which can be appended to each

signature to verify public keys.

In addition, we can also use identity-based cryptography

(IBC) in lieu of more traditional public key solution. IBC is

a type of asymmetric key cryptography scheme which also

makes use of public and private keys [10]. IBC simplifies

the problem of distributing and verifying public keys by

allowing a user’s identity to be used to derive a public key.

For example, assuming that Alice’s identity is her email

address “alice@acme.org”, IBC allows users to compute Al-

ice’s public key using “alice@acme.org”. Using IBE allows

us to use novel authentication policies, such as forcing the

user to only access the cloud via a certain IP address. This

can be accomplished by using the IP address to create the

public key.

IV. ADDITIONAL DISCUSSION

A. Alternative design

An alternative method is to avoid using the HIST and

instruct the user to record the lock number with the data

owner each time he obtains a lock, and also when he releases

the lock. In other words, assuming that the data owner is

also the central time server, a user needs to do 3 round-trips

(one to obtain the timestamp, one when obtaining a lock,

and another when unlocking), incurring a cost of 3 round-

trip-times (RTTs) to the data owner instead of 2 RTT in

our solution. Furthermore, the alternative design also does

require stronger synchronization between users.

For example, using the alternative design, Alice is is-

sued WLOCK(5). She records the lock number with

the data owner, and checks the table to determine

whether WLOCK(4) has been returned. Assuming that

WLOCK(4) is missing, it could be possible that either the

cloud has issued the wrong lock number (locking attack 1),

or that the prior user Bob has not recorded that information

with the data owner. Using the hash chain found in HIST ,

Alice can proceed immediately. This advantage becomes

more apparent when we have a lot of data, and a user may

need to lock multiple pieces of data at the same time to

perform an operation.

In designing CloudLock, we wanted to avoid relying too

much on the data owner to ensure correctness to create a

new bottleneck. Our solution does not require the user to

inform the data owner that the lock has been released in a

strict fashion, only that the user informs the owner in some

reasonable time period. For example, assume Bob was issued

WLOCK(3), but failed to inform the data owner when he

released the lock. Later, Alice obtains WLOCK(4) with the

correct HIST . Then, when Alice releases WLOCK(4),
she informs the data owner. Since Alice will not accept

that data unless the HIST is correct, the data owner can

interpret Alice’s response as evidence the WLOCK(3) has

been released correctly.

B. Practical implementation

There has been recent interest [11], [12] in trying to

provide additional services through a judicious application of

an existing cloud provider’s API. Here, we consider whether

it is possible to implement a CloudLock-like solution on

existing cloud services.

We based our sketch solution on Amazon’s Simple Queu-

ing Service (SQS) distributed messaging system [13]. SQS

is a messaging system provided by Amazon to allow users

to exchange messages between components using HTTP. A

user can create queues that are identified by a URL to send

and receive messages to and from other users. The design

of SQS stresses availability and scalability (Amazon claims

unlimited queue length and messages), but at the expense of

consistency. For instance, querying SQS about the number of

messages in the queue returns an approximate answer. SQS

also does not provide FIFO guarantees. The key operations

we use are provided below:

• CreateQueue Creates a queue that can be referred to

by a unique URL.

• SendMessage Sends a message to the queue.

• ReceiveMessage Allows a user to retrieve some speci-

fied number of messages from the “top” of the queue.

• ChangeMessageVisibility Changes how long a message

obtained from ReceiveMessage is blocked from other

users.

• DeleteMessage Remove a specific message from a

queue.

The ReceiveMessage has a property that once a user

manages to read a message, that message is blocked from

Figure 4. Sketch solution using SQS.

all other users for a time period determined by the Visibility-

Timeout parameter. The user releases the message by calling

ChangeMessageVisibility with V isibilityT imeout = 0.

We let the data owner maintain three queues for each

data: a request queue which stores all the pending requests;

a history queue to store all the HIST values; and a lock

queue, which contains just one message. We have a rule

that any user that wishes to do a write must be able to

successfully call a ReceiveMessage from the lock queue. A

user that wants to do a read may be able to do a read without

successfully obtaining the lock queue message if the user is

sure all other operations before it are reads. Fig 4 illustrates

the setup. We see that the RR seqnum (which we will defined

later) can be used to order the requests.

The intuition is to use the request queue to order the users

request. The lock queue has only one message, and since a

user that manages to read that message can block other users,

the lock queue functions as a de facto conventional lock.

We only have one message in the lock queue because SQS

does not guarantee to return the latest message in the queue.

By having only one message, we reduce the possibilities to

either read the message (the user may have to poll multiple

times to do this), or the message is blocked. The history

queue is to verify that the data the user is currently reading is

consistent with what the last user returned. For example, let

there be two servers A and B in the cloud. At time 1, a user

updates data to server A and when returning the lock, stores

the HIST in the history queue. Now, at time 2, another

user grabs the lock and reads the data from server B. By

repeatedly polling the history queue to obtain the appropriate

HIST , the new user can verify that the copy of the data he

obtains from server B is the same as the updated copy in

server A.

We modify the central time server to return not a times-

tamp, but a request record (RR). A (request, seqnum) pair

where the request indicates it is a read or a write, and

seqnum is an incrementing counter. So, Alice wanting to do

a read, will be given RR (r, 5). Bob, who is behind Alice

and wants to do a write, will get RR (w, 6).

Each user, after obtaining their RR, will check with the

data owner to see if their RR is next in line. If it is, the

user will do a ReceiveMessage from the lock queue to

block other users, later calling ChangeMessageVisibility to

continue blocking if necessary. When the user releases the

lock, he will store a HIST associated with his RR to the

history queue.

Assuming the user does not grab the lock, the user will

call SendMessage to the request queue and upload its RR.

The user will then poll the request queue, trying to obtain

a complete record of all the pending RR with a seqnum

smaller than itself, but larger than the latest seqnum checked

in with the data owner. So, assuming that the last seqnum

the data owner records is (∗, 3) (the asterisk denotes either

a read or a write request) and Alice has (r, 5), Alice will

poll the request queue until she obtains (∗, 4).
Now, if all the previous RRs before Alice were read

locks, then Alice will go ahead and read the data, even

if her ReceiveMessage to the lock queue is blocked. The

reason is that Alice is now sure that all the other users

before her are performing reads, so it is safe for her to

do a read as well. She will also continue to try to call

ReceiveMessage while she is still reading. However, if there

is a RR with a write, then Alice has to wait until she can

call ReceiveMessage successfully. Once Alice receives the

message, she will query the history queue to obtain the latest

HIST uploaded. She can use the seqnum from her RR to

check which is the appropriate HIST value. Alice will then

check whether the hash chain values match the DATA she

obtained from the cloud. The reason why this additional step

is necessary is that grabbing the message in the lock queue

only ensures that no other user will access the data, but

does not guarantee when that update is replicated throughout

the cloud. After Alice releases the lock, she will update the

history queue with her HIST value.

To prevent Alice from competing for the lock message

with a legitimate writer, we will require Alice to only

call ReceiveMessage after the previous RR write has been

checked in with the data owner. In our sketch solution, we

require all users to be honest. Implementing CloudLock on

an actual cloud provider is part of our on-going research.

While using three queues will incur an additional cost, we

stress that not all data needs to be protected using locks. Less

sensitive data can be accessed as before, and CloudLock is

invoked only when sensitive data is read or written.

C. Other security threats

This paper focuses on defending an untrusted cloud

provider. A different type of adversary we did not focus on is

the misbehaving user. Similar to the misbehaving cloud, the

misbehaving user is not malicious (otherwise, the owner will

not authorize permissions), but may attempt attacks, such as

deny committing an operation, or try to re-order the order

of his operation through manipulating the lock numbers.

Since the user has to sign the HIST with his private

key when returning the assigned lock to the cloud, the

cloud provider keep a copy of HIST as evidence that

the operation was performed by that user. Furthermore, the

misbehaving user cannot replace either the read lock number

or the write lock number, since this will result in an incorrect

HIST value.

Another attack the user can launch is a denial-of-service

attack, where the user never relinquishes the lock. To defend

against this attack, we can have the cloud provider contact

the data owner if a user does not release the lock after a spec-

ified time period. The data owner can then invalidate that

user’s lock. For example, the data owner can create its own

UNLOCK − RLOCK(i) or UNLOCK − WLOCK(k)
that is signed with his own key, and instruct the cloud to

forward this to subsequent users. For the remainder of the

users, this is as if the data owner himself has been issued

RLOCK or WLOCK. Both the data owner and the cloud

can take note to avoid committing any updates associated

with the invalidated RLOCK(i) or WLOCK(k) if it ever

appears later.

Another security threat we did not address is collusion.

There are two types of collusion; owner-user collusion and

cloud-user collusion. (The third type, owner-cloud collusion,

appears to be unlikely.) In the owner-user collusion, the data

owner and users collude to implicate that the cloud service

provider violated some service level agreement (SLA) and

demand compensation. CloudLock does provide some pro-

tection in that the use of signatures prevents the owner or

users from creating fake lock numbers, but it is unclear what

other types of attacks can arise from owner-user collusions.

The problem of protecting cloud providers and defending

against a cloud-user collusion remains an open problem.

D. Vector clocks

The use of the central time server in CloudLock can po-

tentially create a bottleneck, since all users cannot access the

cloud without first obtaining a time stamp. One possibility

for removing the need for a central time server is to let the

cloud and users each maintain a vector clock. A vector clock

is a logical clock maintained by users. A causal ordering

of user actions can be established through the exchange of

vector clocks between users and the cloud.

The use of vector clocks raises two issues. The first

is security. We want to prevent misbehaving users or the

cloud from tampering with vector clock values to gain some

advantage. This problem did not occur with the central

time server since it is assumed to be trusted. One possible

defense mechanism can be to let all changes be signed by the

receiving party, and to let a history of prior vector clock with

the appropriate signatures be maintained. The second issue is

efficiency. There could be many users of a public cloud that

do not communicate with each other frequently. Techniques

to allow users to quickly update their vector clocks will be

needed to improve performance.

V. RELATED WORK

Much of the research on cloud computing security centers

on untrustworthy cloud providers. On a general level, re-

searchers have advocated techniques to audit the cloud [14],

authenticate billing [15], and verify accountability to partic-

ular agreements [16]. Researchers have also studied cloud

security for specific applications, such as healthcare [17].

Unlike these research, our work considers the security im-

plications on an untrustworthy cloud performing a specific

operation, maintaining data concurrency.

Other research that are more similar to our approach

include work to verify the integrity of the hypervisor [18],

check whether data has been deleted [19], ensure data

indexing does not reveal sensitive information [20], or that

the data has been correctly replicated [21]. Our focus on

building a secure locking scheme can be viewed as a new,

important tool for users to safely utilizing untrusted clouds.

Also relevant to our work is research by [11], [12],

which seek to build reliable systems on top of an unreliable

commercial cloud. The main difference is that their work

assumes that the cloud provider is unreliable, but trust-

worthy. Our research considers an untrustworthy cloud that

will manipulate its system for benefits. Work by [22] also

considers an untrusted cloud, but focuses on proving the

retrievability and not the consistency of the data.

VI. CONCLUSION

In this paper, we considered a cloud provider that seeks to

provide consistency protection through the use of read and

write locks. We first examined the potential attacks given the

cloud’s control of the locking algorithm, and then proposed

a scheme to defend against these attacks. Our solutions are

updates on classical locking algorithms to allow them to

be executed by an untrusted cloud provider. In our future

work, we intend to explore using vector clocks to replace the

centralized time server, as well as to implement CloudLock

on commercial cloud providers for evaluation.

ACKNOWLEDGMENTS

This research was supported in part by NSF grants CCF

1028167, CNS 0948184, and CCF 0830289.

REFERENCES

[1] P. Noordhuis, M. Heijkoop, and A. Lazovik, “Mining Twitter
in the Cloud: A Case Study,” in IEEE CLOUD, 2010.

[2] P. Teregowda, B. Urgaonkar, and C. Giles, “Cloud computing:
A digital libraries perspective,” in IEEE CLOUD, 2010.

[3] http://www.cio.gov/, “State of Public Sector Cloud Comput-
ing.”

[4] M. Armbrust and et al, “Above the Clouds: A Berkeley View
of Cloud Computing,” EECS Department, UC-Berkeley, Tech.
Rep., 2009.

[5] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Ma-
suoka, and J. Molina, “Controlling Data in the Cloud: Out-
sourcing Computation without Outsourcing Control,” in ACM
CCSW, 2009.

[6] M. Jensen, J. Schwenk, N. Gruschka, and L. L. Iacono, “On
Technical Security Issues in Cloud Computing,” in IEEE
CLOUD, 2009.

[7] S. Kamara and K. Lauter, “Cryptographic cloud storage,” in
Financial Cryptograpy (FC), 2010.

[8] E. Shi, J. Bethencourt, T.-H. H. Chan, D. Song, and A. Perrig,
“Multi-dimensional range query over encrypted data,” in
Oakland, 2007.

[9] J. Wu, Distributed System Design. Boca Raton, FL, USA:
CRC Press, Inc., 1998.

[10] C. Gentry and A. Silverberg, “Hierarchical ID-Based Cryp-
tography,” in ASIACRYPT, 2002.

[11] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and
T. Kraska, “Building a Database on S3,” in ACM SIGMOD,
2008.

[12] K.-K. Muniswamy-Reddy, P. Macko, and M. Seltzer, “Making
a Cloud Provenance-Aware,” in First Workshop on on Theory
and Practice of Provenance, 2009.

[13] http://aws.amazon.com/sqs/, “Amazon Simple Queue Ser-
vice.”

[14] S. Bleikertz, M. Schunter, C. W. Probst, D. Pendarakis, and
K. Eriksson, “Security Audits of Multi-tier Virtual Infrastruc-
tures in Public Infrastructure Clouds,” in ACM CCSW, 2010.

[15] K.-W. Park, S. K. Park, J. Han, and K. H. Park, “THEMIS:
Towards Mutually Verifiable Billing Transactions in the Cloud
Computing Environment,” in IEEE CLOUD, 2010.

[16] A. Haeberlen, “A Case for the Accountable Cloud,” in ACM
SIGOPS LADIS, 2009.

[17] R. Zhang and L. Liu, “Security models and requirements for
healthcare application clouds,” in IEEE CLOUD, 2010.

[18] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and
N. C. Skalsky, “HyperSentry: Enabling Stealthy In-context
Measurement of Hypervisor Integrity,” in ACM CCS, 2010.

[19] Y. Tang, P. P. C. Lee, J. C. S. Lui, and R. Perlman, “FADE:
Secure Overlay Cloud Storage with File Assured Deletion,”
in Securecomm, 2010.

[20] A. Squicciarini, S. Sundareswaran, and D. Lin, “Preventing
information leakage from indexing in the cloud,” in IEEE
CLOUD, 2010.

[21] R. Curtmola, O. Khan, R. Burns, and G. Ateniese, “MR-PDP:
Multiple-Replica Provable Data Possession,” in IEEE ICDCS,
2008.

[22] K. D. Bowers, A. Juels, and A. Oprea, “HAIL: A High-
availability and Integrity Layer for Cloud Storage,” in ACM
CCS, 2009.

