
Universal Opportunistic Routing Scheme using
Network Coding

Abdallah Khreishah†, Issa M. Khalil‡, and Jie Wu†
†Department of Computer & Information Sciences Temple University, Philadelphia, PA 19122

‡Faculty of Information Technology, United Arab Emirates University, UAE

Abstract—Recent research has shown that the performance of
opportunistic routing and network coding in wireless networks is
greatly impacted by the correlation among the links. However, it
is dif�cult to measure the correlation among the links, especially
because of the time-varying behavior of the wireless links.
Therefore, it is crucial to design a distributed algorithm that
does not require the explicit knowledge of the channels’ states
and can adapt to the varying channel conditions. In this paper,
we formulate the problem of maximizing the throughput while
achieving fairness under arbitrary channel conditions, and we
identify the structure of its optimal solution. As is typical in
the literature, the optimal solution requires a large amount of
immediate feedback messages, which is unrealistic. We propose
the idea of performing network coding on the feedback messages
and show that if the intermediate node waits until receiving only
one feedback message from each next-hop node, the optimal level
of network coding redundancy can be computed in a distributed
manner. The coded feedback messages require a small amount
of overhead as they can be integrated with the packets. Our
approach is also oblivious to losses and correlations among
the links as it optimizes the performance without the explicit
knowledge of these two factors.

Index Terms—Network coding, wireless networks, cross-layer
design, coded feedback, feedback.

I. INTRODUCTION

Wireless multihop networks play major roles in almost
every �eld of our lives. One of the unique properties of
wireless links is the poor link quality. For example, recent
studies [1] have shown that 50% of the operational links in
Roofnet [2] have loss rates higher than 30%. Therefore, a
major challenge for deploying wireless multihop networks is to
design a transmission protocol that handles the lossy behavior
of the wireless links ef�ciently.
An ef�cient way of handling losses in wireless multihop

networks is to exploit the diversity among the links. Oppor-
tunistic routing [3] is the �rst trial to perform this exploitation.
In opportunistic routing, there is no speci�c path from the
source to the destination. Any node that overhears the packet
can relay it. Take Fig. 1 as an example in which source node
s wants to send packets to the destination d. The labels on
the links represent their delivery rates. If we use traditional
shortest path routing, the link between s and the chosen relay
node will be the bottleneck, and the achievable rate will be
upper bounded by 0.1. On the other hand, if we allow the
node that receives the packet to forward it, the achievable
rate will be 1 − (1 − 0.1)f , which is a huge improvement
over shortest path routing. The main challenge that faces the

deployment of opportunistic routing is dealing with the case
of when two relay nodes overhear the same packet. The work
in [3] resolves this problem by assigning priorities to the next-
hop forwarders, such that the node with higher priority will
transmit �rst. All of the other next-hop forwarders have to
listen to the transmission to decide whether one of the packets,
overheard by a lower priority node, has been overheard by a
higher priority node. If so, the lower priority node will not be
responsible for forwarding the packet.
Performing opportunistic routing requires coordination

among the links and the design of a specialized MAC protocol.
It also requires all of the next-hop nodes to be able to overhear
each other, which might not be available, as shown in Fig. 2.
Intrasession network coding [4] can be used to resolve the
shortcomings of opportunistic routing. In intrasession network
coding, the source node divides the message it wants to send
into batches, each having K packets of the form P1, . . . , PK .
The source node keeps sending coded packets of the form∑K

i=1 γiPi, where γi, ∀i is a random coef�cient chosen over
a �nite �eld of a large enough size, typically 28–216. Upon
receiving a coded packet, the intermediate relay node checks
to see if the coded packet is linearly independent to what
it has received before. If so, the node keeps the coded
packet, otherwise it drops the packet. Each intermediate node
generates linear combinations of the packets it has and sends
the resulting coded packets. When the destination receives K
linearly independent packets, it can decode all of the packets
of the batch. Therefore, it sends feedback to the source that
requests it to stop sending from this batch and move to the next
batch. Intrasession network coding resolves the opportunistic
routing problem due to the results in [5] which show that if the
coding coef�cients are chosen randomly over a large enough
�nite �eld, any two packets will be linearly independent with
a very high probability. This property of random network
coding eliminates the unnecessary feedback and overhearing
requirements in opportunistic routing and makes the design of
the MAC layer independent of the other layers.
Despite the simplicity that intrasession network coding

creates for opportunistic routing, deciding the number of coded
packets that each node has to send is a big challenge. The
number of packets to be sent not only depends on the loss
rates of the links, but also on the correlation among the links
de�ned in [6]. To understand the challenge in choosing the
number of transmitted packets, we provide an example that
uses Fig. 2.

2012 9th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks
(SECON)

978-1-4673-1905-8/12/$31.00 ©2012 IEEE 353

0.1

s d

1.
.

.

.

.

10.1

10.1
1

2

f

Fig. 1. An example of a network to illustrate opportunistic routing.

In this example, node s is the source node and node d
is the destination node. There are two paths that the packets
can follow from the source to the destination, and these paths
are separated by a lake. Therefore, nodes on one side of the
lake cannot overhear nodes on the other side. Each of the
two links, (s, v1) and (s, v2), has a delivery rate of 0.5, and
we study three different cases as in [6]. Case 1: The two
links are independent. This means that the reception process
is independent among the links. Case 2: The two links are
positively correlated or correlated as termed in [6]. This means
that if one link is inactive, the other one will be the same.
Case 3: The two links are negatively correlated or uncorrelated
as termed in [6]. This means that if one of the links is active,
the other one will be inactive.
We use the following simple strategy. Each node stops

the transmission of packets when it is sure that its next-hop
nodes have collectively received the same number of linearly
independent packets to what it has received. For simplicity,
we assume that the batch size is 6. For case 1, the source
node needs to try for 8 transmissions in order for both of
the next-hop nodes to collectively receive the full rank, as
illustrated in Fig. 3(a). For case 2, the source node needs to
try for 12 transmissions in order for both of the next-hop nodes
to receive full rank. This is because both links will be active
for the same 6 time slots and inactive in another 6 time slots,
as illustrated in Fig. 3(b). For case 3, the source node needs
to try for 6 transmissions in order for both of the next-hop
nodes to receive full rank. This is because the �rst link will
be exclusively active for 3 time slots, and the second one
will be exclusively active in the remaining 3 time slots, as
illustrated in Fig. 3(c). Therefore, if we follow the previously
mentioned policy, the achievable throughput for case 3 will
be approximately 1.33 times case 1 and twice that of case 2.
Note that the three rates can be made closer to each other
if v1 and v2 stop sending packets when their next-hop nodes
each receive 3 linearly independent packets. This means that
they should be given a credit of only sending three linearly
independent packets regardless of the rank of the matrix that
they have received.
Most of the previous work on opportunistic routing with

intrasession network coding either assume that the links are
independent and design the protocol based on that [4], [7]–
[9], or use the forwarding rule that says the total number
of received linearly independent packets should equal the

................

................

v1

v2

s dLake

Fig. 2. A network with a lake in the middle used in the example.

number of linearly independent packets received by next-hop
nodes [10]. In the above example, if we assume the �rst
assumption, then, in case 2, there will not be enough linearly
independent packets for the destination to decode because the
number of packets sent by the source node is not enough. Also,
if we assume independent links in case 3, the throughput will
be reduced by 1.33 due to the unnecessary transmissions. On
the other hand, the works that design the rate control according
to the rule that says the total number of received linearly
independent packets should be the same as the ones received
by next-hop nodes, result in throughput reduction in both cases
1 and 2.
In a general network, the links will have different corre-

lations, and these correlations change over time, as is noted
in [6]. This makes it dif�cult to perform measurements about
the correlation to decide whether to use network coding or not.
Therefore, it is crucial to design a strategy that guarantees a
good performance in all cases and can adapt to the changes in
the link qualities and the correlation among the links. To that
end, we tackle the above problem in this paper and provide
the following contributions:
• We formulate the problem of utility maximization for

multiple unicast sessions that uses network coding-based
opportunistic routing on an arbitrary wireless multihop
network and use the duality approach to come up with
the optimal distributed solution.

• We identify the challenges of implementing the optimal
distributed algorithm to come up with a more practical
algorithm. The practical algorithm works in a batch-
by-batch manner and performs network coding on the
feedback messages to exploit the broadcast nature of
wireless links in the reverse direction. This reduces the
number of feedback messages and eliminates the need
for immediate feedback information. The algorithm is
universal as it takes onto account the loss rates and the
correlations among the links without the need to explicitly
measure them.

• We prove that the batch-by-batch algorithm converges to
the optimal solution.

• We present simulation results for our algorithm under dif-
ferent wireless settings and show its superiority regardless
of the channel’s characteristics.

The rest of the paper is organized as follows. In Section II,
we describe our settings. We then formulate the problem in
Section III. The structure of the optimal solution is described
in Section IV. In section V, we outline the coded feedback-

354

s

v1

v2

s

v1

v2

s

v1

v2

s

v1

v2

2 slots

2 slots

2 slots

2 slots

(a)
Independent

s

v1

v2

6 slots

s

v1

v2

6 slots

(b) Correlated

s

v1

v2

s

v1

v2

3 slots

3 slots

(c) Uncorrelated

Fig. 3. Illustration of the channel activation scenarios that insure that v1
and v2 collectively achieve full rank under different correlation conditions
between the channels.

based backpressure algorithm, followed by the performance
analysis in Section VI. We present the experiment results in
Section VII and conclude the paper in Section VIII.

II. SETTINGS

In this paper, we consider a network represented by a set
of nodes V . The links between the nodes are lossy and time
varying. A transmission by a node can be received by any
subset of next-hop nodes. We represent this by a hyperedge
(u, J), where u is the node that performs transmission, and J
is a subset of the set of next-hop nodes. There are N unicast
sessions in the network, each with a source si, a destination
di, a rate Ri, and a utility function Ui(Ri), ∀i ∈ {1, . . . , N}.
Similar to the most of the opportunistic routing protocols [4],
[7], [9], [10], we are interested in the transmission of large
�les. Therefore, the throughput is the most important factor,
and the individual packet delays are of no importance.
Since we are using intrasession network coding, one impor-

tant factor to decide is the rate of linearly independent packets
that a node has to successfully deliver to next-hop nodes. To
model this factor, we use the concept of credits,1 much like
to [4], [11]. The symbol X i

uv is used to represent the rate of
credits transferred from node u to v for session i, which is the
rate of linearly independent packets that node v has to deliver
to next-hop nodes out of the linearly independents packets it
has received from node u. Therefore, the total rate of credits
for session i at node v would be

∑
u∈V X i

uv, and these credits
will be distributed to the next-hop nodes of v. We also use αi

u

to represent the fraction of time in which node u is scheduled
to send the packets of session i. Symbol RuJ represents the

1There is a slight difference between the meaning of credit here and its
meaning in [4]. In [4], it represents the number of linearly independent packets
that have to be sent by a node. Here, it represents the number of linearly
independent packets that have to be delivered successfully to next-hop nodes.

rate of packets that are sent by node u and are received by
any of the nodes in the set J .

III. PROBLEM FORMULATION

Our problem can be formulated as follows. We want to
maximize:

N∑
i=1

Ui(Ri)

Subject to:

∑
v∈V

X i
vu −

∑
v∈V

X i
uv ≤

{
−Ri u = si

0 else
∀i, ∀u ∈ V \di

(1)∑
v:v∈J

X i
uv ≤ αi

uRuJ ∀i, ∀u ∈ V \di, ∀(u, J) (2)

We assume that the utility function Ui(Ri) is non-decreasing
and strictly concave. If the utility function is chosen properly,
maximizing the objective function will achieve different kinds
of fairness among the sessions [12]. Examples of Ui(Ri)

would be: wi log(1 + Ri) and wi
R1−γ

i

1−γ , where 0 ≤ γ ≤ 1,
and wi is the weight assigned for session i.
Here, αi

u depends on the underlying interference model.
Typically, it corresponds to the convex hull of all of the
achievable rates at all links [13]. Generally, the corresponding
optimal scheduling policy is NP-hard [14], [15] and approx-
imation algorithms are used. In this paper, scheduling is of
secondary importance, and we use the simple IEEE 802.11
protocol in the simulations. We use this so that we can focus
on the network coding part and to have a fair comparison with
the other approaches that use the IEEE 802.11 protocol [4],
[10].
The �rst set of constraints represents balance equations for

the credits, so that the total received credits at a node should
be equal to the total sent credits. This guarantees that node
di will receive linearly independent packets at a rate of no
less than Ri. The second set of constraints represents the fact
that if a packet is received by many nodes, only one of them
can use this packet to increase its credits, which is a unique
property of the wireless links.
Note that the constrains do not mean that the total number

of sent linearly independent packets should be equal to the
total received ones due to the constraints set (2). For example,
in the three cases in Fig. 2, if more than one node receives the
packet, only one of them gets credit for that packet. Therefore,
for each batch, the source node has 6 credits and it distributes
them evenly among its next-hop nodes. Even though both v1
and v2 receive linearly independent packets of rank 4, 6, 3,
respectively, for cases 1, 2, 3, respectively. This also does not
mean that the number of transmissions the source node has
to make in the three cases should be the same. Therefore,
the protocols that assume independent or uncorrelated links
perform poorly under other conditions.
According to the previous discussion, if there is only one

session in the network, the achievable rate will be the max-
�ow between the source and the destination regardless of the

355

channel conditions. When more than one session exists in
the network, then by the time-sharing variables αi

u, the rate
region, represented by the formulation, will be the maximum
rate region that intrasession network coding can achieve. This
is because intrasession network coding does not allow coding
between different sessions; hence, the best thing to do is to
allow time sharing between the sessions.
Since the constraints are linear, we have a convex optimiza-

tion problem. The following proposition allows us to use the
duality approach to solve the problem [16], [17].

Proposition 1: Formulations (1)-(2) represent a convex op-
timization problem. Also, there is no duality gap between the
primal and dual problems.

Proof: The constraints represent an intersection of halfs-
paces, which represent a convex set. Also, we are maximizing
a concave objective function. Therefore, the problem is a
convex optimization problem. Due to the fact that the Slater
conditions hold, there is no duality gap, i.e., the optimal
solution to the dual problem is the same as the optimal solution
to the primal problem.

IV. THE BASIC ALGORITHM

A. Structure of the Optimal Solution

Ignoring the scheduling constraints, we associate a Lagrange
multiplier qiu with each constraint in (1). This results in the
following Lagrange function:

L(�R, �X, �q) =

N∑
i=1

Ui(Ri)− qisiRi

−
∑
i,u

qiu(
∑

v:v∈V
X i

vu −
∑

v:v∈V
X i

uv)

subject to (2).
After applying simple changes of variables, the Lagrange

function becomes

L(�R, �X, �q) =

N∑
i=1

[Ui(Ri)− qisiRi] +
∑
u,i

∑
v

(qiu − qiv)X
i
uv

subject to (2).
The Lagrange function is separable [17], which means that

the problem can be solved in a distributed way by using the
gradient method as follows.

Source Algorithm: Each source si selects its rate at each
time slot as follows:

Ri(t) = argmax
Ri

[Ui(Ri)− qisi(t)Ri] (3)

Intermediate Node Algorithm: Each intermediate node u
selects the number of credits for session i to transfer to all
of its next-hop nodes at each time slot as follows:

{X i
uv(t)}v∈V =argmax

�X

∑
v∈V

(
qiu(t)− qiv(t)X

i
uv

)
(4)

subject to:∑
v∈J

X i
uv ≤ αi

uRuJ ∀i, ∀J. (5)

Dual Variables Updates: The dual variables can be updated
in a distributed way as follows:

qiu(t+1) = [qiu(t)+βi
u(
∑
v∈V

X i
vu(t)−

∑
v∈V

X i
uv(t))+Ri×1u=si]

+

(6)
Here, [.]+ is a projection on the positive real numbers, and

β is the step size.

V. OUR PRACTICAL SOLUTION

In this section, we develop a practical protocol based on
the structure of the optimal solution that we introduced in the
previous section. To do so, we �rst specify the challenges of
directly implementing the basic algorithm that was described
in the previous section, and then we provide our practical
solution.

A. Challenges

The Algorithm, represented by the operations in ((3)-(6)),
converges to the optimal solution, but it has the following
shortcomings.
The �rst challenge is that the algorithm requires a large

amount of feedback messages. For example, if a node that
has l next-hop neighbors sends k packets from the batch, we
need (k × l) feedback messages per batch. Also, the node
that has l previous-hop neighbors needs to send different
feedback messages to each one of these neighbors. Given that
the wireless links are lossy further increases the challenges of
the problem.
The second challenge is that the algorithm is based on slot-

by-slot updates, which means that after sending a packet, a
node has to get immediate and accurate feedback from all of
the next-hop nodes, which is also impractical.
We resolve the �rst challenge by noting that the transmitted

packets are coded packets. Therefore, we can compress the
feedback into one coded packet that represents all of the
received packets which we will describe next. Therefore, we
exploit the broadcast nature of wireless links in the reverse
direction of transmission. We resolve the second challenge by
performing the updates in a batch-by-batch manner instead of
performing the updates on each time slot, as we will describe
next.

B. The Coded Feedback Approach

The coded feedback approach has been used previously by
many works [10], [18], [19]. The work in [19] performed the
coded feedback approach over multihop in wireline networks,
i.e., network coding is performed on the feedback message,
and these feedback messages are allowed to travel over more
than one hop in the reverese paths between the source and the
destination. The objective in [19] was to �nd the min-cut max-
�ow in wireline networks. For wireless networks, the works
in [10], [18] use the coded feedback message at the immediate

356

previous-hop node to perform rate control. In [18], the coded
feedback approach is used for multicast, while in [10] it is used
for the unicast case. In both cases, rate control was based on a
heuristic, and no proof of the the optimality was provided. In
this paper, we limit the coded feedback messages to be used
by the previous one-hop away nodes, much like [10], [18], but
we show that our method achieves the optimal solution.
The common way of using the coded feedback is through

the null space. The null space of the matrix A is the linear
space of vectors such that the result of multiplying anyone of
them by A equals zero. For example, if y belongs to the null
space of A, then yTA = 0, where yT is the transpose of y.

Take Fig. 4(a) as an example in which node s sends four
coded packets. Node v receives two of them. Node v can
compute the null space of the space of the packets it receives,
choose a vector from this space, and send it back to node s. As
is illustrated in Fig. 4(b): node s can now multiply this vector
with each of the packets it has sent. If the result is zero, node
s can infer that the packet has been received by node v with
high probability. Otherwise, node s knows that the packet has
been not received by node v. Using a hash table, the work
in [10] makes the false-positive probability very low, about
10−10.
Note that in the coded feedback approach, only one feed-

back message from the node can acknowledge all of its
previous one-hop away nodes; therefore, it allows for the
exploitation of the broadcast nature of wireless networks in
the reverse direction of transmission. Also, as we will explain,
these coded feedback messages can be integrated with the
original packets with very low overhead.

C. Integrating the Coded Feedback Approach with the Algo-
rithm

In this section, we move to apply the gradient algorithm
that we adopted in the previous section in a batch-by-batch
fashion. Therefore, the index t will refer to the bach number.
For the rate update (3) to be implemented in a batch-by-

batch manner, the source will inject all of the packets of a
given batch with the same rate speci�ed by (3). Also, (4) and
(6) can be done in a batch-by-batch manner by performing the
transfer of the credits for a given batch and the queue length
updates at a node after making sure that the next-hop nodes
have collectively received linearly independent packets equal
to the number of credits for that batch at that node. After that,
the node will move to the next batch. Therefore, what needs
to be speci�ed is how to use the coded feedback approach at
the relay node u to perform the following two decisions that
lead to maximizing (4), subject to (5).

• Node u has to decide the session that the current packet
should be sent from.

• Node u has to decide also the number of credits to be
assigned to each next-hop node.

To perform the �rst decision optimally, the relay node
should choose session i∗ that achieves the maximum value

for the following among all of the sessions.

{X i
uv(t)}v∈V = argmax

�X
(qiu(t)− qiv(t))X

i
uv (7)

Subject to:∑
v∈J

X i
uv ≤ αi

uRuJ ∀(u, J) (8)

Note that in (7), the objective function is a linear function of
X i

uv. In order to perform maximization while satisfying (8),
for every session i, node u ranks the next-hop nodes v
according to the backlog difference (qiu − qiv). Then it gives
as many virtual credits2 to this next-hop node with the highest
backlog difference subject to (8). Then it continues to do
the same thing for the remaining nodes according to their
backlog difference. For every sent packet, next-hop node v
gets a virtual credit if node v has received the packet and no
other node with a higher backlog difference has received the
packet. This is because (8) means that if more than one node
receives a packet, only one of them can use that packet to
increase its number of credits. Therefore, we give the credit
to the node with the largest backlog. This process can be
checked by using the coded feedback approach. Let us denote
the number of virtual credits for session i and node v by Zi

v,
then node u calculates wi =

∑
v((q

i
u − qiv)Z

i
v), such that all

vs have positive backlog differences. Then node u selects the
session that achieves the maximum wi. Algorithm 1 describes
the above strategy. In the algorithm, yiv represents a randomly
selected vector from the null space of the i-th session packets
at node v.

Algorithm 1 Selecting the packet to send

1: Zi
v ← 0, ∀i, ∀v

2: for i← 1 to N do
3: Sort next-hop nodes according to (qiu − qiv).
4: Remove the nodes with negative backlog
5: for Each sent packet P do
6: Choose node v with the highest non-negative backlog

difference such that yiTv ∗ P is zero.
7: set Zi

v ← Zi
v + 1

8: set wi ←
∑

v Z
i
v(q

i
u − qiv)

+

9: select i∗ ← argmaxiwi.
10: send a packet from session i∗

Every time a node receives a vector in the null space
from the next-hop node, it multiplies that vector with all of
the packets it has sent to �gure out the number of linearly
independet packets that has been received by next-hop nodes.
Once that rank becomes equal to the number of credits
assigned for that batch at that node, the node distributes its
credits to next-hop nodes in a fashion similar to Algorithm 1.
However, this time the node only focuses on one session,

2Note that these are different from the actual credits that will be distributed
as a strategy for the second decision the node has to perform. These credits
are just for knowing the packet of which session should be sent. Also, these
credits are not transmitted to next-hop nodes. They are just computed locally.

357

Algorithm 2 Credits assignment
1: sort the next-hop nodes according to the backlog differ-

ence
2: Discard the nodes with negative backlog difference.
3: for Each sent packet P do
4: TAKEN(P)← 0
5: for Each next-hop node v with positive backlog difference

in descending order do
6: for Each packet P do
7: if TAKEN(P) = 0 AND yiTv ∗ P = 0 then
8: Ci

v ← Ci
v + 1

9: TAKEN(P)← 1

and the credits that are assigned are real, not virtual credits.
Algorithm 2 represents the credit assignment algorithm. In the
algorithm, TAKEN(P) = 1 means that a credit for packet P
has been assigned for one of the next-hop nodes that received
packet P . Therefore, in line number 7 of the algorithm, no
other next-hop node can be assigned a credit for this packet.
The example in Fig. 4(a) shows a broadcast link with one

source node s and three receiving nodes, u, v, and w. The
queue length of every node is represented in the �gure. The
�gure also shows the 4 coded packets sent by s and the coded
packets received by the next-hop nodes. It also shows one
vector in the null space3 of the space of the received vectors
by each node. Fig. 4(b) shows the result of multiplying the y
vectors - which represent the null space of the received packets
- with the packets at node s. If a cell in the table in Fig. 4(b) is
�lled, this means that the multiplication result of the packet in
that row with the y vector of the next-hop node in that column
is zero. This also means that the next-hop node in that column
has overheard the packet in that row.
In Fig. 4(a), the coded packets at the sender represent the

sent packet from a speci�c batch and session, and the coded
packets at the receivers are for the same session and batch. In
Algorithm 1, node s �rst sorts the next-hop nodes according
to the backlog difference in descending order, which results
in the following order, v, u, then w. Node s then multiplies
the vectors in the null spaces of each one of these nodes with
each one of the sent packets. The result of the multiplication is
illustrated in Fig. 4(b). Then, node s assigns Zi

v = 2 because
node v has the highest backlog and has overheard two packets.
Then node s assigns Zi

u = 0, because all of the packets that are
received by node u have been received by nodes with higher
backlog differences. Using a similar approach, node w gets
Zi
w = 1. Therefore, the total weight obtained by Algorithm 1

for this session is wi = 38. On the other hand, for the scenario
in Fig. 5(a), node s assigns: Zi

v = 2, Zi
u = 1, Zi

w = 0, and
wi = 42.
In Fig. 4(a), assume that node s has three credits to be

distributed to next-hop nodes. Using the results on the table,

3The coef�cients for the y vectors here are over the real numbers just for
illustration. When the algorithms are implemented, �nite �elds are used, and
the minus value is changed depending on the size of the �nite �eld.

4X1 + 5X2 +X3

2X1 + 5X2 + 2X3

3X1 + 3X2 + 5X3

4X1 +X2 + 2X3

4X1 + 5X2 +X3

4X1 + 5X2 +X3

2X1 + 5X2 + 2X3

2X1 + 5X2 + 2X3

4X1 +X2 + 2X3

s

u

v

w

yu = [1 1 − 9]

yv = [5 − 6 10]

yw = [4 2 − 9]

qs = 20

qv = 5

qu = 8

qw = 12

(a) The transmission scenario

4X1 + 5X2 +X3

2X1 + 5X2 + 2X3

3X1 + 3X2 + 5X3

4X1 +X2 + 2X3

u vw

(b) The table created by the
algorithm

Fig. 4. An example representing our coded feedback approach.

4X1 + 5X2 +X3

2X1 + 5X2 + 2X3

3X1 + 3X2 + 5X3

4X1 +X2 + 2X3

4X1 +X2 + 2X3

4X1 + 5X2 +X3

2X1 + 5X2 + 2X3

2X1 + 5X2 + 2X3

4X1 +X2 + 2X3

s

u

v

w

yu = [1− 6 1]

yv = [5 − 6 10]

yw = [4 2 − 9]

qs = 20

qv = 5

qu = 8

qw = 12

(a) The transmission scenario

4X1 + 5X2 +X3

2X1 + 5X2 + 2X3

3X1 + 3X2 + 5X3

4X1 +X2 + 2X3

u vw

(b) The table created by the
algorithm

Fig. 5. An example representing our coded feedback approach.

the next-hop nodes of node s have collectively accumulated
packets with rank equal to the credits at the node. This can
be veri�ed from the table in Fig. 4(b). Therefore, node s will
assign the next-hop nodes the credits for this batch and move
on to the next one. Node v gets 2 credits as it is the node
with the highest backlog difference, and it has overheard two
packets. Node u cannot be assigned a credit because the packet
it has overheard has been also overheard by a node with
a greater backlog difference. Therefore, the algorithm gives
one credit to node w due to the overhearing of the fourth
packet, “4X1 + X2 + 2X3”. Fig. 5(a) represents the same
example as Fig. 4(a), but instead of making the links between s
and u, v, respectively, correlated, we make them uncorrelated.
Therefore, node u in this example receives “4X1+X2+2X3”
instead of “4X1+5X2+X3”. Since no credit has been assigned
to node v for the packet “4X1 +X2 + 2X3”, node u can be
assigned one credit. The examples represented by Figs. 4 and 5
show the adaptability of our algorithm to different channel
conditions and correlations among links.

D. Details of the Practical Protocol

So far, we have identi�ed the structure of the optimal
solution and discussed the major challenges that face its
deployment. We have then designed a back-pressure algorithm
that uses the coded feedback approach and works in a batch-

358

by-batch manner to resolve these challenges. In this section,
we outline the details of the practical protocol that uses the
insight drawn from the structure of the optimal solution and
resolves the above-mentioned challenges.
In our protocol, every node maintains the following infor-

mation. The received and sent coded packets, the available
number of credits, and the batch and session numbers of the
received and sent packets. We adopt a packet format that is
similar to [4], [10] in that each packet has a 1500 bytes of
data. The packets also contain the coef�cients of the coding
vector along with its session and batch numbers. The packet
contains the three most recent batches it has received each with
a vector from the null space of the packets in that batch. The
packet contains the number of currently queued credits. The
packets also contain the number of credits assigned to each
next-hop node and the batch number for these credits. Fig. 6
represents the packet format. In conclusion, the packet format
allows both (1) the feedback messages to previous-hop nodes,
and (2) the credits assignment messages to next-hop nodes to
be integrated with the packets with less than 3% overhead.

VI. CONVERGENCE ANALYSIS

In this section, we show that our batch-based algorithm con-
verges to the optimal solution. We do that by �rst presenting
the structure of the dual problem, and then showing that the
dual variables converge to their optimal value; �nally, we show
that objective function of the problem converges to its optimal
value.
Note that the Lagrange function can be rewritten as:

L(�R, �X, �q) =

N∑
i=1

[Ui(Ri)− qisiRi] +
∑
u,i
�X∈Y

∑
v

(qiu − qiv)X
i
uv,

where Y is the feasible set that is represented by (2).
We can de�ne D(�q) = max�R, �X∈Y L(�R, �X, �q); hence, the

dual problem becomes: min�q≥0 D(�q).
Note that as we increase the batch size, Algorithm 2

computes (4), subject to (5), more accurately. The reason is
that there is a delay between the time the next-hop nodes col-
lectively receive the required number of linearly independent
packets and the time when node u is noti�ed of this event.
However, as we increase the batch size, the effect of this delay
decreases until reaching almost zero.
We have the following Proposition:
Proposition 2: Let the step size βi

u be a �xed constant
number β for all batches, and let φ be the set of positive �q
that minimizes D(�q), and d(�q, φ) = min �q∗∈φ ||�q− �q∗||. Given
any ε > 0, ∃ β0 > 0 such that ∀β < β0 and any initial �q(0),
∃ t0 such that ∀t > t0 we have:

d(�q(t), φ) < ε

Proof: Note that the dual problem is a convex one. Also,
the absolute value of the gradient of the dual problem is
bounded by

∑
u,i(

∑
v X

i
vu −

∑
v X

i
uv), which is bounded by

∑
u,i α

i
uBWu <∞, where BWu is the bandwidth of node u.

Therefore, by Lemma 8.2.1 and Proposition 8.2.2 from [20],
our results follow.
The previous proposition shows that the dual variables will

converge to their optimal values. It also shows that the queue
lengths will be �nite and the system will be stable. The
next theorem establishes the optimality of our algorithm with
respect to the objective function.

Theorem 1: Let the step size βi
u be a �xed constant number

β for all batches, and let U∗ be the optimal solution to our
problem ((1)-(2)). Given any ε > 0, ∃β0 s.t. ∀ β < β0, we
have:

lim inf
m→∞

m∑
t=1

∑
i

Ui(Ri(t) > U∗ − ε

Proof: We use the following Lyapunov function:

V (�q(t)) =
1

2

∑
u,i

(qiu(t))
2

We have:

V (�q(t+ 1))− V (�q(t)) ≤∑
i

qisi(t)Ri(t) + β
∑
u,i
�X∈Y

qiu(t)(
∑
v

X i
vu(t)−

∑
v

X i
uv(t))

+ β2A(t)

where:

A(t) =
∑
u,i
�X∈Y

(
∑
v

X i
vu(t)−

∑
v

X i
uv(t))

2

≤
∑
u,i

(αi
uBWu)

2 = Ā

After multiplying both sides of the inequality by −1 and
adding β

∑
i Ui(Ri(t)), we have:

V (�q(t))− V (�q(t+ 1)) + β
∑
i

Ui(Ri(t))

≥ β
[∑

i

Ui(Ri(t))− qisi(t)Ri(t)

−
∑
u,i
�X∈Y

qiu(t)(
∑
v

X i
vu(t)−

∑
v

X i
uv(t))

] − β2Ā

= βD(�q(t)) − β2Ā

≥ βU∗ − β2Ā

This is due to the duality theorem [16].
After summing up both sides of the above inequality over

t = 1, . . . ,M and dividing both sides by M , we have:

β

M

M∑
t=1

∑
i

Ui(Ri(t))

≥ βU∗ − β2Ā− V (�q(1))− V (�q(M + 1))

M

359

Data
Coding

Coefficients

Session

Number

Most recent

batch

of queued

credits

Null space

vector

Null space

vector

M-th most

recent batch

Batch ID

of next-hop

credits

of credits

for first

next-hop

of credits

next-hop

for last

Fig. 6. Representation of the packets format in our protocol.

Note that all V (.) are bounded because the sequence {�q(t)}
converges. For any given ε > 0, the term V (�q(1))−V (�q(M+1))

βM
can be bounded by ε

2 for a large enoughM . Also, for any given
ε > 0, ∃, β1 > 0, such that βĀ ≤ ε

2 , ∀β ≤ β1. Therefore, we
have:

lim inf
m→∞

m∑
t=1

∑
i

Ui(Ri(t) > U∗ − ε

VII. EVALUATIONS

In this section, we evaluate the performance of our protocol
in wireless networks with different network characteristics.
We study the effect of varying different parameters on the
performance of the network. These parameters are the loss
rates of the links, the correlations among the links, and the
number of sessions in the network. We are interested in
the following two performance metrics: the total throughput
observed by all of the sessions, and the fairness in allocating
rates among the �ows. We compare our protocol to two other
protocols in the literature that represent the state-of-the-art
opportunistic routing scheme with network coding. These are
MORE [4] and CCACK [10]. In MORE, the authors assume
that the links are independent. Based on that, the nodes in
MORE periodically estimate the channels’ loss rates, which
allows the nodes to compute an estimation of the number of
transmissions that each node has to perform. CCACK, on the
other hand, uses the coded feedback approach. However, the
rate control mechanism in CCACK is heuristic and does not
take into account the correlation among the links. We used
MATLAB to perform the simulations in this section.
We simulate one session using the topology in Fig. 2 with

sixteen nodes. We vary two parameters: the delivery rates of all
of the links and the correlation between the links of the source
node. The delivery rate values change from 0.3 to 0.8. For each
one of these delivery rate values, we make the correlations
between the links independent with κ = 0, as de�ned in [6],
correlated with κ = 1, or uncorrelated with κ = −1. We
assume very large �les. Therefore, we run the simulations until
the steady state throughput is reached, and then we record that
value.
Fig. 7 illustrates our results. Our universal approach (UNIV)

improves the throughput by 40% to 300% over both MORE
and CCACK depending on the scenario. The biggest improve-
ment is noticed when the loss rates of the links are very high.
This is due to the use of coded feedback in an optimal manner
which does not require too many feedback messages. The
highest throughput is achieved by our protocol when the links

are uncorrelated, whereas the lowest throughput is achieved
when the links are correlated. This is due to the fact that
the source node has to send more packets when the links are
correlated, as explained in Section I. Note that the difference
between the correlated and uncorrelated cases is not large,
because all of the nodes, except the source, are performing the
same operations in both cases, as also explained in Section I.
The gain of our protocol is not only due to the use of the coded
feedback approach, because CCACK that uses this approach
performs similar to MORE under these settings. In conclusion,
the strength of our protocol lies behind integrating the coded
feedback approach with cross-layer optimization.
Typically, the gain from network coding is higher when

the links are uncorrelated. However, MORE performs slightly
better when the links are independent. This is because MORE
computes the number of packet transmissions that each node
has to perform based on the assumption that they are in-
dependent. CCACK, on the other hand, achieves its highest
performance when the links are uncorrelated due to the use of
the coded feedback approach.
We performed another set of simulations on the same

topology in Fig. 2 with two opposite sessions such that the
source of one of them is the destination of the other one. The
throughput results are similar to those with one session, as the
two sessions share the network, and fair end-to-end rates were
achieved by all of the schemes.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a distributed opportunistic
routing algorithm that uses network coding. The design of our
algorithm is inspired by the recent results in the literature that
showed the sensitivity of the opportunistic routing and network
coding protocols to the correlations among the wireless links.
We designed our algorithm based on formulating the problem
with arbitrary channel conditions as a convex optimization
problem, which results in an optimal back-pressure algorithm.
We identi�ed the challenges of implementing the optimal
back-pressure algorithm. This leads us to use the coded
feedback approach to resolve the deployment dif�culties. Our
algorithm adapts to changes in the channel loss rates and the
correlations among the links. We showed the advantage of our
approach through simulation results.
Our future research will be directed toward:

• Extending our results for intersession network coding,
where coding can be performed among the packets of
different multicast sessions.

• Modifying the Transmission Control Protocol (TCP) to
work with our protocol with the possibility of sending

360

0.3 0.4 0.5 0.6 0.7 0.8
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Links Delivery Rate

T
hr

ou
gh

pu
t (

pa
ck

et
s/

se
co

nd
)

Correlated Links at the Source

0.3 0.4 0.5 0.6 0.7 0.8
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Links Delivery Rate

T
hr

ou
gh

pu
t (

pa
ck

et
s/

se
co

nd
)

Independent Links at the Source

0.3 0.4 0.5 0.6 0.7 0.8
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Links Delivery Rate

T
hr

ou
gh

pu
t (

pa
ck

et
s/

se
co

nd
)

Uncorrelated Links at the Source

MORE

CCACK

UNIV

MORE

CCACK

UNIV

MORE

CCACK

UNIV

Fig. 7. Simulation results for the topology in Fig. 2 with one session.

coded end-to-end coded feedback messages to control the
window size and other parameters in TCP.

IX. ACKNOWLEDGMENT

This research was supported in part by NSF grants ECCS
1128209, CNS 1065444, CCF 1028167, CNS 0948184, and
CCF 0830289.
The authors would like to thank Dr. Shan Lin for his

insightful comments and Pouya Ostovari for the help with
running the simulations.

REFERENCES

[1] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris, “Link-level
measurements from an 802.11b mesh network,,” in ACM SIGCOMM,,
Aug 2004.

[2] “MIT Roofnet, http://www.pdos.lcs.mit.edu/roofnet.”
[3] S. Biswas and R. Morris, “Opportunistic routing in multi-hop wireless

networks,” in Proc. ACM Special Interest Group on Data Commun.
(SIGCOMM), Philadelphia, PA, USA, Sept 2005.

[4] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading structure
for randomness in wireless opportunistic routing,” in ACM Special
Interest Group on Data Commun. (SIGCOMM) Kyoto, Japan,, Aug
2007.

[5] T. Ho, M. Médard, R. Koetter, D. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Trans. Inform. Theory, vol. 52, no. 10, pp. 4413–4430, 2006.

[6] K. Srinivasan, M. Jain, J. Choi, T. Azim, E. Kim, P. Levis, and
B. Krishnamachari, “The κ-factor: Inferring protocol performance using
inter-link reception correlation,,” in ACM MobiCom. Chicago, IL,, Sept
2010.

[7] B. L. Y. Lin and B. Liang, “CodeOR: Opportunistic routing in wireless
mesh networks with segmented network coding,” in in the Proceedings
of the 16th IEEE International Conference on Network Protocols (ICNP
2008), Orlando, Florida, October 2008.

[8] C. G. et al., “Multipath code casting for wireless mesh networks,” in in
Proc. of ACM CoNEXT, 2007.

[9] X. Zhang and B. Li, “Optimized multipath network coding in lossy
wireless networks,” IEEE Journal on Selected Areas in Communications,
vol. 27, no. 5, pp. 622–634, 2009.

[10] D. Koutsonikolas, C.-C. Wang, and Y. Hu, “CCACK: Ef�cient network
coding based opportunistic routing through cumulative coded acknowl-
edgments,” in in Proceedings of the 29th Conference on Computer
Communications (INFOCOM), San Diego, USA,, March 2010.

[11] B. Radunovic, C. Gkantsidis, P. Key, and P. Rodriguez:, “Toward
practical opportunistic routing with intra-session network coding for
mesh networks,” IEEE/ACM Trans. Networking, vol. 18, no. 2, pp. 420–
433, 2010.

[12] T. Bonald and L. Massoulie, “Impact of fairness on Internet perfor-
mance,” in Proc. of ACM Joint Int’l Conf. on Measurement and Modeling
of Computer Systems (Sigmetrics), Cambridge, MA, June 2001.

[13] X. Lin and N. Shroff, “The impact of imperfect scheduling on cross-layer
congestion control in wireless networks,” IEEE/ACM Trans. Networking,
vol. 14, no. 2, pp. 302–315, 2006.

[14] G. Sharma, N. B. Shroff, and R. R. Mazumdar, “On the complexity of
scheduling in wireless networks,” in proceedings of ACM MOBICOM,
Sept 2006.

[15] T. Cui, L. Chen, and T. Ho, “Distributed optimization in wireless
networks using broadcast advantage,” in IEEE Conf. Decision and Contr.
New Orleans,, Dec 2007.

[16] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[17] D. Bertsekas and J. N. Tsitsikalis, Parallel and Distributed Computation:
Numerical Methods. Athena Scienti�c, 1997.

[18] J. Park, M. Gerla, D. Lun, Y. Yunjung, and M. Medard, “Codecast:
a network-coding-based ad hoc multicast protocol,” IEEE Wireless
Communications, vol. 13, no. 5, 2006.

[19] C.-C. Wang, “Pruning network coding traf�c by network coding — a
new class of max-�ow algorithms,” IEEE Trans. on Info. Theory, vol. 56,
no. 4, pp. 1909–1929, 2010.

[20] D. Bertsekas, A. Nedić, and A. Ozdaglar, Convex Analysis and opti-
mization. Athena Scienti�c, 2003.

361

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /SABAEN44
 /SAKURAalp
 /Shruti
 /SimSun
 /STSong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

